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ABSTRACT 

In the context of fierce competition arising in the space economy, the number of satellites and constellations that will 
be placed in orbit is set to increase considerably in the upcoming years. In such a dynamic environment, raising the 
autonomy level of the next space missions is key to maintaining a competitive edge in terms of the scientific, 
technological, and commercial outcome. 

We propose the adoption of an AI-based autonomous agent aiming to fully enable spacecraft’s goal-oriented 
autonomy. The implemented cognitive architecture collects input starting from the sensing of the surrounding 
operating environment and defines a low-level schedule of tasks that will be carried out throughout the specified 
horizon. Furthermore, the agent provides a planner module designed to find optimal solutions that maximize the 
outcome of the pursued objective goal. The autonomous loop is closed by comparing the expected outcome of these 
scheduled tasks against the real environment measurements. 

The entire algorithmic pipeline was tested in a simulated operational environment, specifically developed for 
replicating inputs and resources relative to Earth Observation missions. The autonomous reasoning agent was 
evaluated against the classical, non-autonomous, mission control approach, considering both the quantity and the 
quality of collected observation data in addition to the quantity of the observation opportunities exploited throughout 
the simulation time. The preliminary simulation results point out that the adoption of our software agent enhances 
dramatically the effectiveness of the entire mission, increasing and optimizing in-orbit activities, on the one hand, 
reducing events' response latency (opportunities, failures, malfunctioning, etc.) on the other. 

In the presentation, we will cover the description of the high-level algorithmic structure of the proposed goal-oriented 
reasoning model, as well as a brief explanation of each internal module’s contribution to the overall agent’s 
architecture. Besides, an overview of the parameters processed as input and the expected algorithms' output will be 
provided, to contextualize the placement of the proposed solution. Finally, an Earth Observation use case will be used 
as the benchmark to test the performances of the proposed approach against the classical one, highlighting promising 
conclusions regarding our autonomous agent’s adoption. 

. 

CONTEXT AND PROBLEM DEFINITION 
In the fierce competition of the space economy, the 
number of satellites and constellations placed in orbit 
might increase considerably in the upcoming years. A 
higher autonomy of space missions is critical to 
maintaining a competitive edge of scientific, 
technological, and commercial outcomes in such a 
dynamic environment. The large-scale adoption of 
autonomous robotics is one of the fundamental pillars at 
the base of the evolution of humanity into an 
interplanetary species. 

AI applications are already a reality in a wide range of 
industrial and research fields. Soon, space will become 
the next frontier for AI. Economic growth and social 
interest in space domain activities are drivers of the 
technological push whose autonomous platforms allow 
for overcoming operational constraints. 

Space represents a challenging environment for robotic 
system operations occurring in low Earth orbit up to deep 
space. A wide variety of satellites, spacecraft, 
constellations, rovers, and landers have historically 
faced uncertain mission environments and unexpected 
events. Even now, their capabilities to efficiently react, 
adjust and freely explore are limited. 
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In low Earth orbit, latency, scattered, and limited 
communication windows represent a significant 
bottleneck, a concern for the overall outcome of both 
scientific and commercial spacecraft missions. Such a 
constraint may affect the ability of an orbiting platform 
to react to unexpected internal or external events 
efficiently. Also, the delay of real-time information from 
the satellite limits the exploitation of unforeseen 
operational opportunities. 

This problem is a priority for the Jet Propulsion 
Laboratory, as mentioned in their most recent strategic 
intent document1: "Some future missions will have 
limited communication with Earth for extended periods 
of time, such as drilling through kilometers of icy crust 
on Europa, requiring the systems to be able to assess 
their own environment and make decisions 
independently. Other missions will require reacting on a 
timeframe that is shorter than the communication time 
with Earth such as sampling from short-lived plumes. 
Missions that cannot receive commands from Earth 
quickly and reliably will need the autonomous capability 
to explore with reduced or no human intervention. 
Autonomy can increase spacecraft productivity and, 
when the spacecraft cannot wait for ground commands, 
enable rapid reactions." 

In the upcoming years, technological growth and an 
increased commercial interest in the space economy will 
lead to developing more complex satellite platforms with 
more payloads and advanced subsystems. Such 
development shall be supported by optimizing the real-
time management of onboard resources. As a result, the 
workload of satellite operators will rapidly increase 
when accounting for the simultaneous expansion of 
satellite constellations in low Earth orbit. This scenario 
has consequences for both the mission planning, 
operability, and constellations themselves. 

The expansion of space exploration leads engineers and 
platform operators to face higher complexity issues. 
Hence, large-scale integration of AI-based architectures 
is significant to increase the operational capabilities of 
robotics systems in the space domain while containing 
the workload on the ground. 

 

THE SOLUTION 
AIKO’s solution to the problems is MiRAGE, an 
onboard automation software that enables advanced 
autonomous operations. 

Considering a satellite platform, three major high-level 
features that can benefit from adopting AI-based 
solutions are abstracted: (i) onboard data processing, (ii) 

operations planning, and (iii) autonomous control. 
Increasing mission and system autonomy rely on 
integrating cutting-edge AI technologies into these three 
main functional modules. 

A simple cognitive architecture is abstracted from the 
complexity of a space system. In this regard, our 
approach aims to provide the satellite with the ability: to 
sense the environment and its status (through onboard 
data processing), to plan tasks according to acquired, 
gathered, or inferred knowledge (operations planning), 
to self-maneuver in the orbital environment 
(autonomous control), and to operate in a coordinated 
system to accomplish more complex distributed tasks 
such as those requiring a combination of the individual 
abilities mentioned above. 

Sensing capabilities are implemented through the 
integration of Deep Learning applications, related to 
payload data processing or telemetry data processing. 
This approach enhances satellite self-awareness and 
predicts or prevents possible detrimental behaviors 
during the mission. In general, perceiving the 
surrounding orbital environment and infer structured 
information provides the agent with full autonomy for 
discovering unexpected events, unforeseen mission 
opportunities, or cooperation opportunities supporting 
other active or passive agents. 

Although sensing the environment is crucial for 
efficiency, it is not enough to enable satellite autonomy. 
The onboard software presented aims to maximize the 
whole mission outcomes by setting up various ability 
levels required by specific needs of goal reasoning and 
scheduling capabilities to optimize limited resources. In 
particular: 

• optimally scheduled tasks run even in an 
uncertain environment by enhancing a high 
level of flexibility while guaranteeing 
adaptivity to faults and events. 

• autonomous control capabilities could be 
enabled, mixing accurate sensing and specific 
adaptive scheduling features. 

• proximity operations, docking, optimal 
maneuvering, and in-orbit servicing can be 
satisfied by an autonomous agent equipped with 
an extended version of this autonomy software 
solution. 

Future development steps will enhance library 
scalability features as a distributed system. Enabling 
autonomous constellation management, cooperative 
operations, goal negotiation, intent prediction, and 
collective knowledge. Those are closely linked to a 
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mission's architecture level and are entirely compatible 
and integrable with the single-agent autonomy 
capabilities. In addition, such an autonomy ecosystem 
informs ground or mission control centers too. 

The proposed solution for onboard autonomy can be seen 
as the satellite's brain in which the OBC confers the 
platform the ability to operate in the mission 
environment autonomously. On a large scale, this 
approach will enable satellites cooperation even in the 
framework of complex operations, such as in-orbit 
servicing and proximity operations, avoiding the 
exponential increase of operators' workload and 
facilitating the adoption of more complex and more 
extensive constellations. 

Use Case – Earth Observation Benchmark Scenario 
An Earth Observation (EO) satellite is a space system 
designed and developed to perform several observations 
of the Earth’s surface and atmosphere from the orbital 
environment, acquired data is usually in the form of 
digital imagery. Several platforms could be considered 
to perform EO tasks (drones, aerial platforms, etc.), the 
advantage of using satellites is to be able to rely on 
reliable and global coverage, even in areas that are 
normally inaccessible. 

While considering an Earth Observation product, a set of 
parameters must be considered to properly evaluate the 
quality of the product itself; one of the most relevant 
characteristics of such imagery data is undoubtedly the 
cloud coverage level of the images acquired and 
downlinked. The cloud coverage concept refers to the 
perturbation due to the presence of clouds above the area 
of interest. The entire process of analyzing and buying 
an archive imagery dataset is extremely complex, slow, 
inefficient, and not so beneficial from a business point of 
view; normally the customer will ask for a specific 
maximum cloud coverage threshold and receives an 
estimated time window for the acquisition, which 
maximizes the probability of obtaining a cloud-free 
image. Unsuccessful observations will lead to an 
iterative process until the customer accepts the dataset. 

Nominally, satellite operators will tailor mission 
operations to perform a predefined number of image 
acquisitions at a certain acquisition frequency; this 
approach results in generating a significant amount of 
data to be stored and downloaded during visibility 
windows. At present, because at any time, on average, 
the Earth is 67% covered by clouds, and considering the 
buying/selling pipeline, only an amount close to 1% of 
the downloaded data is profitable for EO companies. In 
this context, it was decided to apply MiRAGE to 
optimize the outcome of a common Earth Observation 
mission, limiting acquisitions to cases of lower cloud 

coverage and raising the percentage of profitable 
downlinked images. 

 

Figure 1: Common EO Scenario: acquisition modes 
are not affected by the quality of observations. 

To test MiRAGE autonomy functionalities, applied to 
this EO scenario, several assumptions have been made 
about the mission, the satellite platform, and the mission-
specific tasks to be accomplished. 

Earth Observation platform definition 
A smallsat equipped with two payload cameras has been 
considered. The two sensors work at different spatial 
resolutions; the high-performance payload will be used 
for the acquisition at lower cloud coverage levels, on the 
other hand, the low-res camera will monitor the cloud 
coverage level to detect when it is better to switch 
equipment. The acronyms adopted for the acquisition 
payloads are: 

• High-Resolution Camera → HRC 

• Low-Resolution Camera → LRC 

Both cameras have the same field of view. 

To simulate HRC acquisition, the scenario generates 
images that represent an uncompressed RAW format, 
weighing 72MB. Images are then compressed and fed to 
the Deep Learning algorithms as 256x256 RGB images. 
LRC images are captured in an uncompressed RAW 
format weighing 1MB and are also compressed and fed 
to the Deep Learning algorithms as 128x128 RBG 
images. 

Concerning acquisition modes, the HRC will be able to 
operate at two acquisition frequencies. 

A simple onboard memory is modeled to simulate the 
memory filling by storing images acquired by both HRC 
and LRC. Memory dimension is tailored according to the 
number of images nominally generated during an EO 
mission and the data rate that characterize a common 
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downlink window. The onboard memory is assumed to 
be 8GB, which represents an average value for a smallsat 
onboard storage capacity. 

Scenario Definition 
The mission scenario considered is quite simple. The 
simulated satellite will switch its optical payloads to 
maximize the amount of lower cloud coverage 
acquisitions to be downlinked. This will increase the 
number of relevant images stored on the onboard 
memory, optimizing the data packets that must be 
downlinked. Several visibility windows are simulated so 
that MiRAGE can be aware of the moments in which the 
downlink can be started and how much of its memory 
can be freed. 

Mission Goals and Tasks considered 
MiRAGE will generate different high-level mission 
goals and tasks to be fulfilled. Specifically, three 
observation tasks (operative modes) are foreseen: HRC 
acquisition at high-frequency, HRC acquisition at low-
frequency, and a monitoring task performed using LRC. 
In addition, a downlink high-level task is injected to 
simulate onboard data downlink to a ground station. 

 

Figure 2: MiRAGE applied to EO Scenario. 
 

AGENT ARCHITECTURE OVERVIEW 

MiRAGE is based on a modular microservices 
architecture: the main process is responsible for 
orchestrating all the modules that form the software core 
and for the concurrent launch of the sub-process that 
simulates the two optical payloads. 

The choice of a microservices structure was dictated by 
the need for agility in the software tailoring process with 
respect to the mission design, meaning that the number 
of modules is closely related to the mission 
requirements, which, instead, will not drive any 
modifications to the software core. 

A simplified representation of MiRAGE architecture is 
shown below. 

 

Figure 3: MiRAGE Simplified Architecture. 

With reference to the previously described scenario, the 
only software item which is external to MiRAGE is the 
Payloads Simulator: in particular, it is deputed to read 
and edit specific files which act as placeholders for the 
simulated payloads settings, changed by the commands 
MiRAGE sends to the simulator itself. 

The communication between each module and sub-
module launched and managed by the Orchestrator is 
achieved through uniquely defined message channels. 
The totality of the software items constituting MiRAGE 
constantly sends updates to the Monitoring module, 
which collects the information about their functioning 
and the resources in use, to collect anomalies and to build 
the telemetry packets that will be eventually downlinked. 

Finally, the MiRAGE core is defined by four main 
modules: the Sensing Manager, the Reasoning Manager, 
the Scheduler, and the Inner Control Loop. The last 
oversees executing each one of the tasks that are 
commanded by the Scheduler, other than embedding the 
MiRAGE time manager. 

The Sensing Manager is where Deep Learning is applied 
to process the images made available by the Payloads 
Simulator. Flowing into the Inner Control Loop, the 
response of the Sensing Manager expands the context of 
the Reasoning Manager, allowing the formalization of a 
goal that is directly sent to the Scheduler, which analyses 
the onboard available resources to list in chronological 
order the tasks that shall be executed by the Inner Control 
Loop. 

The main components of MiRAGE and the related 
technologies are further detailed in the following 
chapters. 
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SENSING MANAGER – PAYLOAD DATA 
PROCESSING 

Deep Learning for Optical Paylod Data Processing 

The increased complexity in space mission operations 
requires the adoption of innovative, high-performing 
solutions, for feature extraction. Recent advancements in 
Artificial Intelligence and Deep Learning enabled 
outstanding achievement in computer vision2,3 and time-
series analysis4,5. The reversed data-centric approach 
introduced by this innovative approach enables the 
definition of an implicit model, trained using supervision 
and capable of autonomously extract relevant features 
from data by backpropagating the neural network’s 
parameters. Thus, the adoption of a Deep Learning based 
model to an innovative system like MiRAGE enables 
complex pipeline handling for processing data captured 
from satellite sensors. 

The concept is applicable for example to spacecraft 
cameras, in which a Deep Convolutional Neural 
Network is used to firstly extract significant features 
from the images acquired and then passed to the 
Reasoning Manager for Event generation. 

This also applies to a vast series of possible scenarios: 
from cloud detection to object tracking, super-resolution, 
and so on. 

 

Figure 4: On-board Deep Learning Algorithms 
Execution Process. 

Use-Case: Cloud Segmentation 

As previously explained, the use of DL onboard poses 
new advantages in the Concept of Operations. Hereby a 
specific use case related to segmentation models applied 
to cloud detection is presented. 

Many of the images taken onboard a satellite are cloudy 
and mostly useless for the purpose of the mission. Thus, 
the capability of onboard decision-making could 
decrease the workload on operators in Mission Control 
Centers. 

The first application related to this specific use case is 
Clarity6, a submodule of MiRAGE capable of detecting 
cloud coverage onboard by exploiting the state-of-the-art 
capabilities of a Deep Learning-based segmentation 
model. 

A segmentation model has an encoder-decoder structure, 
which resembles U-Net7, in which the input information 
(the image) is progressively processed, and the deeper 
the network the higher-level features are extracted. 

 

Figure 5: A U-Net-style neural network. The input 
image is compressed and progressively processed 
until the most informative layer is reached (the 
bottom layer of the U-shape), also called latent-

space. The information is then re-expanded towards 
an output mask/s. 

The output layer is trained to predict a binary mask in 
which zeros are representing no-cloud conditions and 
ones are representing cloudy conditions. The summation 
of the ones with respect to the original resolution of the 
image gives the cloud coverage of the image. 

 

 

REASONING MANAGER 

MiRAGE integrates an Expert System to infer structured 
information resulting from the processing of input 
parameters collected from telemetry, sensor data, 
payload data, mission data, and environmental data. 
Specifically, the depicted architecture integrates a 
reasoning manager, which embeds the core Expert 
System, to produce high-level mission goals and tasks to 
be fulfilled by the satellite according to an optimized 
mission schedule. 
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MiRAGE is built according to the knowledge-enabled 
programming8 paradigm. The idea behind this paradigm 
is to make the algorithm or the program completely 
agnostic about the application scenario by separating the 
knowledge from the code itself; furthermore, the 
knowledge base is then modularized into small, broadly 
applicable, and reusable chunks. Concerning the 
reasoning manager, the knowledge base is composed of 
a propositional logic rule set, organized according to 
modular areas of pertinence describing the external 
environment, the mission, and the platform from the 
system level to the single component level. 

MiRAGE Approach to Expert System Implementation 
An Expert System is an AI software that uses scenario 
and system-level information stored in a knowledge base 
to solve problems that would usually require a human 
expert, thus preserving its knowledge in a database. An 
inference engine is applied to the large knowledge base 
to derive information starting from already known facts. 
Lower-level information is queried during the inference 
process until a known fact is encountered, thus 
reconstructing the actual system and mission knowledge 
state. 

Fuzzy Logic, the Input Layer 
Fuzzy logic9 is a form of propositional calculus in which 
the truth value of a variable lies in the real number 
domain, between 0 and 1 (inclusive). In contrast with the 
Boolean logic, where truth values of a variable may be 
only true or false (0 and 1), it is employed to handle the 
concept of partial truth. The concept of fuzzy logic is 
extremely important to represent the fact that people 
make decisions based on imprecise information; in this 
sense, these kinds of models are mathematical means of 
representing vagueness and imprecise information. 

Mamdani fuzzy inference was first introduced as a 
method to create a control system by synthesizing a set 
of linguistic control rules obtained from experienced 
human operators10. In a Mamdani system, the output of 
each rule is a fuzzy set. MiRAGE reasoning manager 
embeds a Mamdani fuzzy inference system to process 
numerical data collected from different sources across 
the system platform (telemetry and sensor data) and 
other numerical parameters describing mission scenario 
and environmental aspects. Those kinds of systems are 
well-suited to expert system applications where the rules 
are created from human expert knowledge, such as the 
proposed application. 

The diagram below illustrates how the Mamdani fuzzy 
inference, embedded in the reasoning manager’s expert 
system, has been adopted in the context of the EO 
scenario. 

 

Figure 6: Fuzzy inference process applied to the 
lowest level (input data) of the MiRAGE expert 

system’s knowledge base. 

Certainty Factors, Reasoning with Uncertainties 

Certainty factors are applied to the rules stored in the 
knowledge base to deal with measurements and 
environment-related uncertainties. By doing so, the 
outcome of each rule could be true or false depending on 
a certain threshold. As an example, if a conclusion 
derived from different rule premises has a certainty 
factor of 0.6 and if a TRUE threshold value has been set 
to 0.8, the conclusion will be evaluated as FALSE or 
UNDEFINED. Certainty factor values associated with 
each derived or collected known fact are combined in 
parallel across the backward inference process. 

Considering the presented benchmark EO scenario, the 
only sources of uncertainty considered are the outcome 
of the DL module used to process the payload data and 
the output variable of the fuzzified inference. 
Specifically, the certainty factor applied to the measured 
level of cloud coverage will be set to a value equal to the 
accuracy of the model itself. For the sake of simplicity, 
all the other certainty factors are set equal to 1 (always 
TRUE). 

Use-Case Declination 
The table below depicts the high-level structure of the 
knowledge base adopted for the benchmark EO scenario; 
input parameters and inferred facts are highlighted. 

Table 1: Expert System Knowledge Base adopted 
for the EO Scenario. 
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Parameter Description Context Level 

CLOUD 
COVERAGE 

Cloud coverage 
measured from 

the last 
acquired image 

DETECTION INPUT 

DOWNLINK 
SCHEDULED 

Flag to detect if 
a downlink task 

has already 
been scheduled 

MISSION MEDIUM 

DOWNLINK 
STATUS 

High-level 
downlink 
condition 

MISSION MEDIUM 

GOAL High-level goal 
to be pursued 

RESPONSE TARGET 

MEMORY 
STATUS 

High-level 
onboard 
memory 
condition 

COMPONENT MEDIUM 

ONBOARD 
MEMORY 

Onboard 
storage 

occupied 

COMPONENT INPUT 

TASKS Tasks to be 
fulfilled 

RESPONSE TARGET 

WINDOW 
DISTANCE 

Distance from 
next ground 

station 
visibility 
window 

ORBIT INPUT 

 

AUTONOMOUS SCHEDULING 
Once the Reasoning Manager has defined the goal that 
contains the set T of tasks needed to be performed by the 
satellite, what remains is to define the exact starting time 
of each task, that is the schedule of all tasks according to 
their duration, priority, resources usage and predefined 
precedence. At this point, an external module of the 
onboard real-time scheduler is invoked, and it is based 
on linear integer programming. 

What the scheduler does more in detail is to optimize the 
starting time of each task and to try to schedule the 
greatest number of tasks using an appropriate fitness 
function. It works with discrete time intervals over a 
finite horizon H, so each starting time is an integer value 
in the interval [0, H].  

Three parameters are considered: duration, 
schedule_cost, and delay_cost. The last two parameters 
are two expressions of the concept of priority. The 
schedule_cost is an expression of the task scheduling 
priority. The delay cost is an indicator of the importance 
of scheduling a task as soon as possible. 

In addition, three categories of resources, that each task 
can occupy or consume, are considered: 

• binary resources: cannot be used for more than 
one task at the same time and lead to non-
overlapping constraints among activities. 

• multiple resources: this category contains 
resources that are not consumed but have a 
maximum capacity that limits simultaneous 
use. 

• consumable resources: can be consumed or 
generated in time. 

It is necessary to consider also that some tasks can be 
scheduled only in limited intervals of the horizon (for 
example, the downlink activity must be performed 
during the window visibility with the ground station). 

 

BENCHMARK SCENARIO RESULTS 
With the premises described in the previous chapters, 
testing and validation were performed on the benchmark 
scenario, achieving important results.  

After the scheduler initialization, which is defined 
through operations that are commonly performed after a 
satellite deployment (detumbling, orbit maneuver, point 
to target), the schedule produced is shown below. 

 

Figure 7: Schedule example: different observation 
tasks. 

The granularity of the schedule in this validation 
environment is defined by the tasks’ typology and by the 
scheduler horizon. In the benchmark scenario, the time 
units adhere to minutes, to have greater responsiveness 
during goal changes. 

From Figure 7 it can be seen how the order of the tasks 
is tracing the definition of the goals: in fact, the payload 
configuration is always scheduled before the observation 
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(this due to the tight relation between these two tasks). 
Clearly, the three observation modes (Monitoring, High 
and Low-Frequency Acquisition) alternate with respect 
to specific events triggered by the Sensing Manager, 
based on the calculated cloud coverage, remaining 
memory, and visibility windows. In Monitoring mode, 
only the LRC is activated aiming to the sole cloud 
coverage evaluation (no pictures are saved); in High-
Frequency Acquisition mode, the HRC takes one image 
per second, while in Low-Frequency Acquisition mode 
the shooting rate is ten times slower. 

In this regard, during development and during tests, the 
correct behavior of MiRAGE is assessed through the 
MiRAGE Monitoring Dashboard seen in the following 
figure. 

 

Figure 8: MiRAGE Monitoring Dashboard: 
HiFrequency Acquisition due to low values of cloud 

coverage. 

Finally, the downlink scenario, in which the concurrency 
of some tasks can be observed, is shown in Figure 9. 
Data preparation, payload configuration, and attitude 
maneuvers can be performed simultaneously due to the 
different types of binary resources needed to achieve the 
tasks. 

Figure 9: Schedule example: Downlink goal case. 
 

CONCLUSIONS 
Recent trends in the design and implementation of space 
missions are showing increasing capabilities in satellite 
platforms and payloads. These increased capabilities 
come with enormous potential to envision satellite 
operations that are more responsive, adaptable, and that 
generate data for the final user that is highly monetizable. 
To reach these results, it is mandatory to reconsider 
drastically the way operations are carried out on current 
space missions, and especially on Earth Observation 
ones. The technology presented in this paper introduces 
a revolutionary autonomy agent able to satisfy the 
increased demands of the new missions that are currently 
under design in these years. The use of such technology 
will result in satellites being more autonomous, less 
dependent on the mission control center, and laser-
focused on prioritizing the best data available and 
providing them to the final user. 

The use case presented in the paper demonstrates how an 
onboard AI-enabled goal-oriented operations manager 
can help in delivering responsive and adaptive 
operations in Earth Observation scenarios. The 
technology has been demonstrated in a Software-in-the-
Loop simulation, presenting significant improvements 
on how images are acquired during the mission, and how 
the onboard memory usage is optimized, also 
considering external parameters such as the Ground 
Control Station distance. The software presented in the 
paper is currently at TRL 6 and is scheduled to be 
delivered for acceptance by Q3 2021, thus reaching TRL 
8.  
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