31,710 research outputs found

    DevOps in Practice -- A preliminary Analysis of two Multinational Companies

    Full text link
    DevOps is a cultural movement that aims the collaboration of all the stakeholders involved in the development, deployment and operation of soft-ware to deliver a quality product or service in the shortest possible time. DevOps is relatively recent, and companies have developed their DevOps prac-tices largely from scratch. Our research aims to conduct an analysis on practic-ing DevOps in +20 software-intensive companies to provide patterns of DevOps practices and identify their benefits and barriers. This paper presents the preliminary analysis of an exploratory case study based on the interviews to relevant stakeholders of two (multinational) companies. The results show the benefits (software delivery performance) and barriers that these companies are dealing with, as well as DevOps team topology they approached during their DevOps transformation. This study aims to help practitioners and researchers to better understand DevOps transformations and the contexts where the practices worked. This, hopefully, will contribute to strengthening the evidence regarding DevOps and supporting practitioners in making better informed decisions about the return of investment when adopting DevOps.Comment: 8 pages, 1 figure, 2 tables, conferenc

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Planning strategically, designing architecturally : a framework for digital library services

    Get PDF
    In an era of unprecedented technological innovation and evolving user expectations and information seeking behaviour, we are arguably now an online society, with digital services increasingly common and increasingly preferred. As a trusted information provider, libraries are in an advantageous position to respond, but this requires integrated strategic and enterprise architecture planning, for information technology (IT) has evolved from a support role to a strategic role, providing the core management systems, communication networks, and delivery channels of the modern library. Further, IT components do not function in isolation from one another, but are interdependent elements of distributed and multidimensional systems encompassing people, processes, and technologies, which must consider social, economic, legal, organisational, and ergonomic requirements and relationships, as well as being logically sound from a technical perspective. Strategic planning provides direction, while enterprise architecture strategically aligns and holistically integrates business and information system architectures. While challenging, such integrated planning should be regarded as an opportunity for the library to evolve as an enterprise in the digital age, or at minimum, to simply keep pace with societal change and alternative service providers. Without strategy, a library risks being directed by outside forces with independent motivations and inadequate understanding of its broader societal role. Without enterprise architecture, it risks technological disparity, redundancy, and obsolescence. Adopting an interdisciplinary approach, this conceptual paper provides an integrated framework for strategic and architectural planning of digital library services. The concept of the library as an enterprise is also introduced

    Development Challenges of Secondary and Small Airports in California, Research Report 11-21

    Get PDF
    This study investigates the development of secondary and smaller airports in California. Low-Cost Carrier (LCC) business is growing at these airports because they offer reduced operating costs, and they have adequate capacity to help LCCs avoid battling with incumbent airlines at the large hubs for limited resources, such as gates. However, increased LCC aircraft operations at the secondary airports have led to significant noise impacts on the surrounding communities and this has been a challenge for the secondary airport operators. They have imposed operational curfews to limit the noise impacts, but this approach constrains the resident airlines that want to increase their traffic. As a result, some LCCs have begun to initiate flights out of the large hubs. Statistics from this study show that the LCCs have replaced the legacy airlines as the dominant air provider in the state. With their growing dominance, the LCCs will become more attractive to the large hub airports, and the secondary airports will face increased competition in retaining them. To retain those LCCs, the secondary airports must better understand how LCCs make investment decisions related to airport development. At the same time, they must better educate the LCCs about their airport needs
    corecore