3,160 research outputs found

    Space exploration: The interstellar goal and Titan demonstration

    Get PDF
    Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed

    Terrestrial applications: An intelligent Earth-sensing information system

    Get PDF
    For Abstract see A82-2214

    An AI-Based Goal-Oriented Agent for Advanced On-Board Automation

    Get PDF
    In the context of fierce competition arising in the space economy, the number of satellites and constellations that will be placed in orbit is set to increase considerably in the upcoming years. In such a dynamic environment, raising the autonomy level of the next space missions is key to maintaining a competitive edge in terms of the scientific, technological, and commercial outcome. We propose the adoption of an AI-based autonomous agent aiming to fully enable spacecraft’s goal-oriented autonomy. The implemented cognitive architecture collects input starting from the sensing of the surrounding operating environment and defines a low-level schedule of tasks that will be carried out throughout the specified horizon. Furthermore, the agent provides a planner module designed to find optimal solutions that maximize the outcome of the pursued objective goal. The autonomous loop is closed by comparing the expected outcome of these scheduled tasks against the real environment measurements. The entire algorithmic pipeline was tested in a simulated operational environment, specifically developed for replicating inputs and resources relative to Earth Observation missions. The autonomous reasoning agent was evaluated against the classical, non-autonomous, mission control approach, considering both the quantity and the quality of collected observation data in addition to the quantity of the observation opportunities exploited throughout the simulation time. The preliminary simulation results point out that the adoption of our software agent enhances dramatically the effectiveness of the entire mission, increasing and optimizing in-orbit activities, on the one hand, reducing events\u27 response latency (opportunities, failures, malfunctioning, etc.) on the other. In the presentation, we will cover the description of the high-level algorithmic structure of the proposed goal-oriented reasoning model, as well as a brief explanation of each internal module’s contribution to the overall agent’s architecture. Besides, an overview of the parameters processed as input and the expected algorithms\u27 output will be provided, to contextualize the placement of the proposed solution. Finally, an Earth Observation use case will be used as the benchmark to test the performances of the proposed approach against the classical one, highlighting promising conclusions regarding our autonomous agent’s adoption

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    An information adaptive system study report and development plan

    Get PDF
    The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines

    Mission Planning Techniques for Cooperative LEO Spacecraft Constellations

    Get PDF
    This research develops a mission planning approach that allows different systems to cooperate in accomplishing a single mission goal. Using the techniques described allows satellites to cooperate in efficiently maneuvering, or collecting images of Earth and transmitting the collected data to users on the ground. The individual resources onboard each satellite, like fuel, memory capacity and pointing agility, are used in a manner that ensures the goals and objectives of the mission are realized in a feasible way. A mission plan can be generated for each satellite within the cooperating group that collectively optimize the mission objectives from a global viewpoint. The unique methods and framework presented for planning the spacecraft operations are flexible and can be applied to a variety of decision making processes where prior decisions impact later decision options. This contribution to the satellite constellation mission planning field, thus has greater applicability to the wider decision problem discipline

    MISAT: Designing a Series of Powerful Small Satellites Based upon Micro Systems Technology

    Get PDF
    MISAT is a research and development cluster which will create a small satellite platform based on Micro Systems Technology (MST) aiming at innovative space as well as terrestrial applications. MISAT is part of the Dutch MicroNed program which has established a microsystems infrastructure to fully exploit the MST knowledge chain involving public and industrial partners alike. The cluster covers MST-related developments for the spacecraft bus and payload, as well as the satellite architecture. Particular emphasis is given to distributed systems in space to fully exploit the potential of miniaturization for future mission concepts. Examples of current developments are wireless sensor and actuator networks with plug and play characteristics, autonomous digital Sun sensors, re-configurable radio front ends with minimum power consumption, or micro-machined electrostatic accelerometer and gradiometer system for scientific research in fundamental physics as well as geophysics. As a result of MISAT, a first nano-satellite will be launched in 2007 to demonstrate the next generation of Sun sensors, power subsystems and satellite architecture technology. Rapid access to in-orbit technology demonstration and verification will be provided by a series of small satellites. This will include a formation flying mission, which will increasingly rely on MISAT technology to improve functionality and reduce size, mass and power for advanced technology demonstration and novel scientific applications.

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization
    • …
    corecore