45 research outputs found

    Multidisciplinary design of a micro-USV for re-entry operations

    Get PDF
    Unmanned Space Vehicles (USV) are seen as a test-bed for enabling technologies and as a carrier to deliver and return experiments to and from low-Earth orbit. USV's are a potentially interesting solution also for the exploration of other planets or as long-range recognisance vehicles. As test bed, USV's are seen as a stepping stone for the development of future generation re-usable launchers but also as way to test key technologies for re-entry operations. Examples of recent developments are the PRORA-USV, designed by the Italian Aerospace Research Center (CIRA) in collaboration with Gavazzi Space, or the Boeing X-37B Orbital Test Vehicle (OTV), that is foreseen as an alternative to the space shuttle to deliver experiments into Earth orbit. Among the technologies to be demonstrated with the X-37 are improved thermal protection systems, avionics, the autonomous guidance system, and an advanced airfram

    Autonomous Trajectory Planning and Guidance Control for Launch Vehicles

    Get PDF
    This open access book highlights the autonomous and intelligent flight control of future launch vehicles for improving flight autonomy to plan ascent and descent trajectories onboard, and autonomously handle unexpected events or failures during the flight. Since the beginning of the twenty-first century, space launch activities worldwide have grown vigorously. Meanwhile, commercial launches also account for the booming trend. Unfortunately, the risk of space launches still exists and is gradually increasing in line with the rapidly rising launch activities and commercial rockets. In the history of space launches, propulsion and control systems are the two main contributors to launch failures. With the development of information technologies, the increase of the functional density of hardware products, the application of redundant or fault-tolerant solutions, and the improvement of the testability of avionics, the launch losses caused by control systems exhibit a downward trend, and the failures induced by propulsion systems become the focus of attention. Under these failures, the autonomous planning and guidance control may save the missions. This book focuses on the latest progress of relevant projects and academic studies of autonomous guidance, especially on some advanced methods which can be potentially real-time implemented in the future control system of launch vehicles. In Chapter 1, the prospect and technical challenges are summarized by reviewing the development of launch vehicles. Chapters 2 to 4 mainly focus on the flight in the ascent phase, in which the autonomous guidance is mainly reflected in the online planning. Chapters 5 and 6 mainly discuss the powered descent guidance technologies. Finally, since aerodynamic uncertainties exert a significant impact on the performance of the ascent / landing guidance control systems, the estimation of aerodynamic parameters, which are helpful to improve flight autonomy, is discussed in Chapter 7. The book serves as a valuable reference for researchers and engineers working on launch vehicles. It is also a timely source of information for graduate students interested in the subject

    Simulation and Application of GPOPS for Trajectory Optimization and Mission Planning Tool

    Get PDF
    Rapid trajectory generation is crucial to prompt global warfare. To meet the USAF’s objective of Persistent and Responsive Precision Engagement, a rapid mission planning tool is required. This research creates the framework for the mission planning tool and provides a sample optimal trajectory which is solved using the GPOPS software package. GPOPS employs a Gaussian pseudospectral method to solve the non-linear equations of motion with both end conditions and path constraints. By simultaneously solving the entire trajectory based on an initial guess and small number of nodes, this method is ideal for generating rapid solutions. The sample case is a multi-phase minimum time, optimal control problem which is used to validate the planning tool. The developed framework includes different atmospheric models, gravity models, inclusion of no-flyzones and waypoints, and the ability to create a library of sample cases. This versatile tool can be used for either trajectory generation or mission analysis. The results of this research show the complexities in solving an optimal control problem with states that change from one phase of the problem to another. At the conclusions of this research multiple phases were successfully connected and solved as a single optimal control problem. However, the entire trajectory solution from launch to impact solved simultaneously, is still an objective yet to be demonstrated. The results found should be a solid foundation for a future mission planning tool

    Spacecraft Trajectory Optimization: A review of Models, Objectives, Approaches and Solutions

    Get PDF
    This article is a survey paper on solving spacecraft trajectory optimization problems. The solving process is decomposed into four key steps of mathematical modeling of the problem, defining the objective functions, development of an approach and obtaining the solution of the problem. Several subcategories for each step have been identified and described. Subsequently, important classifications and their characteristics have been discussed for solving the problems. Finally, a discussion on how to choose an element of each step for a given problem is provided.La Caixa, TIN2016-78365-

    Robust multi-fidelity design of a micro re-entry unmanned space vehicle

    Get PDF
    This article addresses the preliminary robust design of a small-scale re-entry unmanned space vehicle by means of a hybrid optimization technique. The approach, developed in this article, closely couples an evolutionary multi-objective algorithm with a direct transcription method for optimal control problems. The evolutionary part handles the shape parameters of the vehicle and the uncertain objective functions, while the direct transcription method generates an optimal control profile for the re-entry trajectory. Uncertainties on the aerodynamic forces and characteristics of the thermal protection material are incorporated into the vehicle model, and a Monte-Carlo sampling procedure is used to compute relevant statistical characteristics of the maximum heat flux and internal temperature. Then, the hybrid algorithm searches for geometries that minimize the mean value of the maximum heat flux, the mean value of the maximum internal temperature, and the weighted sum of their variance: the evolutionary part handles the shape parameters of the vehicle and the uncertain functions, while the direct transcription method generates the optimal control profile for the re-entry trajectory of each individual of the population. During the optimization process, artificial neural networks are utilized to approximate the aerodynamic forces required by the optimal control solver. The artificial neural networks are trained and updated by means of a multi-fidelity approach: initially a low-fidelity analytical model, fitted on a waverider type of vehicle, is used to train the neural networks, and through the evolution a mix of analytical and computational fluid dynamic, high-fidelity computations are used to update it. The data obtained by the high-fidelity model progressively become the main source of updates for the neural networks till, near the end of the optimization process, the influence of the data obtained by the analytical model is practically nullified. On the basis of preliminary results, the adopted technique is able to predict achievable performance of the small spacecraft and the requirements in terms of thermal protection materials

    Convex optimization of launch vehicle ascent trajectories

    Get PDF
    This thesis investigates the use of convex optimization techniques for the ascent trajectory design and guidance of a launch vehicle. An optimized mission design and the implementation of a minimum-propellant guidance scheme are key to increasing the rocket carrying capacity and cutting the costs of access to space. However, the complexity of the launch vehicle optimal control problem (OCP), due to the high sensitivity to the optimization parameters and the numerous nonlinear constraints, make the application of traditional optimization methods somewhat unappealing, as either significant computational costs or accurate initialization points are required. Instead, recent convex optimization algorithms theoretically guarantee convergence in polynomial time regardless of the initial point. The main challenge consists in converting the nonconvex ascent problem into an equivalent convex OCP. To this end, lossless and successive convexification methods are employed on the launch vehicle problem to set up a sequential convex optimization algorithm that converges to the solution of the original problem in a short time. Motivated by the computational efficiency and reliability of the devised optimization strategy, the thesis also investigates the suitability of the convex optimization approach for the computational guidance of a launch vehicle upper stage in a model predictive control (MPC) framework. Being MPC based on recursively solving onboard an OCP to determine the optimal control actions, the resulting guidance scheme is not only performance-oriented but intrinsically robust to model uncertainties and random disturbances thanks to the closed-loop architecture. The characteristics of real-world launch vehicles are taken into account by considering rocket configurations inspired to SpaceX's Falcon 9 and ESA's VEGA as case studies. Extensive numerical results prove the convergence properties and the efficiency of the approach, posing convex optimization as a promising tool for launch vehicle ascent trajectory design and guidance algorithms

    Stochastic Real-time Optimal Control: A Pseudospectral Approach for Bearing-Only Trajectory Optimization

    Get PDF
    A method is presented to couple and solve the optimal control and the optimal estimation problems simultaneously, allowing systems with bearing-only sensors to maneuver to obtain observability for relative navigation without unnecessarily detracting from a primary mission. A fundamentally new approach to trajectory optimization and the dual control problem is developed, constraining polynomial approximations of the Fisher Information Matrix to provide an information gradient and allow prescription of the level of future estimation certainty required for mission accomplishment. Disturbances, modeling deficiencies, and corrupted measurements are addressed with recursive updating of the target estimate with an Unscented Kalman Filter and the optimal path with Radau pseudospectral collocation methods and sequential quadratic programming. The basic real-time optimal control (RTOC) structure is investigated, specifically addressing limitations of current techniques in this area that lose error integration. The resulting guidance method can be applied to any bearing-only system, such as submarines using passive sonar, anti-radiation missiles, or small UAVs seeking to land on power lines for energy harvesting. Methods and tools required for implementation are developed, including variable calculation timing and tip-tail blending for potential discontinuities. Validation is accomplished with simulation and flight test, autonomously landing a quadrotor helicopter on a wire

    Centralized Cooperative Control for Route Surveillance with Constant Communication

    Get PDF
    The route surveillance mission is a new application of unmanned aircraft systems (UASs) to meet the reconnaissance and surveillance requirements of combatant commanders. The new mission intends to field a UAS consisting of unmanned aerial vehicles (UAVs) that can provide day and night surveillance of convoy routes. This research focuses on developing a solution strategy for the mission based on the application of optimal control and cooperative control theory. The route surveillance controller uses the UAS team size to divide the route into individual sectors for each entity. A specifically designed cost function and path constraints are used to formulate an optimal control problem that minimizes the revisit time to the route and the overall control energy of the UAS. The problem complexity makes an analytical solution difficult, so a numerical technique based on the Gauss pseudo-spectral method is used to solve for the optimal solution. The output trajectories describe a path that each entity could fly to provide surveillance on the route. Simulated and real-world routes containing likely urban and rural characteristics were used to test the controller and show that the developed system provides feasible surveillance solutions under certain conditions. These results represent baseline statistics for future studies in this research area

    Bio-inspired, Varying Manifold Based Method With Enhanced Initial Guess Strategies For Single Vehicle\u27s Optimal Trajectory Planning

    Get PDF
    Trajectory planning is important in many applications involving unmanned aerial vehicles, underwater vehicles, spacecraft, and industrial manipulators. It is still a challenging task to rapidly find an optimal trajectory while taking into account dynamic and environmental constraints. In this dissertation, a unified, varying manifold based optimal trajectory planning method inspired by several predator-prey relationships is investigated to tackle this challenging problem. Biological species, such as hoverflies, ants, and bats, have developed many efficient hunting strategies. It is hypothesized that these types of predators only move along paths in a carefully selected manifold based on the prey’s motion in some of their hunting activities. Inspired by these studies, the predator-prey relationships are organized into a unified form and incorporated into the trajectory optimization formulation, which can reduce the computational cost in solving nonlinear constrained optimal trajectory planning problems. Specifically, three motion strategies are studied in this dissertation: motion camouflage, constant absolute target direction, and local pursuit. Necessary conditions based on the speed and obstacle avoidance constraints are derived. Strategies to tune initial guesses are proposed based on these necessary conditions to enhance the convergence rate and reduce the computational cost of the motion camouflage inspired strategy. The following simulations have been conducted to show the advantages of the proposed methods: a supersonic aircraft minimum-time-to-climb problem, a ground robot obstacle avoidance problem, and a micro air vehicle minimum time trajectory problem. The results show that the proposed methods can find the optimal solution with higher success rate and faster iv convergent speed as compared with some other popular methods. Among these three motion strategies, the method based on the local pursuit strategy has a relatively higher success rate when compared to the other two. In addition, the optimal trajectory planning method is embedded into a receding horizon framework with unknown parameters updated in each planning horizon using an Extended Kalman Filte

    Large Scale Constrained Trajectory Optimization Using Indirect Methods

    Get PDF
    State-of-the-art direct and indirect methods face significant challenges when solving large scale constrained trajectory optimization problems. Two main challenges when using indirect methods to solve such problems are difficulties in handling path inequality constraints, and the exponential increase in computation time as the number of states and constraints in problem increases. The latter challenge affects both direct and indirect methods. A methodology called the Integrated Control Regularization Method (ICRM) is developed for incorporating path constraints into optimal control problems when using indirect methods. ICRM removes the need for multiple constrained and unconstrained arcs and converts constrained optimal control problems into two-point boundary value problems. Furthermore, it also addresses the issue of transcendental control law equations by re-formulating the problem so that it can be solved by existing numerical solvers for two-point boundary value problems (TPBVP). The capabilities of ICRM are demonstrated by using it to solve some representative constrained trajectory optimization problems as well as a five vehicle problem with path constraints. Regularizing path constraints using ICRM represents a first step towards obtaining high quality solutions for highly constrained trajectory optimization problems which would generally be considered practically impossible to solve using indirect or direct methods. The Quasilinear Chebyshev Picard Iteration (QCPI) method builds on prior work and uses Chebyshev Polynomial series and the Picard Iteration combined with the Modified Quasi-linearization Algorithm. The method is developed specifically to utilize parallel computational resources for solving large TPBVPs. The capabilities of the numerical method are validated by solving some representative nonlinear optimal control problems. The performance of QCPI is benchmarked against single shooting and parallel shooting methods using a multi-vehicle optimal control problem. The results demonstrate that QCPI is capable of leveraging parallel computing architectures and can greatly benefit from implementation on highly parallel architectures such as GPUs. The capabilities of ICRM and QCPI are explored further using a five-vehicle constrained optimal control problem. The scenario models a co-operative, simultaneous engagement of two targets by five vehicles. The problem involves 3DOF dynamic models, control constraints for each vehicle and a no-fly zone path constraint. Trade studies are conducted by varying different parameters in the problem to demonstrate smooth transition between constrained and unconstrained arcs. Such transitions would be highly impractical to study using existing indirect methods. The study serves as a demonstration of the capabilities of ICRM and QCPI for solving large-scale trajectory optimization methods. An open source, indirect trajectory optimization framework is developed with the goal of being a viable contender to state-of-the-art direct solvers such as GPOPS and DIDO. The framework, named beluga, leverages ICRM and QCPI along with traditional indirect optimal control theory. In its current form, as illustrated by the various examples in this dissertation, it has made significant advances in automating the use of indirect methods for trajectory optimization. Following on the path of popular and widely used scientific software projects such as SciPy [1] and Numpy [2], beluga is released under the permissive MIT license [3]. Being an open source project allows the community to contribute freely to the framework, further expanding its capabilities and allow faster integration of new advances to the state-of-the-art
    corecore