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Foreword

Aerospace technology is one of the most challenging high-tech fields in the world
today, which has a strong driving effect on lots of industrial technologies. In recent
years, the far-sighted space projects such as the development and utilization of space
resources, human lunar explorations, and large-scale deep space explorations have
become worldwide research hotspots. The scale of access to space is growing fast,
and the distance to explore space is extending. In all these activities, the launch
vehicles, as the only approach for human beings to go out of the earth today, have
attracted more and more attention. Many space agencies and private enterprises are
developing new-generation launchers to meet the increasing demands of responsive,
massive, and low-cost transportation to and from space.

Auto pilot was first applied in rockets. However, the traditional design concept of
its control system is highly dependent on the prescribed scenarios, which is relatively
inadaptable to unexpected conditions and unknown environments. An autonomous
guidance control for launch vehicles is very challenging, where a mature solution is
desperately welcomed to the international aerospace industries. On the other hand,
the artificial intelligence (AI) technologies have made great progresses. For instance,
auto pilot is no longer a scientific fantasy for automobiles, and it will enter the life
of thousands of families in the near future according to best estimations, leading to
hundreds of millions of application cases. Compared with this trend, the application
of autonomous flight technologies in launch vehicles is comparatively cautious and
conservative.

In the changing era with the rapid development of science and technology, the
aerospace industry is also trying to improve the autonomy and intelligence of space
vehicles. As one of the outstanding representatives of these efforts, the authors bring
forward the studies of the autonomous dynamic trajectory optimization control for
launch vehicles, aiming to tackle unexpected situations intelligently and improve
flight autonomy, adaptability, and fault tolerance. These studies focus on the needs
of the real world, striving to bridge the technical gap between academic researches
and engineering applications. It should be cautious when bringing the bold ideas
and innovative theories into practical applications, thus successful verifications with
demonstration and real flight vehicles, or high-fidelity simulation systems are detailed
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vi Foreword

discussed in these studies, which have great academic and practical values, and
presented to the readers a broad vision of auto pilot in space and a comprehensive
understanding of the cutting-edge technologies for the ascent flight and powered
landing.

Beijing, China
June 2022

Weimin Bao



Preface

Since the beginning of the twenty-first century, the space launch activities worldwide
have grown vigorously. In China, the number of launches in 2021 reached 55, setting
a record for that year, and is expected to exceed 60 in 2022. Commercial launches
also account for the booming trend, for example, SpaceX alone has nearlymaintained
once-a-week launch cadence in 2022 till now.

New rockets appear on the stage one by one. China’s new generation launch
vehicles, i.e., LM-5, LM-7, and LM-8 rockets, have initiated their launch services,
and at the same time, the next-generation manned launcher is being developed. In
Russia, some versions of Angara series have completed their maiden flights. Other
launchers, such as the H3 (Japan), Ariane 6 (ESA), and Vulcan (USA), are about to
make their debuts in the near future. Moreover, many rockets developed by private
companies have continued to progress forward to cope with fierce competitions.

Reusable launch vehicles (RLVs) have again attracted widespread attention, and
this is mainly contributed to the successful practice from SpaceX, which demon-
strated that the vertical takeoff and vertical landing (VTVL) is a feasible solution for
reusability. In addition to the VTVL solution, other schemes, which adopt vertical
takeoff and horizontal landing (VTHL), horizontal takeoff and horizontal landing
(HTHL), as well as an upcoming field of the global ultra-high express transportation
system, have been in the best interest of various space agencies and companies.

In the meanwhile, the risk of space launches still exists and is gradually increasing
in line with the rapidly rising launch activities and commercial rockets. In the history
of space launches, the propulsion and the control systems are the two main contrib-
utors to the launch failures. However, with the development of information tech-
nologies, the increase of the functional density of hardware products, the application
of redundant or fault-tolerant solutions, and the improvement of the testability of
avionics, the launch losses caused by control systems exhibit a downward trend,
and the failures induced by propulsion systems become the focus of attention. For
instance, the Long March launchers suffered multiple losses caused by the propul-
sion systems from 2013 to 2020. Although no irreparable disasters occurred such
as explosions, the control systems which are deliberated-designed for the prescribed
scenarios feel helpless to save the missions under these failure conditions.

vii



viii Preface

Based on the above background, Dr. Song Zhengyu and other scholars organized
a research team to develop some new autonomous guidance technologies, which
potentially can fulfill flight missions in case of no fatal faults. For the ascent phase,
the thrust drop is a common unfatal fault. While for the descent phase of a reusable
launch vehicle, the unpredictable and uncontrollable initial descending conditions as
well as the wind disturbances and atmospheric uncertainties can be taken as some
type of faults for the prescribed descending trajectory. Autonomous trajectory re-
planning during the flight is a feasible and necessary method to handle the above
faults. Consequently, the dynamic optimization methods for online trajectory control
of launch vehicles are intensively studied to satisfy the requirements of autonomous
flight control under faults and various uncertain conditions. The authors try to address
the real-time computational and convergent problems in the implementation of online
optimization and control via several methods.

The research teamwas participated by15 scholars fromChina,Germany, andother
countries. This book is a summary of the researches of the team, reflecting the latest
progress of relevant projects and academic researches of the autonomous guidance
method. The monograph is strongly applications-oriented and exhibits a strong link
with real-world space activities and great value to the aerospace industry. There are
seven chapters included in this book, and each is a complete report concerning a
topic. The book reflects the contents of four aspects. The first chapter summarizes
the development of launch vehicles, especially mentions the demand and influences
of reusable, intelligent, and autonomous technologies on the performance of launch
vehicles after entering the twenty-first century. Chapters 2–4 mainly focus on the
flight in the ascent phase, inwhich the autonomous guidance ismainly reflected in the
online planning after the failures occur. Chapters 5 and 6 mainly discuss the powered
descent guidance technologies. Aerodynamic uncertainty has a significant impact on
the ascent/landing guidance control, thus, the estimation of aerodynamic parameters
is discussed in the last Chap. 7, which is helpful to improve flight autonomy.

Beijing, China
June 2022

Zhengyu Song
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Introduction

This book presents a number of advanced autonomous dynamic trajectory optimal
control technologies for launch vehicles. Improving flight autonomy has gained
broad-ranging concerns, so as to responsively and autonomously handle the unex-
pected events or failures. It was reported that the enhanced Proton M launch system
adopted artificial intelligence elements to improve the in-flight fail-safe performance
level,1 while manyNASA scientists and engineers prefer to discuss machine learning
and autonomy rather than artificial intelligence.2 In China, the China Academy
of Launch Vehicle Technology has drafted a roadmap of smart rockets, and in
Europe, the Future Launchers Preparatory Program is currently investigating on-
board real-time trajectory guidance optimization technologies for future reusable
launchers.3

For ascent flight, if particular cases occur (e.g., the failures of engine out or thrust
drop), the prescribed shift conditions between the flight phases are no longer satis-
fied. The remaining carrying capacity could be fully utilized through autonomous
re-planning, to maximize the capability to finish the original mission, or release
the payload to an optimal parking orbit, thereby avoiding the total loss brought by
crashing to the ground. Under these situations, the space missions face the need for
“end-to-end” global optimizations compared to traditional serial sequential optimiza-
tions. For the recovery of the launchers, the initial conditions of the powered vertical
landing are hard to be prescribed in advance, and the landing is confronted with
wind disturbances and atmospheric uncertainties. Thus, an on-board dynamic trajec-
tory planning is definitely needed for the pinpoint soft landing, which is also a key
technology for landing on any celestial body with an atmosphere. With the evolving
of highly efficient algorithms and embedded hardware and software products, the

1 Enhanced Proton M Launch System—New Features. SPACENEWS, October 4, 2021. https://spa
cenews.com/enhanced-proton-m-launch-system-new-features/.
2 Beyond HAL: How artificial intelligence is changing space systems. August 15, 2017. https://spa
cenews.com/beyond-hal-how-artificial-intelligence-is-changing-space-systems/.
3 Unveiling vehicles and technologies for future space transportation.
https://www.esa.int/Enabling_Support/Space_Transportation/Future_space_transportation/Unveil
ing_vehicles_and_technologies_for_future_space_transportation.
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model-based optimization and control would replace the traditional methods, which
not only deal with unconstrained or simply constrained tasks, but also tackle complex
constraints to address the new challenges.

This book is organized into seven chapters.
Chapter 1: This chapter reviews the development of launch vehicle technologies

first, from the initial development phase, the space shuttle phase, and the commer-
cial service phase to the comprehensive performance improvement phase, where
the historical and the emergent launchers are briefly introduced. Then, the current
development of launch vehicle technologies is summarized, showing an upcoming
“space transportation revolution era” with distinguished features such as reusable,
autonomous, or intelligent. Finally, facing the increasing demands of space activi-
ties, the future technical challenges of reusable launch vehicles and intelligent and
autonomous technologies, including but not limited to the guidance control, are
discussed.

Chapter 2: This chapter starts with the definition and explanation of the
autonomous guidance method (AGM) in the ascent phase. Two technical systems
of AGMs for Long March launch vehicles are discussed. One is the closed-loop
guidance method for a prescribed target orbit, and its basic theory, fundamental and
enhanced algorithms are introduced in order. The second is the joint optimization of
the target orbit and the flight path, mainly applied under the thrust drop fault, in which
three solutions are discussed, including the state-triggered-indices-based method for
the continuous powered phases, segmented rescue optimizations crossing a coasting
phase, and multiple graded optimizations. These studies will further improve the
autonomy and fault adaptability of the ascent flight.

Chapter 3: This chapter focuses on the accent guidance problem under the thrust
drop fault based on an improved generalized quasi-spectral model predictive static
programming (IGS-MPSP) method, in which a scale factor is first introduced for the
time interval as the additional variable to adjust the terminal time, then a new sensitive
relation for the final time is established. The proposed IGS-MPSP method can well
deal with the pool initial guess for searching the appropriate final time of the accent
guidance problem. The numerical comparison studies reveal that, for the accent
guidance problem with thrust drop faults, the IGS-MPSP method presents similar
results to that of SOCP-based methods, but with more computational efficiency.

Chapter 4: This chapter proposes a Birkhoff-polynomial-based pseudospectral
method for optimal control of a class of nonlinear cascaded second-order systems,
which are widely used to formulate the motion of space vehicles. The convex version
of the original problem is derived, then both the first- and second-order Birkhoff
pseudospectral methods in the manner of Chebyshev and Legendre polynomials are
used to transcribe the resulting convex problem. The major advantages that lie in the
condition number, the scale of the transcribed problem, and the computational cost
consumption are dramatically reduced while maintaining accuracy and efficiency.
These advantages are well demonstrated by a simple cart problem with an analytical
solution and a rescue orbit searching problem for a launch vehicle with thrust drop
failures.
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Chapter 5: This chapter presents an autonomous descent guidance algorithm
which is able to deal with both the aerodynamic descent and the powered landing
phases of a reusable rocket. The sequential convex optimization is applied to a Carte-
sian representation of the equations of motion. The contributions are a more system-
atic exploitation and separation of convex and non-convex terms to minimize the
computational cost, the inclusion of highly nonlinear terms represented by aerody-
namic accelerations, a complete problem reformulation based on the Euler angle
rates, an improved transcription based on a generalized hp pseudospectral method,
and a dedicated formulation of the aerodynamic guidance problem. The numerical
results reveal the proposed approach is a valid candidate solution to solve the entire
descent phase in real time.

Chapter 6: This chapter investigates novel strategies efornhancing the adaptability
and autonomy of decision-making in powered descent of launch vehicles. Two guid-
ance algorithms for specific sceneries are presented. One is the multi-point powered
descent algorithm for planetary soft landings, where the best landing site is identified
quickly frommany candidates and the associated fuel optimal trajectory is generated
with sensitivity information. The second is the trajectory optimization algorithm for
emergency landings on highways, which reconstructs the trajectory to make decision
between the pad and highway landings in terms of the degree of trajectory deviations.

Chapter 7: This chapter aims to estimate the aerodynamic parameters of launch
vehicles based on the measurements of distance, height, and velocity. For the
existence of inestimability, not all the aerodynamic parameters can be estimated.
Different from the previous approaches, the prediction accuracy of the model with
estimated values is focused on, not the accuracy of the estimation for the aero-
dynamic parameters themselves. The aerodynamic parameters are considered as
time-dependent parameters and are approximated with the piece-wise linear func-
tion. Statistic criterion-based aerodynamic parameter estimation is considered for
improving the accuracy of the model prediction. Finally, the numerical experiments
are demonstrated.

The presented technologies have been tested and validated on real-world
launchers, highly representative benchmarks, and simulation systems, which would
be viable candidates for future space transportation and recovery systems.

Zhengyu Song
Research Fellow, China Academy of

Launch Vehicle Technology
Adjunct Professor

College of Control Science and
Engineering

Zhejiang University
Hangzhou, People’s Republic of China

zycalt12@sina.com

mailto:zycalt12@sina.com
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Chapter 1
Review, Prospect and Technical
Challenge of Launch Vehicle

Xiaowei Wang, Feng Zhang, Dongsheng Hu, Rong Chen, and Zhengyu Song

1.1 Review on Development of Launch Vehicle

Following six decades of development, the technology of launch vehicle has pro-
gressed with respect to the dual action of demand traction and technical promotion,
providing increasingly valuable high-tech services for society. Currently, the devel-
opment of launch vehicle is progressing with respect to stronger capabilities, higher
reliability, lowering costs, flexibility, and user convenience [1–3]. Retrospectively,
the global development history of the launch vehicle technology can be roughly cat-
egorized into the following four stages with distinct characteristics of the decades
(Fig. 1.1).

(1) Initial Development Stage (1950–1970s): This stage primarily solved the prob-
lems of zero-to-one, and furnished the basic demands of access to space.

(2) Space Shuttle Stage (1970–1990s): In this stage, the reliability and carrying
capacity of launch vehicle have tremendously improved to meet the diverse launch
demands, and concomitantly, the early phase of reusable technology developed.
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Fig. 1.1 Development stage of launch vehicle

(3) Commercial Service Stage (1990–2010s): International commercial launches
flourished during this stage. To capture the international commercial launch market,
the design and development of the launch vehicle weighed in the cost factors and
more diversified mission adaptability demands.

(4) Comprehensive Performance Improvement Stage (2010–now): Owing to the
stiff competition and incessant technical innovation, the launch vehicles during this
stage have an improved comprehensive performance through the appropriation of
the principles of modularization, serialization, and combination. By employing the
advanced technologies such as the reusability and artificial intelligence, the com-
prehensive performance of the launch vehicle is fully enhanced. Therefore, the con-
stantly emerging novel launch vehicles augment their competitiveness in the launch
market [2, 3].

1.1.1 Initial Development Stage (1950–1970s)

The emergence of the launch vehicle, on a global scale, began in the mid-1950s, and
its development has been primarily based on the ballistic missile technology. During
this stage, the United States and the Soviet Union occupied the leading position in
the space competition. They solved the zero-to-one problem and developed several
launch vehicle series with complex configurations.
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The early American launch vehicles primarily include Juno, Thor, Delta, Atlas,
Titan, and Vanguard. The first five models have been developed on the basis of the
Jupiter medium-range missile, the Thor medium-range ballistic missile, the Atlas
intercontinental ballistic missile, and the Titan intercontinental ballistic missile. Fur-
ther, they were equipped with different upper stages such as Agena and Centaur,
thus forming various different launch vehicle series. Concomitantly, based on the
demands of the Apollo moon landing, the United States has developed the Saturn
series on the basis of the newly developed high-thrust engines and large-diameter
rocket bodies, including three types of Saturn I, Saturn IB, and Saturn V. During
1969–1972, a total of seven manned moon missions were carried out.

The Saturn V launch vehicle adopts a three-stage configuration. The first stage
employs five high-thrust F-1 liquid oxygen and kerosene engines, and the second
and third stages use five and one J-2 liquid hydrogen and liquid oxygen engines,
respectively. The full length is 110.6 m, the maximum diameter 10.06 m, the take-
off mass 2946 t, the carrying capacity in low-earth orbit 120 t, and the carrying
capacity in the earth-moon transfer orbit 50 t. Among them, F-1 is the liquid launch
vehicle engine with the highest single-nozzle thrust in history, and its ground thrust
has been 6806 kN.

Since 1957, on the basis of strategic ballistic missiles, the Soviet Union has
successfully developed Sputnik, Luna, Vostok, Voskhod, Soyuz, Molniya, Kosmos,
Tsyklon, and other launch vehicles. It has also launched a large number of satellites,
and manned or unmanned spaceships, space stations, moon probes, and Mars and
Venus probes, and other spacecrafts, thus creating multiple world records in human
spaceflight. The first six models belong to the R-7 launch vehicle family, which is
a series of launch vehicles derived from the first intercontinental ballistic missile,
viz., the Soviet R-7. The Sputnik is the first launch vehicle for the first artificial earth
satellite launched by the Soviet Union. Its basic stage is the most launched one, for
any launch vehicle in the world, hitherto. It consists of a core stage bundled with four
liquid boosters using liquid oxygen and kerosene propellant, and is equipped with
different second and upper stages, thus, forming a huge family of launch vehicle.
To compete with the United States in the human lunar mission, the Soviet Union
developed the N-1 heavy-lift launch vehicle, though all of the four launches failed.
Furthermore, the Soviet Union also developed the Proton series, which employ the
conventional propellants to launch large spacecrafts such as the Proton Satellite and
the space station cabins.

Meanwhile, in Europe, France, and the United Kingdom began to develop their
own launch vehicles in 1960. France developed the Diamant series on the basis of the
sounding rockets and missiles. The United Kingdom developed the Black Arrow and
Blue Streak launch vehicles. Concurrently, several European countries established
the European Launcher Development Organization and developed the Europa series
of launch vehicles.

Japan developed the L-series andM-series of launch vehicles based on the sound-
ing rocket technology, and launched its first artificial earth satellite with the L-4S
launch vehicle, in February 1970.
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Meanwhile, China developed the Long March (LM) 1 and 2 launch vehicles. In
April 1970, the LM-1 launch vehicle successfully launched the first artificial satellite
of China, i.e., Dongfanghong-1, thus, laying a solid foundation for the space industry
of China.

1.1.2 Space Shuttle Stage (1970–1990s)

Since 1970s, the reusable launch vehicle technology has been favored. Both the
United States and the Soviet Union have focused on the development of reusable
aerospace transportation system. The hazardous implementation of the program
has also affected the development of expendable launch vehicles. They primarily
improved the carrying capacity and reliability, besides promoting the advances in
technology.

By 1972, the United States concentrated on the development of partially reusable
space shuttles, expecting a significant reduction in space launch costs through the
reuse of vehicles, to eventually replace the expendable launch vehicles. The space
shuttle consists of an external storage tank, a solid booster and an orbiter, among
which the solid booster and orbiter can be recycled and reused. The space shuttle
first flew in 1981. In 1982, the U.S. government announced that it would replace the
expendable launch vehicles such as the Atlas, Delta, and Titan, with the space shuttle
to launch all U.S. payloads. The painful lessons from the Space Shuttle Challenger
accident in 1986, persuaded the U.S. government to resume the use of expendable
launch vehicles, thus establishing a vehicle team consisting of space shuttles and
expendable launch vehicles. Prior 1982 and post 1986, the United States upgraded
and improved the Atlas, Delta, and Titan launch vehicles by improving the engine
performance, bundling solid boosters, lengthening the storage tank, and replacing
the upper stage. Further, they formed the series of Atlas G, Atlas H, Atlas I and Atlas
II, Delta 1000, Delta2000, Delta3000 and Delta II, Titan III/IV and Titan IV series,
and other launch vehicles to enhance the carrying capacity comparable to the space
shuttle. Among them, the Delta II launch vehicle became the primary medium-lift
launch vehicle of the United States during 1990s.

The United States produced a total of six space shuttles. However, owing to the
consideration of the aging and safety of the space shuttles, besides the high cost,
complex operation, and long operating cycle, they finally have decided to announce
the decommission of the Space Shuttle after the final flight in 2011.

By December 1971, the Soviet Union began research and development on the
reusable space transportation systems. Further, by exploiting their own advantages
in the liquid launch vehicle engines, they began developing the Energia heavy-lift
launch vehicle by 1976. The launch vehicle has a full length of 58.7m, a diameter of
7.75m, a takeoff mass of about 2220t, a takeoff thrust of about 3616t, and a carrying
capacity in low-earth orbit of about 100t. The primary task is to transport the reusable
orbiter, i.e., Buran Space Shuttle, and launch large payloads into the low-earth space.
The Buran Space Shuttle made only one unmanned flight. Concurrently, the Soviet
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Union carried out a standardized upgrade of the Soyuz launch vehicle to form the
Soyuz U and U2 launch vehicles, with improved carrying performance. Further, they
developed the Zenit 2 launch vehicle using the technology of the Energia launch
vehicle engine. It is mainly used in the domestic military satellites and has rapid
response capabilities. However, subsequent to 1990s, the Zenit series have gradually
been utilized for international commercial space launches.

Since 1973, Europe began to develop Ariane launch vehicles based on the Europa
and Diamant launch vehicles. By the early 1990s, the Ariane launch vehicles have
steadily developed from Ariane 1 to Ariane 2, Ariane 3, and Ariane 4 by improving
the performance, lengthening the propellant storage tank, bundling solid or liquid
boosters, and increasing the number of bundled boosters. The carrying capacity has
been quadrupled, and the payload adaptability was also greatly improved.

To master the liquid launch vehicle technology for launching large satellites, and
obtain medium, high, and geosynchronous orbit satellite launch capabilities, Japan
adapted the Thor-Delta launch vehicle technology from the United States in the
1970s, and hence developed the N series launch vehicles. Further in the 1980s, they
developed the H-I launch vehicles with a higher payload capacity.

Meanwhile, China primarily developed the LM-2C and LM-3 launch vehicles.
Among them, the LM-2C has been improved on the basis of the LM-2, which in
turn, enhanced the carrying capacity and reliability to a certain extent. LM-3 is a
three-stage launch vehicle developed on the basis of the LM-2C launch vehicle. Its
three stages use liquid hydrogen and oxygen cryogenic propellant, and are primarily
used to launch geosynchronous orbit satellites.

India began to develop the four-stage solid launch vehicle, Satellite Launch Vehi-
cle 3 (SLV-3), on the basis of the sounding rockets in 1973, and successfully sent
the Rohini Satellite into low-earth orbit in 1980, and then developed Augmented
Satellite Launch Vehicle (ASLV) on the basis of SLV-3.

1.1.3 Commercial Service Stage (1990–2010s)

By 1990s, the launch vehicle technology entered a new stage of development. Com-
petition in the international commercial launchmarket has intensified, and the launch
demands for high-mass communication satellite have increased. Most nations have
begun the development and improvement programs for low-cost launch vehicles.

The U.S. Air Force began to implement the development program of Evolved
Expendable Launch Vehicle (EELV) in 1994. The goal has been to reduce launch
costs, improve the reliability, and the capture of international commercial launch
market while meeting the domestic launch demands. The program finally gave birth
to the series of Atlas V and Delta IV launch vehicles, and both of which have
fully inherited the advantages of the previous models. Further, they adopted modular
design ideas, and advanced power and control technology, to reduce the launch costs
and improve the carrying capacity, reliability and operability, besides replacing the
original launch vehicle model at the beginning of the 21st century. The primary
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common modules of the Atlas V series include the common core stage, common
centaur upper stage, solid binding booster, and payload fairing. The common core
stage uses one RD-180 engine, which can be categorized into 400 and 500 series
according to different combinations. They can meet the launch demands of various
medium-lift payloads, besides taking into account the launch requirements of the
U.S. military’s payloads. The Delta IV series employs a large-diameter common
core (5.08m) bundledwith different types of boosters, and achievesmultiple carrying
capacities through modular combination, including Delta 4 medium-lift, modified
Delta IV medium-lift and Delta IV Heavy. The common core stage employs the
newly developed low-cost RS-68 engine, and both the common core stage and the
second stage use liquid hydrogen (oxygen) propellant.

Following the disintegration of the Soviet Union in 1991, Russia made improve-
ments over the Proton and Soyuz launch vehicles, forming multiple launch vehicles
such as ProtonM, Soyuz ST, andSoyuz 2. Further, they equipped themwithBreezeM
and Fregat upper stages, and debuted them into the commercial launch market. Rus-
sia has also altered its decommissioned and reduced strategic ballistic missiles into
launch vehicles such as Start, Rockot, Dnepr, Volna, Strela, and Shtil, and introduced
them into the commercial launchmarket. Furthermore, Russia began to develop envi-
ronmentally friendly, non-toxic, and advanced-performance Angara series, based on
the idea of Generalization, Serialization, andCombination, by 1994. By this step they
hoped to replace the major existing launch vehicles of Russia with Angara series.
Nevertheless, only the Angara 1.2 and 5 configurations have performed a total of
three launch missions, hitherto.

Europe has developed the Ariane 5 in accordance with the demands of the com-
mercial launch market, besides the development and utilization of low-earth orbit. It
is the world’s first high-thrust launch vehicle designedwith a large-diameter and less-
stage scheme, and has been continuously improved with respect to the performance
of the launch vehicle. Ariane 5 series including Ariane 5G, 5ES, 5ECA, 5ECB, and
other models have been formed, which can perform single-satellite-in-one-launch
and multiple-satellites-in-one-launch missions, and gradually become the driving
force in the international commercial launch market. Concurrently, Europe started
the development of the Vega small launch vehicle as a supplement to the Ariane 5
and Soyuz, for launching small governmental and commercial payloads. Vega first
flew in 2012. Meanwhile, to fill the gap in the medium-lift carrying capacity, the
Russian Soyuz ST has been introduced.

The Ariane 5 series are all in the two-stage configuration. The core stage is
equipped with one Vulcan liquid oxygen and hydrogen engine, bundled with two
solid boosters, and the carrying capacity for geosynchronous transfer orbit (GTO)
can reach 6.9–10.5 t.

Japan has developed the H-IIA series and H-IIB based on the H-II launch vehicle
through modular design. This is to meet the diversified launch demands and enhance
its competitiveness in the space launch market, and improve the reliability of launch
vehicle. TheH-IIA series are all in the two-stage configuration bundledwith different
numbers of boosters, including HII-A202, H-IIA2022, H-IIA2024, and H-IIA204.
The maximum carrying capacity for GTO is 5.7 t. The first stage is powered by one
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LE-7A liquid oxygen & liquid hydrogen engine, and the second stage is powered
by one LE-5B liquid oxygen and hydrogen engine. The H-IIB launch vehicle has an
increased diameter in the first stage, viz., from 4 m to 5.3 m on the basis of H-IIA,
and installs two LE-7A engines in the first stage, besides the carrying capacity for
GTO reaching 8 t.

China has introduced the developed LM-2E, LM-2C/SM, and LM-3A series of
launch vehicle into the international commercial launch market, and successfully
developed the LM-2F launch vehicle. LM-2F is a two-stage launch vehicle bundled
with four boosters, based on LM-2E and developed in accordance with the mission
requirements of human spaceflight. The reliability index reaches 0.97 and the safety
index reaches 0.997. The first flight was on November 20, 1999, and it successfully
launched the Shenzhou-1 test spacecraft. The first successful human launch was on
October 15, 2003.

During this stage, India has successively developed a Polar Satellite Launch Vehi-
cle (PSLV) and a Geosynchronous Satellite Launch Vehicle (GSLV), which are capa-
ble of launching medium, large, and geosynchronous orbit satellites.

1.1.4 Comprehensive Performance Improvement Stage
(2010s–Now)

Since 2010, the United States, Russia, Europe, and Japan, based on the long-term
development goals, are actualizing the upgrades through the layout in developing
the next generation of launch vehicles. They are based on the development princi-
ples of modularization, serialization, and combination, besides benefiting from the
improvement of economy. Further, they have utilized the advanced technology such
as the reusability and artificial intelligence, to enhance the comprehensive market
competitiveness of the launch vehicle [2, 3].

Aided by the efficient management and technical innovation, SpaceX has pursued
research and application on vertical take-off and landing technology, and gradually
occupied more than half of the international space commercial launch market with
marked price advantages for Falcon 9 and Falcon heavy. Its primary focus is on the
development of the Superheavy-Starship transportation system. Superheavy-Starship
aims to actualize the future airline-flight-mode space transportation. It is a common
vehicle that can perform services such as global rapid transportation, space shuttle
transportation, earth-moon transfer transportation, lunar landing and ascent, forecast-
ingMars exploration transportation. It has been selected byNASA as the lunar lander
in the Artemis program. Affected by multiple-factors such as the risk of outsourcing
Russian engine supply and the return of American manufacturing, ULA initiated
developing a Vulcan launch vehicle with certain intelligence. It has achieved dif-
ferent carrying capacities by bundling multiple solid boosters and upgrading upper
stage performance, and is intended to significantly reduce the launch costs, compete
with SpaceX, and eventually replaced the EELV launch vehicle. Furthermore, Blue
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Origin is also developing theNewGlenn launch vehicle during the same period. Con-
currently, United States is fast developing the Space Launch System (SLS) heavy-lift
launch vehicle to support its Artemis program and manned deep space exploration
strategy [4].

To enhance the competitiveness, Russia has proposed Soyuz 5 and 6 launch vehi-
cles. Both of them adopt a simple two-stage serial configuration and employ the first
stage of liquid oxygen and kerosene, and a second stage with liquid oxygen and
kerosene, or liquid hydrogen and liquid oxygen. They will replace the Soyuz 2 series
of launch vehicles of similar capabilities in the future. Furthermore, the first stage of
the two launch vehicles can also be utilized as the core stage or the booster module
of the Russian heavy-lift launch vehicle. As a medium-lift launch vehicle, the Soyuz
5 and 6 have the characteristics of a simple configuration and strong modularization
(generalization). Technically, they have the potential to be the primary force of the
next-generation medium-lift launch vehicles of Russia. Russia has also proposed the
Amur reusable launch vehicle scheme that employs the liquid oxygen and methane
propellant, and the first stage can be recycled and reused vertically.

Europe and Japan have proposed new launch vehicle updating programs, viz.,
Ariane 6 and H-III, respectively, in response to the stiffening competition in the
international commercial launchmarket.Both of the programs factor in cost reduction
as the first priority, conduct development in response to themarket demand, and avoid
pursuing exclusive technical advancement. The Ariane 6 inherits most of the design
basis and mature technology of the Ariane 5, and will replace the Ariane 5 and Soyuz
ST in future [5]. Meanwhile, with the rapid development of small satellite market,
some commerical aerospace companies develope various small reusable rocket, such
as Spanish launch startup PLDSpace’sMiura 1 reusable suborbital rocket andBritish
startup Orbex’ Prime launch vehicle, holding low-cost and rapid-launch features.

H-III launchvehicle of Japan fully inherits themature technologyof theH-IIA/IIB,
while focusing on improving the design in reducing costs and improving reliability.
The first stage uses two to three LE-9 liquid oxygen and hydrogen engines. Both the
second stage and the solid booster have been improved with respect to the H-2A/2B.
Different numbers of boosters are bundled to achieve different carrying capacities.
The carrying capacity for GTO can reach 7t. Concurrently, Japan has developed the
Epsilon solid launch vehicle based on the concept of intelligentmeasurement, launch,
and control to significantly reduce the number of ground testers and the launch costs
[6].

Aiming the international advanced level and the demands of launch vehicle
upgrading, China has successfully developed a new generation of launch vehicles
based on 120 t liquid oxygen and kerosene engines and 50 t liquid oxygen and
hydrogen engines, covering the launch mission demands of low, medium, and high
orbit spacecrafts. The new-generation launch vehicles of China is a series of vehicles
according to the design concept of Generalization, Serialization, and Combination,
founded on “one series, two engines, and three modules”, and aiming at the reality
and urgent demands of the space development of China. This includes LM-5/5B built
based on 5m diameter modules, LM-6, LM-7/7A, and LM-8 built based on 3.35 m
diameter modules. The maximum carrying capacity in low-earth orbit reaches 25 t.
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The maximum carrying capacity for GTO is 14 t. These launch vehicles first flew
successively in 2015-2021. Among them, the LM-5 launched the Tianwen-1 probe
and the Chang’e-5 probe into space, and achieved the first Mars landing &patrol
and lunar sampling & return of China. Further, the LM-5B launched the China
Space Station modules to the low-earth orbit. Furthermore, China is currently mak-
ing technical improvements to launch vehicles based on the demands of low-cost and
high-reliability, and preparing for future upgrading, besides concurrently developing
the reusable technology and super heavy-lift launch vehicles.

1.2 Development Prospect of Launch Vehicle

With the development of human society, the space field has become an important
territory for human survival and development, particularly in the 21st century. The
demand for various space missions is fast increasing, the space activities become
more and more frequent, and the big space era is coming.

(1) Mankind’s dependence on space is increasing on a daily basis, and space tech-
nology is playing an important role.

Since the 1960s, hundreds of space science and exploration missions have been
carried out around the world. Human footprints have spread across the eight plan-
ets of the solar system, and scientific cognition has engendered new breakthroughs.
With respect to satellite applications and services, the communication satellite sys-
tem has steadily evolved, and the accuracy of the navigation satellites has grown
manifold. Further, the public service capabilities of remote sensing satellites have
been enhanced, thus providing humans with highly accurate monitoring and warning
of weather, environment, and disasters. The economic scale of the space industry is
burgeoning with impending expansions.

Predictably, the space field will be an important territory for human survival
and development in future, whereas the cislunar space serves an outpost for human
exploration of space. The space industry, owing to its expansion, will also take the
lead in entering a new era of cislunar economy.

(2) The current world space missions have developed to a new stage of large-scale
access to space.

Recently, the demands for global ubiquitous network access and Internet of Things
connection services have been on the rise, and the development of low-orbit com-
munication have accentuated it. Nearly tens of thousands of giant communication
constellation projects represented by Starlink, OneWeb constellation, and Hongyan
constellation have emerged in sequence, and the development of low-orbit Internet,
satellite Internet of things, and other fields will accelerate. Concurrently, with the
development of space technology, and the demand for a large-scale space infrastruc-
ture represented by space power stations and space factories, besides human lunar
exploration and construction of lunar bases, have become increasingly strong. Space
missions have eventually developed to a new stage represented by large-scale Inter-
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Table 1.1 Forecast of scale demand for access to space in 2045

Space activities 2045/t

Communication/navigation/remote sensing 3000

Space science exploration and experiment 4000

On-orbit service and maintenance 4000

Space tourism and global rapid transportation 40000

Space key infrastructure 5000

Deep space exploration 2000

Space energy 40000

Resource exploration and utilization 10000

Space-based warning 2000

Space safety 4000

Space medicine/agriculture/manufacture 5000

Space environmental monitoring and warning 1000

Others 5000

Subtotal 125000

net constellations, large-scale space resource development and utilization, large-scale
lunar exploration, and large-scale deep space exploration. According to the course
of the global space industry, and based on the current foundation, it is estimated that
by 2045, the global annual scale demand for access to space will exceed 100,000
tons, as listed in the Table 1.1.

(3) Commercial spaceflight is advancing rapidly, and the space industry is showing
a new direction of development.

Owing to the relentless development of space technology and the increasing scale
of the space industry, commercial spaceflight such as commercial launch vehicles,
low-orbit Internet constellations, and commercial remote sensing have been rapidly
promoted. The space industry is displaying a new course of development, and will
eventually expand to the fields of space tourism, global airline-flight-mode rapid
transportation, space resource development, energy utilization, on-orbit manufactur-
ing, medicine, and health in the future.

With the continuous development of space technology, the scale of future space
missions will become colossal, and the scope of space applications and services will
become extensive, besides a rampant commercialization of the space industry. The
space industry will be more integrated with human society, economy, and livelihood
of people. To encounter the demands of the large-scale access to space in the future,
the Space Transportation Revolution needs to be implemented. A Revolution Era
of Space Transportation is impending, which has the following basic characteristics
[3].
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• Manifold increase of carrying capacity;
• Substantial Cost reduction;
• Enhancement of Reliability and safety;
• Profound effect on society and life;
• Intelligent delivery vehicles;
• Airline-flight-mode operation and management;
• Fast launch, convenient, and flexible;
• Form a large-scale industry.

The new demand also brings many challenges. It is necessary to adopt the latest
scientific and technological achievements to the maximum in the existing ways of
access to space. Concurrently applying and cultivating the reusable technology and
intelligent autonomous technology, to meet the future demand for large-scale and
low-cost access to space.

1.3 Current Development Status of Launch Vehicle
Reusable Technology

From the perspective of the history of launch vehicles, expendable launch vehicles
are still the mainstream method for nations to enter space. However, the era of the
large-scale and low-cost access to space, particularly with the successive proposal
of the airline-flight-mode space transportation system and the mission concept of
global arrival within an hour, leads to the rapid development of reusable technology.

Reusable launch vehicles can greatly reduce the cost of access to space through
multiple uses and cost sharing, which is the course of development for vehicles in
the future.

According to the current development situation, reusable space transportation
systems can be divided into two categories, viz., axisymmetric configuration and
lifting body configuration.

1.3.1 Reusable Space Transportation System in
Axisymmetric Configuration

The reusable transportation system based on the traditional axisymmetric configura-
tion primarily recycles and reuses its stages. Therefore, the stage recycling is a major
issue. According to the recycling method of the stage, it can be categorized into
the parachute reusable launch vehicles and the vertical take-off and vertical landing
(VTVL) reusable launch vehicles. Furthermore, fairing recycling has also begun to
be practiced and applied.
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Fig. 1.2 Space shuttle SRB recovery process

1.3.1.1 Parachute Recovery Reusable Launch Vehicle

For parachute recovery reusable launch vehicles, following the completion of the
mission of the launch vehicle, the parachute is deployed to decelerate the vehicle
during the return, to a speed of tens of meters per second, and finally, to fall on
land or at sea for recycle and reuse. The examples are Kistler’s K-1 launch vehicle,
NASA’s space shuttle booster, and ULA’s Vulcan launch vehicle.

(1) Parachute recovery of the space shuttle booster at sea
The recovery of the solid rocket booster (SRB) of the space shuttle uses a large group
parachute. The SRB unit integrates the ascent, reentry, and recovery subsystems. The
integrated booster subsystem includes the thrust vector control, auxiliary power unit,
avionics, pyrotechnic signal, range safety system, parachute, thermal protection,
and water recovery system. The technical difficulties of SRB include the subsystem
integration, thermal environment and harsh load environment (including fallingwater
impact).Multiple subsystems have been improved tomeet the reusable requirements.
Each booster deploys three main parachutes to slow down and finally land on the
sea. The SRB recovery process is shown in Fig. 1.2 [7].

(2) Parachute recovery of K-1
Kistler’s K-1 launch vehicle program started in 1993, expecting to reduce the launch
cost of the launch vehicle through reusability, for commercial launches. K-1 is a
two-stage fully reusable vehicle, and the first stage adopts a recovery scheme based
on parachute and cushion airbag. Following the release of the payload, the second
stage reentry and return to the launch site also employ the recovery scheme based
on parachute and cushion airbag.

Owing to the development of the two-stage fully reusable vehicle being hazardous,
and the unsure project funding, the development plan of K-1 is fluctuating. Despite
certain tests and verifications, it has not been introduced for practical applications.
However, the vast majority of development tests on recovery and landing system
have been completed, and the feasibility of the recovery approach based on group
parachute and airbag has been verified through the demonstration and verification
test on the aircraft. The K-1 recovery process is shown in Fig. 1.3 [8, 9].
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Fig. 1.3 The K-1 recovery process

(3) Vulcan aerial recovery
In April 2015, ULA announced the Vulcan program of the heavy-lift launch vehi-
cle. The Vulcan will use the Sensible Modular Autonomous Return Technology
(SMART) technology to achieve the recovery and reuse of the stage.

Subsequent to the separation of the first and second stages, the first stage engine
of the launch vehicle will be separated from the first stage and re-enter the atmo-
sphere under the protection of an inflatable heat shield. It will be decelerated by the
parachute, and finally recovered in the air by a helicopter. ULA stated that the cost
of the propulsion system accounts for 65% of the total cost of the first stage, and the
recycling of the first stage engine will reduce the cost of the first stage propulsion
system by 90%.ULA claimed that the SMART recovery project is only the beginning
of the launch vehicle recovery program of the company. In future, ULA will also
recover other launch vehicle components to further reduce the launch costs.

(4) Fairing recovery of Falcon 9
The fairing generally adopts an extremely light and thin carbon fiber sandwich struc-
ture, which mandates precise manufacturing and testing before application. The pro-
duction cost accounts for about 10% of the total cost of a single launch. Generally,
after the launch vehicle reaches the Karman Line at a height of 100 km, the rocket
becomes unaffected by the atmosphere, and the fairing automatically separates and
falls. If the fairing can be recovered for re-launch, it will further reduce the cost of
manufacturing and launch.

SpaceX leads the research and practice of the fairing recovery and in May 2017,
for the first time, actualized the controlled fairing splashing down in the ocean, which
employed ships for salvage and recovery. Since the internal structure does not account
for the corrosion resistance requirements, the fairing recovered after splashing down
in the ocean must be processed before reuse, which increases the cost and difficulty
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Fig. 1.4 The launch vehicle whose first stage is for parachute recovery

of recycling. To handle this issue, SpaceX usesmodified vessels for the direct capture
and recovery to prevent the fairing from contact with seawater. On June 25, 2019,
after the deployment of the equipment of cushion nets on ships, the net capture
of fairing in the air was realized for the first time. This denotes that SpaceX has
successfully verified the two methods of fairing recovery. However, owing to the
relatively low probability of the net capture of the fairing in the air in actual flight
missions, the scheme for net capture in the air has been cancelled.

(5) The aerial recovery of the first stage of the Rocket Lab’s Electron launch vehicle
OnAugust 7, 2019, Rocket Lab, co-sponsored byNewZealand and theUnited States,
proposed a program for the first stage recovery in the air for its Electron small launch
vehicle.

Electron is a two-stage launch vehicle with a length of 17 m, a diameter of 1.2
m, a take-off mass of 10.5 t, and a carrying capacity in 500 km sun-synchronous
orbit (SSO) of 150 kg. The first stage of the launch vehicle employs nine Rutherford
engines, and the second stage employs one vacuum Rutherford engine. The Electron
utilizes advanced carbon fiber composite materials to design a high-strength and
light-weight flight structure. The first stage structure is light in weight and suitable
for the helicopter hooking recovery in the air. Following the separation of the first
stage, the main engine stops decelerating, or deploys inflatable airbags to decelerate.
Finally, a two-stage parachute is deployed to decelerate. The main parachute is a
parafoil, and the helicopter is employed for the aerial hooking recovery in the air.

(6) Parachute recovery technology in China
In terms of the parachute recovery of launch vehicles, China has completed the study
on the parachute recovery scheme and the airdrop test and verification for the liquid
oxygen and methane first stage.

The launch vehicle whose first stage is for parachute recovery is a small two-stage
liquid launch vehicle with a total length of about 29 m. The overall layout is shown
in Fig. 1.4. The take-off mass is about 100 tons. When launched from the Jiuquan
launch site, the carrying capacity for 700 km SSO exceeds 650 kg.

To reduce the launch cost of the launch vehicle, the first stage is recovered and
reused. The recovery landing system adopts the scheme of two stabilizing parachutes
and two decelerating parachutes, besides three main parachutes. This decelerates the
separated first stage, and employs the airbag system arranged at the front and rear
ends of the first stage to cushion the landing process, thus, reducing the impact load
in the landing process and the damage to the vehicle body caused by the impact load.
The cushion airbag is a combination of inner and outer airbags. The outer airbag
cushions the landing process of the first stage. The inner airbag is encapsulated in
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Fig. 1.5 The airdrop test for the parachute recovery of first stage

the outer airbag, and functions as a support to the first stage of the launch vehicle
following the landing, so that the first stage does not directly impact the ground.

China has also completed the airdrop test for a group parachute recovery of the
launch vehicle stage, and has developed the scale model for airdrop test of the first
stage of launch vehicle and the scale test prototype of the group parachute system.The
airdrop test uses a helicopter as the airdrop platform, and carries and releases the scale
prototype of the group parachute and cushion airbag system, and the scale model of
the first stage. In the test, the decelerating parachute and themain parachute have been
deployed in sequence, and hence, reached a steady falling speed. Finally, the scale
model of the first stage has been brought to the ground. The airbag deployment and
landing cushion have been normal, and the stage model was successfully recovered
(Fig. 1.5).

1.3.1.2 VTVL Reusable Launch Vehicle

For VTVL reusable launch vehicle, following the completion of launch mission, it
restarts the main engine to decelerate the stage during the return process, and finally
employs the landing legs to accurately land on the predetermined position, for e.g.,
SpaceX’s Falcon 9 and Blue Origin’s New Glenn.

The earliest use of the vertical return recovery was the Delta clipper scheme
proposed by McDonnell Douglas in the 1990s. It was designed to utilize the VTVL
technology to achieve single-stage-to-orbit and reuse. Delta clipper has conducted a
total of twelve flight tests, with a maximum flight altitude of 3155 m, and verified
the technologies of the VTVL, fast flyback, and simplified ground support [10].

The first stage of the Falcon 9 adopts the VTVL scheme, and the first stage
will return to the launch site from the sub-orbit after the stage separation, or land
vertically down range. To develop the reusable Falcon 9, SpaceX has developed a
diversified and progressively-developing verification plan of the reusable technology.
The recovery operations for the first stage of Falcon 9 have carried out a large number
of experimental verifications, and has successfully carried out dozens of offshore
platform and land recovery. A single first stage module has performed up to eleven
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launch missions (by December 2021). Concurrently, on the basis of the Falcon 9,
two core stages have been added to form the Falcon Heavy. All three core stages can
be landed vertically and reused.

SpaceX’s Superheavy-Starship system applies the VTVL reusable technology for
the design of the heavy-lift launch vehicles, and it is expected to become the world’s
first two-stage fully reusable heavy-lift launch vehicle. Since the launch vehicle has
been proposed in 2016, its scheme has been iteratively optimized. Following the
transition of the Big Falcon Rocket (BFR), the combined scheme of Superheavy and
Starship was finally determined in 2018.

While continuously optimizing the scheme, SpaceX has adopted a model of
prototype verification iteration and dual-line research and development (R&D), to
achieve a rapid verification and optimization of the related technologies. Since 2019,
it has experienced tests such as the Starhopper series, MK series, and SN series, and
achieved a 10-km high-altitude flight test in the SN15 test. Currently, it is advancing
its work towards the direct flying into the orbit.

Furthermore, Blue Origin has also proposed the New Glenn series of launch
vehicle which adopts the vertical return recovery of the first stage.

The NewGlenn has two-stage and three-stage configurations. The diameter of the
launch vehicle is about 7m. The first stage is equippedwith seven BE-4 liquid oxygen
and methane engines with a thrust of 17000 kN. Further, the first stage is separated
in the ascending section and returns vertically to land on the offshore platform for
recovery. Unlike the Falcon 9, which uses a grid fin, the recovery process employs
an aerodynamic control surface to implement the aerodynamic control. Moreover,
Blue Origin’s suborbital human launch vehicle of the New Shepard, has successfully
completed multiple recovery and reuse.

DLR, CNES, and JAXA are jointly developing the CALLISTO aircraft based on
their experience in the vertical landing technology. All the three organizations will
use the aircraft to verify their own guidance and control algorithms. The maximum
flight altitude and the speed can reach 40 km andMach 2, respectively. On this basis,
the European Space Agency (ESA) will develop the Themis launch vehicle. As the
milestone verification project of the European reusable technology, it is categorized
into two processes, viz., single engine and three engines. Its maximum speed can
reach Mach 6–8, and it can simulate the whole process of the dynamic deceleration
and aerodynamic deceleration when the launch vehicle enters the dense atmosphere
at high speed. The proven key reusable technology will be applied to the Ariane Next
series of launch vehicles.

In 2020, the Roscosmos officially released its new generation of commercial
reusable launch vehicle Amur. The Amur launch vehicle has a height of 55 m, a
takeoffmass 360 t, and a diameter 4.1m. It uses liquid oxygen andmethane propellant
with a two-stage configuration. The first stage of the launch vehicle takes off and
lands vertically, and is equipped with five RD-0169A engines with a sea level thrust
of 100 t. The second stage of the launch vehicle is expendable, and uses a vacuum
version of the RD-0169V engine, same as the first stage, with a vacuum thrust of
about 110 t. The first stage of the launch vehicle is initially designed for 10 times
reuse, and the long-term design goal is 100 times.
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Fig. 1.6 Flight test for the gridfin based landing zone control (LM-2C)

China is also actively carrying out research and application of VTVL key tech-
nologies. Currently, it has broken through the manufacturing and control technology
of titanium alloy integral casting grid fin, and carried out a flight test and verification
of the landing zone control for the first stage of a LM-2C in 2019 (Fig. 1.6).

The LM-8 has carried out research on key reusable technologies with the goal of
vertical recovery [11]. To verify the key technology, powered by the UAV turbojet
engine, a small aircraft Peacock has been designed, and the verification of the guid-
ance and control algorithm has been carried out. The composition of the Peacock
aircraft is displayed in Fig. 1.7.

The slenderness and thrust-to-weight ratios of the Peacock aircraft simulate the
parameters of the LM-8. All electronic equipment adopts commercial off the shelf
(COTS), and the flying altitude is controlled near 400m. This verifies the adaptability
of the convex optimization algorithm in the embedded computing environment.

Based on the second stage of the LM-7, a VTVL flight test has been designed. It is
powered by liquid oxygen and kerosene engine, and the flight altitude is controlled at
2 km. The aircraft operates four engines during the ascent phase. Two of the engines
are turned off at the highest point, and the remaining two continue delivering the
power for reverse thrust. Furthermore, to verify the guidance and control algorithms,
the following technologies of the aircraft will be tested, such as the landing cushion
mechanisms, relative navigation, and rapid post-processing of liquid oxygen and
kerosene engines after landing. Among them, the landing cushion mechanism adopts
a triangular overall scheme, which has multiple functions of folding and retracting,
landing cushion, deployment deceleration, and locking and bearing. Its composition
is displayed in Fig. 1.8.

Since the existing Long March launch vehicles in service do not employ multiple
engines in parallel, the guidance and control algorithm [12] under the condition of
limited throttling capability, which causes high thrust-to-weight ratio of the landing
stage (thrust-to-weight ratio greater than 2.0) has been studied. Under the premise
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Fig. 1.7 The Peacock Testbed for the verifications of GNC algorithm

of unchanging engine configuration, the foundation has been laid for the upgrading
of the in-service launch vehicles to reusable launch vehicle.
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Main supporting leg: 
capable of cushion and 
stretch

Aero shield: 
composite material 
based integrated structure, with 
satisfactory aerodynamic shape 
and maneuverability

Landing plate: 
composed of rubber 
blanket and a combined 
plate for multi-directional 
cushion and deformation

Auxiliary supporting legs: 
composed of auxiliary rods and 
upper/lower contactor, capable 
of length regulation and 
diversion

Fig. 1.8 Supporting legs of the Peacock aircraft

1.3.2 Reusable Space Transportation System in Lifting-body
Configuration

1.3.2.1 Rocket Powered Lifting-Body Reusable Launch Vehicle

(1) Reusable first stage
Reusable first stage refers to a vehicle with autonomously controllable returns, lands
horizontally, and is reused after transporting the payload from the surface of the earth
to the suborbital space. It is the first stage of a two-stage orbiting space transportation
system. Typical launch vehicles include the Reusable Booster System (RBS) andXS-
1 from the United States, the Baikal from Russia and the RLV-TD from India.

The RBS is a reusable vehicle development program launched by the U.S. Air
Force to realize the operational responsive space (ORS) capability. The program is
directed by the U.S. Air Force Research Laboratory (AFRL). The U.S. Air Force has
demonstrated that the RBS concept is a reliable method to meet its future demand
of rapid access to space [11].

The RBS system uses a vertical launch mode. The first stage and the upper stage
fly to the separation point and then return to the launch site, thus landing on the
runway like an airplane.

The U.S. Air Force is contemplating the use of rocket-powered boosting to imple-
ment the return of the first stage. Following the separation of the rocket-powered



20 X. Wang et al.

booster from the upper stage, it performs a return maneuver first, and then returns to
the launch site through an unpowered reentry gliding flight before landing.

The turnover cycle of the RBS is 8 hours, of which 2 hours are used for launch
preparation, and 6 hours are used for inspection and maintenance of the airport
runway after landing. The RBS engine can be reused 10 times, and the booster can
be reused 100 times. If there are eight flights each year, then its launch cost will be
reduced by about 50% [13].

In 2013, the U.S. Defense Advanced Research Projects Agency (DARPA) relayed
the U.S. Air Force to continue the research and testing of reusable booster system.
Thus, they launched a new Experimental Space Aircraft (XS-1) Program, headed by
the leading industrial sector in pre-research, for a continuous improvement of key
technologies. Further, they laid a technical foundation for the future development of
practical vehicles [14]. However, owing to economic factors, technical difficulties,
and low carrying efficiency, it was finally canceled in early 2020.

The Baikal Program of Russia began by the end of 1998. The Baikal is a winged
flyback booster that can fly back to the launch site and land like an airplane, automat-
ically. It can be reused 100 times. Certain structural and propulsion components of
the Baikal’s common core stage booster have adoptedmature technologies, including
deployable wings, an all-moving tail, and an auxiliary turbojet engine.

(2) Reusable orbiter stage
Reusable orbiter stage refers to the reusable launch vehicle that is transported by
the first stage vehicle to the sub-orbit, and then separates and powers its own main
engine to transport the payload to the required orbit. Further, it can stay in orbit for
a long period and perform various orbital service mission, on-demand return, and
horizontal landing. Typical vehicles include the Space Shuttle Orbiter of the United
States and the Buran Space Shuttle Orbiter of the Soviet Union.

• Space shuttle orbiter

The Space Shuttle Orbiter of the United States first flew in 1981, and was later
decommissioned in 2011. According to the design requirements, each orbiter can be
reused 100 times, and each time, a maximum of 29.5 t payload can be transported to
the low-earth orbit, besides returning a payload of 14.5 t to the ground. The orbiter
can carry 3 to 7 people and stay in the orbit for 7 to 30 days to perform tasks such
as rendezvous, docking, parking, crew/cargo transportation, space testing, satellite
launch, overhaul, and recovery. Hitherto, the six space shuttle orbiters of NASA have
carried out a total of 135 missions.

• Buran space shuttle orbiter

By 1978, the Soviet Union began to develop the Buran space shuttle orbiter, which
was successfully launched in November 1988.

The Buran space shuttle orbiter is 36 m long and 16 m high, with a triangular
wingspan of 24 m, a fuselage diameter of 5.6 m, and a take-off mass of 105 t (14.3
times that of the mass of Soyuz manned spaceship), and a landing weight of 82 t. It
was launched by using the newly developed Energia heavy-lift launch vehicle at that
time.
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Fig. 1.9 Launching
satellites by aerospace craft

The Soviet Union produced a total of two Buran test aircrafts. On November 15,
1988, the Energia sent the unmannedBuran space shuttle orbiter into a predetermined
orbit of 250 km. The Buran automatically orbited the earth twice. Subsequent to 3
hours in orbit, it returned to the ground on the same day, as scheduled, and landed
at an airport 12 km away from the launch site. The first flight of the Buran was
successful. The flight test of another test aircraft was canceled owing to economic
influence.

On July 16, 2021, the vehicle of China for sub-orbit reusable flight test and
verification took off at the Jiuquan Satellite LaunchCenter. Following the completion
of the flight according to the set procedure, it horizontally landed at the Alxa Right
Banner Airport in a smooth manner. The first flight was a complete success. The
suborbital reusable vehicle can be employed as a stage of the lifting-body rocket-
powered reusable space transportation system.

1.3.2.2 Combined-Cycle Powered Reusable Launch Vehicle

The combined-cycle powered reusable launch vehicle draws the main power from
the combined-cycle powered engine, and adopts the method of horizontal take-off
and horizontal landing (HTHL). According to the operating range of the engine, the
vehicle can be employed as the first or the second stage.

The combined-cycle powered reusable launch vehicle has the potential to achieve
single-stage-to-orbit. It can transport payloads from the ground to the required low-
earth orbit, return on demand, and land horizontally. It is a method of implementation
for a completely reusable space transportation system.

The SABRE aerospace project is a two-stage-to-orbit combined-cycle powered
reusable launch vehicle project that uses the SABRE engine to launch satellites.

Currently, the project has received investment from Boeing, Rolls-Royce, and
BAESystems, and completed the assemblyof thefirst pre-cooler prototype (HTX)and
related auxiliary equipment, at the newly built TF2 test station in Colorado, USA
(Fig. 1.9).
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Skylon is a new generation of single-stage-to-orbit aerospace vehicle being devel-
oped by REL in collaboration with other European research institutions [16].

The overall design of the first Skylon (Skylon C1) has been completed. The total
take-off mass is about 275 t. It has a slender fuselage design, with the fuselage
length nearly 85 m and a wingspan 25 m, with a built-in propellant storage and load
capsules. Two SABRE engines have been installed symmetrically at the tip, which
has the ability to transport a payload of 12 m in length, 4.6 m in diameter, and 12 t
in weight into a 300 km orbit.

1.4 Development Status of Launch Vehicle Intelligent
Autonomous Technology

With the development of space technology, high-density launch of vehicles has
become normal, and reusability has become a development trend, besides ever chang-
ing mission requirements. Higher demands are proposed for the performance such as
reliability, convenience,maintainability,mission upgradability, on-orbit deployment,
and mission planning, which necessitates the development of intelligent autonomous
technology for the space transportation systems.

(1) Demand for high-density launch and quick response
In future, launch vehicle will encounter continuous high-density launch missions,
so as to promote the construction of space infrastructure, and to meet the boom-
ing demand of commercial spaceflight. Internet constellation programs continue to
advance. It mandates the shortening of the launch preparation time and improving the
launch reliability, which raises stringent requirements for the launch vehicle testing,
and launch capabilities.

(2) Demand for reusable and airline-flight-mode transportation
Owing to the development of aerospace technology and the demand for large-scale
development of earth-moon space, the reusable space transportation systemwill even-
tually shift towards airline-flight-mode. This requires strong autonomous inspection,
maintenance, and flight control capabilities, and the intelligent autonomous technol-
ogy can provide strong support.

(3) Demand for improvement of the adaptation capability to multiple missions and
flight faults

Owing to the increasing demand for access to space, besides space utiliza-
tion missions in the future, the space transportation systems shall have intelligent
and autonomous flight control and on-orbit deployment capabilities. Further, they
should meet the requirements of the flight failure response capabilities, and the
high-precision and diversified transfer of spacecraft. Currently, the failures owing to
various reasons are generally coped with or adapted to, by means of redundancy and
backup. Themeans are relatively simple and the systemcost is relatively high, besides
the types of failures to be dealt with being relatively limited. With the expansion of
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the system scale, the mission complexity of the launch vehicle continues to increase,
and higher requirements are placed on the flight failure handling capabilities of the
launch vehicle.

Owing to the above-mentioned demands, it has acquired the ability to
autonomously perceive its own state and the external environment, besides the con-
tinuous improvement in autonomous response and learning. This is achieved through
the application of intelligent autonomous technology to the transportation system,
during the launch and flight. It can independently complete the launch preparations
and deal with uncertainties. During the flight, based on the results of intelligent per-
ception of itself and the external environment, it has the ability to adapt and respond
to the environmental changes and failures, independently, to achieve efficient and
reliable access to space.

Currently, certain space faring nations in the world have taken the lead in conduct-
ing research and related practices for the autonomous flight control of the propulsion
systems and actuator failures, besides intelligent autonomous technology applica-
tions such as the autonomous operation control technology.

1.4.1 Propulsion System Fault Identification and Mission
Reconstruction

In the domestic and foreign space history, failures of the launch vehicle are more
frequent owing to the failure of propulsion system. According to statistics, by 1970s,
the United States had launched thousands of medium and long-range missiles, and
launch vehicles, of which about 50% of the flight failures were due to propulsion
system failures. Between 1990 and 2015, 64 foreign launch vehicles failed due to
propulsion system failures, accounting for 51% of all launch failures.

Through intelligent autonomous technology, it can enhance the ability of the
launch vehicle to actively adapt to propulsion failures and autonomous decision-
making, and either to continue or degrade for completing tasks.

The space faring nations, viz., United States and Russia, have incorporated typical
failure modes into the design and verification process, and made their main launch
vehicles have a certain degree of failure adaptability by planning themission capacity
margins or adopting propulsion redundancy in the configuration selection.

(1) United States
United States was the first country to carry out research on the fault identification and
diagnosis technology. It carried out research and application of the launch vehicle
fault adaptability in the 1960s. The well-known engine manufacturer Rocketdyne
has made statistics on the failures of seven types of engines (MA-3, MA-5, RS-27,
F1, H1, J-2, SSME) during the development process. A total of 85,000 failures have
been counted out of the 2500 engines that have conducted 1,000 flights, and the
failure records were evaluated, screened, classified, and summarized into sixteen
failure modes for the engine failure analysis and prediction. The Saturn series have
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adopted “path adaptive guidance” that includes flight path optimization. During the
launch of Apollo 6 in 1968, two engines of Saturn V were shut down, owing to the
failure in the second stage. However, the control system stabilized the launch vehicle
and prolonged the engine working time to propel the launch vehicle into the orbit,
normally. In 1985, the safety system on the Challenger space shuttle shut down the
malfunctioning No. 1 engine in due time, which did not have a fatal impact on the
launch. Falcon 9 ground take-off allows one engine failure, and allows two engine
failures after flying for a period of time. In October 2012 andMarch 2020, the Falcon
9 had two engine failures during the flight, and both of instances have been overcome,
and the payload was successfully transported to the orbit through reconfiguration.

(2) Russia
Russia also has advanced technical experience in the launch vehicle diagnosis and
health management technologies. Typical systems include the health monitoring and
life assessment system that is developed for the high-power liquid launch vehicle
engine (RD-170), and the orbiter real-time automatic monitoring and prediction
system developed for the Buran Space Shuttle. Furthermore, the N1 launch vehicle
has the capability to complete subsequent tasks with the remaining engines even after
the failure of two engines during the flight.

1.4.2 Fault Identification and Control Reconfiguration of
Actuator

The China’s LM-3B has applied the fault diagnosis and reconstruction algorithm of
the attitude control thrusters. For the failure of attitude control thrusters, the informa-
tion of the control system inertial measurement device is utilized. Furthermore, based
on the priori motion information generated by the thruster control, the correspond-
ing relationship of the command and expected angle of acceleration are employed
to make a logical analysis and judgment, and hence, to complete the nozzle failure
identification. The control reconfiguration is executed according to the identifica-
tion result, and the control strategy is adjusted in real time. The effectiveness of the
technology had been verified during the launch mission of the LM-3B in July 2020,
and the onboard test verification was successfully completed. Further, the applica-
tion flight was successfully realized in the subsequent missions. On December 22,
2020, China’s new-generation LM-8had successfully achieved its first flight. This
flight has added the ability of online flight failure recognition during coast phase,
and can autonomously perform attitude control reconfiguration under specific failure
conditions (Fig. 1.10).
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Fig. 1.10 The principles for fault diagnosis for attitude thrusters

1.4.3 Autonomous Control Technology

For the pre-launch ground test and load operation of the launch vehicles, the
autonomous operation control technology can actualize the failure prediction and
diagnosis, anomaly detection, fault detection, and isolation of the system and com-
ponents before the launch. Different from the conventional ground process of launch
vehicles, the technology can be applied to launch vehicle engine testing, ground
loading, and future in-situ resource utilization of the moon or Mars surface. This can
reduce the operation and maintenance costs, improve the effectiveness of the system,
expand the surface operation and maintenance tasks for lunar and Mars missions,
and minimize the tasks with manned operations (such as operations at dangerous
location and teleoperations).

The autonomous operation of the launch vehicle can be achieved by integrat-
ing the technologies with respect to the health management, command and control,
computing systems, decision-making, control software, intelligent components, and
devices. Among them, the integrated system health management technology inte-
grates the data, information, and knowledge distributed in each unit of the system
for anomaly detection, fault diagnosis, and trend prediction. Further, it provides the
users with the integrated perception of the status of important units in the system for
the decision-making of the user [17].

The first stage of Falcon 9Rhas the ability to repeatedly executemultiplemissions.
Its health detection and diagnosis system monitor the health of the reusable launch
vehicle body and engine during the full life cycle. In-depth research has been con-
ducted on the detection content, intelligent detection methods, detection procedures
and maintenance methods. Further, the reuse intelligent evaluation technologies, rel-
evant in the post recovery of the launch vehicle body, have been developed, so that
the reusable launch vehicle stage can complete the detection and maintenance, and
restore the ability to launch in a relatively short time.

To apply autonomous operation technology to ground propellant loading, NASA
implemented the research program on Integrated Ground Operations Demonstration
Units (IGODU), which is intended for the advancement of processing and com-
mand control technologies related to the cryogenic operations, and reduction of the
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complexity of the operating and launch facilities, thereby reducing launch costs [18].
Further, NASA has built a Simulated Propellant Loading System (SPLS). Taking into
account the discrepancies between the program, and the final autonomous loading
and operation, NASA launched the Autonomous Propellant Loading (APL) program
[19] to verify the autonomous parallel loading, health monitoring, failure detection,
and autonomous emergency handling technologies ofmultiple storage tanks andmul-
tiple media. Compared with the demonstration and verification of SPLS, the APL
program expects to increase the maturity of the autonomous loading from level IV to
V. Further, it employs the real cryogenic propellant and software in ground support
equipment (GSE) or its integration to improve the model and expand capabilities to
support more complex operations.

Based on the improvement in the maturity of the autonomous loading technology,
the Atlas V has been left unattended from the start of –7.5 h core stage propellant
loading to ignition and launch. The Delta IV has also been unattended from the –5.5
h propellant loading before the launch. The Falcon 9 has realized the unattended
front end of the launch from the commencement of the loading.

In terms of the launch control applications, generally the launch cycle of the
expendable launch vehicle is more than two weeks, and the launch service period
is exceedingly long. Meanwhile, there are more personnel involved in the launch,
and the demand for human resources is greater. In contrast, the development team
of the Japan’s Epsilon has applied autonomous operation and control technology
for the launch control process of the launch vehicle. This step has simplified the
launch system and pre-launch process of the launch vehicles, shortened the launch
vehicle’s launch preparation time to only 6 days, and reduced the human resource
requirements. The launch vehicle adopts novel communication architecture and is
connected to the ground support facilities through a high-speed network, making the
launch operation safer and simpler. It became the first launch vehicle of Japan that
can be controlled from outside the restricted area of the launch site [20].

1.5 Future Development Technical Challenge of Reusable
and Intelligent Autonomous Technologies

1.5.1 Technical Challenge of Reusable Technology

The reusable technology has become an important technical development for launch
vehicle. The arrival of the era of large-scale and low-cost access to space has also
brought more technical challenges against the development of reuse technologies.

For the reusable transportation system in the axisymmetric configuration, the
technical challenges of the parachute recovery and VTVL methods are as follows.

(1) The parachute recovery method has a low carrying capacity loss and relatively
high technological maturity. However, this method mandates the design of a large
group parachute system. The deployment area of the parachute system can reach
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hundreds to thousands of square meters. The flexibility of the parachute system has a
great impact to the recovery process. Restricted by the initial conditions of recovery,
it may also be necessary to open the parachute at supersonic speeds. If the land-based
parachute recovery is adopted, the large-scale cushioning airbags need to be designed.
If helicopters are employed for the parachute recovery in air, it is necessary to ensure
the stability of the capture. Therefore, the main technical challenges include the
following technology of large-scale group parachute, large-scale cushioning airbag,
supersonic parachute opening, fairing parachute recovery, and aerial capture of the
recycled body.

(2) With the development of the technology of the throttling engine and advanced
control theory, the VTVL methods have been investigated in the past decade. The
Falcon 9 of the SpaceX has achieved dozens of VTVL missions. Europe, Russia,
China, and other countries have put forward verification plan for the reuse of the
VTVL technology. For the VTVL methods, the flight profile of the vehicle during
the return process is complicated. Further, the system interference caused by the
unknown shear wind and structural deviation, unmodeled dynamics, such as elastic-
ity/aerodynamic coupling in the vehicle body, and liquid sloshing due to large-scale
attitude adjustment, bring great challenges to the high-precision landing of the recov-
ery stage. Furthermore, the landing support mechanism is also the key to ensuring
the vertical and stable recovery, and there are also technical challenges in the mecha-
nism design and reliable deployment. Therefore, the primary technical challenges of
the VTVL method include the trajectory design and optimization technology, return
high-precision guidance and control technology, and landing support technology.

The technical challenges of the rocket powered and the combined-cycle powered
reusable transportation system in the lifting-body configuration are given as follows.

(1) Although the United States, Russia, Europe, and China have carried out differ-
ent degrees of flight demonstration verification for the rocket-powered lifting-body
reusable transportation system, even the United States has put the space shuttle
into service as the main space transport vehicle from 1981 to 2011. However, in
future, tremendous challenges are in waiting owing to the quest for affordable, tech-
nologically advanced, and feasible transportation system solutions. The solutions
are inclusive of the overall design and optimization technology, aerodynamic layout,
aerodynamic characteristics design technology, heat-resistant materials and structure
technology, reuse maintenance and operation technology, high-precision integrated
guidance, navigation, and control technology for on-orbit flight and reentry.

(2) For the combined-cycle powered reusable transportation system, the technical
foundation is relatively weak and the design is complex. The primary focus is on the
design and development of the combined-cycle powered engine. Moreover, under
the combined-cycle poweredmode, different factors such as the engine performance,
structural load, and aerodynamic heat have multi-dimensional constraints on the
design parameters such as the flight dynamic pressure, overload, and attack angle
change. These parameters that will result in the overall scheme design faces the prob-
lem ofmulti-factor coupling and narrow feasible region. Furthermore, the combined-
cycle powered flight area is large and the environment changes drastically. To exploit
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the advantages of the combined-cycle powered propulsion performance, timely and
stable switching of propulsion forms is particularly important, and the scheme design
is complicated. Therefore, the primary challenges of the combined-cycle powered
propulsion mode include the integrated design and of the flight body and propulsion
in wide area, and the integrated control of the flight body and propulsion.

1.5.2 Technical Challenge of Intelligent Autonomous
Technology

The emergence of artificial intelligence technology has created novel opportunities
for the development of space technology. Compared with the unmanned driving
of other modes of transport, the flight of the launch vehicle is unmanned from the
beginning, but it is an automatic flight in a relatively definite design scenario, and thus
its autonomy and intelligence are insufficient. Owing to the increasing frequency of
space launches, incidents of various abnormalities have also increased significantly. If
intelligent autonomous technology can achieve results in response to emergencies,
it will promote the development of commercial spaceflight and a new economic
ecology.

Many NASA scientists and engineers prefer to talk about machine learning and
autonomy rather than artificial intelligence [21]. Currently, there are a few reliable
applications of AI in the real-time flight of vehicles. However, it is more prominent in
data mining, image recognition, failure diagnosis, and other fields, and the required
real-time computing capability far exceeds that of embedded computing platforms in
aircrafts. This phenomenon has also improved. According to reports, the enhanced
Proton M has used the AI technology. The in-flight fail-safe performance level has
been improved by introducing artificial intelligence elements. The launch vehicle
control system automatically identifies and offsets potential failures related to pro-
pelling units, such as the steering actuators and engines. The mission objective is
thus being achieved [22]. It can be seen that the AI technology is primarily expected
to handle non-nominal working conditions.

AI technology can be utilized during the entire life cycle of launch vehicle includ-
ing research, development, operation, and support. Further, the AI technology has
several other areas of application, which can comprehensively build an intelligent
transportation ecosystem including research and verification, production and manu-
facturing, testing and launch, flight, and evaluation. For example, explore the digital
development process of the launch vehicles to improve the design efficiency; carry
out more realistic virtual demonstration and verification tests of combination of vir-
tuality and reality to break the bottleneck of the difference between the space and
the earth, and the difficulty of physical testing; realize the autonomy of ground oper-
ations, reduce manpower requirements and improve rapid response capabilities to
meet the challenges of normalization of multiple launches; realize the information
sharing of the rocket-ground equipment through high-speed networks, and utilize
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data mining, intelligent diagnosis, and other technologies to lay foundation for fail-
ure detection, isolation, system reconfiguration and improvement of the reliability
of flight; develop intelligent manufacturing technology to improve the production
efficiency and product qualification rate and support the development of space econ-
omy.

However, realizingmore intelligent flights throughAI technology has always been
the biggest challenge for the intelligent autonomous technology of launch vehicles.
From the perspective of control, the different characteristics of the launch vehi-
cles, civil aviation aircrafts, and automobiles, in terms of route planning, guidance
and control [23]. On the computing platforms with limited computing capability
and power consumption and with less data support, and under very strict real-time
requirements, it takes more arduous efforts to realize the intelligent or autonomous
flight.

1.6 Conclusions

The mankind pace of space exploration has never stopped, and recently the demand
has increased substantially. The era of space economy is coming. As the only tool
of access to space, the launch vehicle has ushered in new development opportunities
and challenges under the dual action of the demand traction and technology promo-
tion. Currently, spacemissions showdiversified development demands of large-scale,
low-cost, high-reliability, and airline-flight-mode, which impose additional stringent
requirements on the balance among performance, cost and reliability, mission adapt-
ability, and rapid response capabilities of the launch vehicle.

Reusable and intelligent autonomous technologies have branded a distinctive time
imprint for the development of the current vehicles. Falcon9 of SpaceX has been
reused by VTVL, and has been put into commercial operation. Various new launch
vehicles featuring vertical take-off, horizontal, or parachute landing are also under
steady development. The reusable launch vehicles will provide technical and eco-
nomic feasibility for large-scale access to space, making future space activities more
diversified and frequent. This requires the vehicle to not only meet one-time or spe-
cific target tasks, but also adapt to changing demands and new environments that have
never been explored. This is precisely the field where the application of intelligent
autonomous technology is expected.

Realization of the intelligent or autonomous flight of the vehicle mandates the col-
laborative optimization of multiple disciplines. Particularly, the control system will
play an important role as the nerve center of the vehicle. Owing to the development
of information technology, the performance of the control system has been signifi-
cantly improved. Therefore, the expectations from the control system are retrained to
complete various predetermined tasks according to the content planned in advance,
besides the ability to autonomously deal with various emergencies encountered in
flight, maximum reduction of the dependence on the ground measurement and con-
trol personnel, reduced pre-launch preparations, and improved mission response and
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survivability. Transition from the automatic control to autonomous control will be
an important step towards smart launch vehicles.
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Chapter 2
Autonomous Guidance Control
for Ascent Flight

Zhengyu Song, Cong Wang, and Yong He

2.1 Introduction

The purpose of the guidance control is to release a payload into a prescribed target
orbit (PTO) accurately. The parameters that determine an orbit are called orbital
elements (OEs), which include the semi-major axis a, the eccentricity e, the argu-
ment of perigee angle ω, the inclination angle i , and the longitude of ascending
node (LAN) or the right ascension of ascending node (RAAN) �, where a and e
can be converted to the perigee height hp and the apogee height ha . Thus, the guid-
ance mission of a launcher is a typical optimal control problem with multi-terminal
constraints, which requires complex iterative calculations. Considering various con-
straints in practical applications, such as the accuracy of inertial navigation systems
and the performances of embedded computing devices (speed and storage capacity),
guidance methods need to balance the mission requirements, hardware resources,
and algorithm complexity. A variety of guidance methods has been developed with
distinct era characteristics.
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2.1.1 Traditional Guidance Methods

(1) Guidance methods in early stage
The early guidance methods of the ascent phase for launchers in various countries
were open-loop guidance (OLG)methods [1–3]. In these solutions, an off-line trajec-
tory to the PTOwas planned in advance, including the time-varying position, velocity,
and thrust directions (guidance commands). After liftoff, the guidance commands in
the corresponding flight phases were interpolated based on the trajectory by taking
the time, velocity, or altitude as the independent variable. In general, the command
interpolated over time consumes more fuel than that over the velocity. OLGs usually
transform the OEs into terminal velocity and position constraints at the prescribed
injection point, and they perform well to meet the load limit requirements when fly-
ing in the atmosphere using a wind biasing trajectory based on the wind field of the
launch day [4].

The perturbation guidance method (PGM) was developed to further improve the
injection accuracy, and its guide coefficients were designed offline based on the flight
profiles and the most concerned OEs. The state variables of the velocity and position
were fed back into the guidance loop, then their deviations to the nominal values
were calculated, and the guidance commands were initiated therefrom to guide the
launcher to fly as close to the nominal trajectory as possible [5–8]. PGMs have been
applied to launchers since the 1950s, when the guide control could only be conducted
first on a simple computing device (which cannot be regarded as a computer). The
algorithm was very simple during the early stage, and all the complex operations,
such as the calculation of the gravity of Earth, could not be completed onboard.
For example, the PGM of the Long March launch vehicles (LMLVs) proposed by
Cui et al. generated the guide commands onboard based on interpolation tables [7].
Combinedwith the perturbation cutoff equations, a better separation control accuracy
was obtained [8–10]. Considering that the precision of the inertial devices was also
low at that time, the PGM had been applied for a long time.

With the development of avionics, the computational bottlenecks on the guidance
methods have been greatly eliminated, and PGMs have also further developed. For
instance, the simplified apparent velocity accumulation has evolved into explicit
navigation calculations. The influence of the second-order term of gravity has also
been involved in the algorithms, and more OEs, not just those most concerned ones,
can be satisfied by segmented or weighted guide controls.

Compared with OLGs, PGMs calculate guide commands online, exhibiting a cer-
tain degree of autonomy. However, if the control deviations increase, the hypotheses
of the first-order linearization in the design of guide coefficients cannot hold, which
greatly degrades the performance of the PGMs.

(2) Explicit guidance methods
Explicit guidance methods calculate guidance commands in real-time based on the
explicit expressions of control functions, which are generally appliedwhen the rocket
enters into the vacuum environment. Owing to the release of the wind loads on the
vehicle’s structure in a vacuum, an optimal guidance command can be derived by
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closed-loop guidance (CLG) algorithms. The OEs of the PTO can be directly taken
as the terminal constraints, which greatly improves the adaptability and injection
accuracy [11]. Typical analytical CLG methods include the iterative guidance mode
(IGM) [11–16] for rockets, the powered explicit guidance (PEG) [17–19] for the
space shuttles, and the optimal guidance (OPGUID) [20, 21] based on variational
methods.

The IGM could iteratively calculate the required velocity and position incre-
ments to the PTO, and then plan the optimal flight path [13, 14]. The earlier the
IGM is called, the more complex the algorithm is, because the flight profile covers
more flight phases, but the stronger the fault adaptability becomes. The develop-
ment in IGM boosted the progress of the rendezvous and docking (RVD) missions
in China’s manned spaceflight project, where the IGM across two continuous pow-
ered phases was first used in the LM-2F/Y8 mission in November 2011. After this,
a prediction-correction IGM was adopted for LM-7, which achieved high injection
accuracies under high thrust conditions without terminal velocity correction systems.
In September 2020, the IGM with a terminal attitude constraint was first utilized in
the LM-2F/T3 mission, and the OEs and terminal attitudes were well controlled
simultaneously without a reaction control system (RCS) [15]. The IGM across the
coasting phase was first used in the maiden flight of LM-8 in December 2020.

The abort or termination requirements during ascent were required for the space
shuttles, allowing them to return safely or enter into a pre-set parking orbit if one
main engine failed. Thus, a semi-analytical prediction-correction algorithm, i.e.,
PEG, was proposed. It was a kind of linear tangent guidance, assuming that the thrust
direction vector satisfies the linear tangent control laws from the point of view of fuel
minimization, and then the guidance lawwas derived based on the variationalmethod.
The covariates were solved based on the required velocity increments, corrected by
estimating the velocity deviations at the shutdown time [19]. The number of OEs
that must be satisfied can be selected to meet the different mission needs, and the
scenario of returning after failures is also considered by the PEG.

OPGUID had been regarded as a backup for the IGM and PEG from the era of
the Saturn rockets to the space shuttles. It could meet all the necessary optimality
conditions, including theEuler-Lagrange equations, but itsmaturity is still considered
to need improvement.

IGM and PEG exhibit basically the same performances in terms of adaptability,
robustness, target performance, and flexibility when confronted with engine faults,
while the advantages of the OPGUID lie in its fewer assumptions [21]. In addition, an
early release IGM(ERIGM)was studied to be applied before entering the vacuum [1].
The restrictions of the rocket structure caused by the aerodynamic loadswhen passing
through high-dynamic-pressure or high-wind regimes are taken as the constraint of
the output commands. Although the assumption of ERIGM’s analytical expression
in a vacuum is not satisfied in the atmosphere, the simulation analysis shows that
compared with the combination of OLG + IGM, the ERIGM can improve the launch
performance while maintaining a smaller dispersion of the terminal states.
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2.1.2 Autonomous Guidance Methods

Autonomous guidance methods (AGMs) in and out of the atmosphere have become a
popular research topic since 2016, aiming to improve flight autonomy under various
scenarios. AGM is a kind of method to dynamically generate the current guidance
command based on real-time trajectory planning, while satisfying the process and
terminal constraints of all the following flight phases. It does not rely on but also does
not exclude the reference trajectory planned off-line, and it can deal with complex,
time-varying, and nonlinear constraints onboard, exhibiting strong adaptability and
robustness.

2.1.2.1 Related Studies

The analytical CLGs based on the optimal control theory under vacuum conditions,
i.e., IGM, PEG, and OPGUID, can also be regarded as the first generation of AGMs.
With the upgrading of the onboard computing power, the online trajectory planning
methods, which mainly include indirect [22–24] and direct methods [25–27], were
developed and backed by numerical calculations. If their planning period meets the
real-time requirements, they may replace the existing analytical methods; if not, a
combination of “on-line planning + tracking guidance” can be adopted. Currently,
many new concepts related to guidance control have been proposed, reflecting some
aspects of the features of AGMs:

(1) Computational guidance
In 2016, the Journal of Guidance, Control, and Dynamics published a special issue of
Computational Guidance and Control [28] and pointed out that the control laws and
controllers with fixed structures in traditional guidance and control will be replaced
by algorithms, which are different from other branches of computational engineering
and science. The commands of computational guidance would be model- or data-
based, and there is no need for in-advance planning, gain adjustment, or a large
amount of off-line design for the nominal state. Thus, computational guidance can
be regarded as a special and possibly the main solution strategy for AGMs.

(2) Model-based real-time optimization
At the 2016 Aerospace Conference, it was suggested that model-based real-time
optimization is the main direction of future research. It can deal with complex con-
straints [29, 30], and overcome the shortcomings of traditional real-time optimal
control methods which only handle unconstrained or simply constrained problems
Therefore, model-based optimization can be regarded as the main research area of
AGMs.

(3) Autonomous mission planning
This concept was first found in NASA’s project “Flight Autonomy”, which can be
regarded as a higher-level representation of AGMs. If the mission planning can be
conducted in real-time, its effect is equivalent to that of AGMs. Four elements of
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autonomous mission planning [31], such as automatic operators, intelligent initial
guesses, powerful optimization software, and technologies supporting online real-
time operations, are also the key factors of AGMs.

(4) Adaptive guidance
The adaptive guidance and mission planning were proposed in the roadmap of
aerospace intelligent systems drafted by the AIAA Intelligent Systems Technical
Committee [32]. These technologies would learn and optimize the system behav-
ior, optimize the aerodynamics and performances of propulsion systems, and solve
challenging problems such as the real-time aerodynamic control optimization, con-
vergence of onboard optimization, computational efficiency, adaptive control with
sensor constraints, and the security cost of over-optimization. Adaptive guidance
reveals the main features and requirements of AGMs.

(5) Adaptive optimal guidance
It was reported by Russian scholars at the 2016 International Astronautical Congress
[33] that the three lost global navigation satellite system (GLONASS) satellites
launched on December 5, 2010 might have been saved if adaptive optimal guid-
ance had been applied. This method adopts model-based numerical optimization,
making full use of the upper stage’s carrying capacity to compensate for the perfor-
mance degradation of the former stages and re-planning the flight path to the PTO.
This solution was similar to the “End to End” (E2E) space mission planning archi-
tecture [34], which refers to a multi-stage simultaneous optimization from launching
to the final destination. From this point of view, adaptive optimal guidance or E2E
planning emphasizes the global optimization feature of AGMs.

All the above-mentioned technologies aim to deploy the payloads to the PTO, even
facing unexpected conditions. The potential assumption is that the PTO is reachable,
which is reasonable under normal conditions or with enough margin of performance
left when a failure occurs.

(6) Fault-tolerant guidance (FTG)
If the PTO is unreachable under failure conditions, the propellant will be exhausted
during the flight to it, and the terminal velocity and position may not ensure a parking
orbit, causing the rocket/satellite to crash into the ground. The FTG is proposed to
reconstruct the mission under this situation [35] to avoid a complete loss, because
the well studied fault-tolerant control cannot overcome the effect of gravity to enter
into an orbit. Thus, FTG represents an important application scenario of AGMs.

The failures of thrust drop do occur in space launches, but if the PTO is still
reachable, either IGM or PEG is capable of re-planning the flight path and releasing
the payloads to it. For the Space Launch System (SLS) of NASA, the mission abort
design was studied when the target was no longer reachable, but the strategy was
based on the off-line simulation and loaded into the onboard computer in advance. It
was reported that the Artemis I 1 flight software would pre-upload nine alternative
targets. However, only autonomous rescue measures can fully use the remaining
carrying capabilities of the launcher to save a mission or avoid crashing down to the
ground.
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2.1.2.2 Features of AGMs

AGMs are significantly different from OLGs and have a wider range than the tradi-
tional CLGs, and could satisfy the demands of research institutions and experts to
improve flight autonomy.

AGMs are not synonymous with the trajectory optimization. Trajectory optimiza-
tion is usually planned off-line, and the result is used as the reference for the tracking
control of the launcher. However, the trajectory is generally designed according to
the nominal state and cannot predict all disturbances and uncertainties inflight, then
the actual flight path usually deviates from the prescribed trajectory. Moreover, tra-
jectory optimization is time consuming, but this is tolerable and the real-time feature
is not a key factor for off-line planning. Numerical computing is applied in the trajec-
tory optimization which can consider as many constraints and variables as possible.
Even if the planning is not convergent, it can be stopped by human interventions or
reset by a new initial guess.

In recent years, trajectory optimization has gradually been adopted for onboard
applications, such as the online trajectory optimization, where the constraints and
variables it deals with are tailored to facilitate onboard processings, and the dynamic
trajectory planning, representing the on-line, real-time, and iterative planning. The
former plans the trajectory once or several times followed by the tracking control.
The latter is mostly equivalent to AGMs if the frequency of the dynamic planning is
almost the same as that of the guidance control. However, only a PTO and nomission
reconstruction is considered by these trajectory optimization technologies.

AGMs have the following four distinct features:

(1) Online. This sets a high demand for the real-time performance of the algorithms
and onboard computers. Although a prescribed flight path is no longer required,
it can be used as the initial guess to accelerate the online computing.

(2) Dynamic. Planning is scheduled in each guidance cycle, sometimes called the
iterative optimization. The shorter the period of planning is, the stronger the
adaptability to uncertainties and interferences becomes. Only the current com-
mand of the newly planned results is used for the real control. This process is
repeated in the next guidance cycle.

(3) Global. Each planning process obtains a whole flight path from the initial states,
e.g., the current velocity, position, and mass, to the terminal constraints. This
is quite different from rolling optimizations, where only a short time period of
dynamics is involved.

(4) Reconstructing. When the PTO is impossible to be reached (often caused by
propulsion system faults), it can reconstruct the flight profile or mission target
to match the remaining carrying capacity, so as to save the mission or avoid
irretrievable disasters as far as possible.

The challenges faced by rockets for the autonomous guidance are also different
from those faced by automobiles and civil aircrafts.By taking into account the prac-
tices of automobile industries, mission planning and guidance methods are no longer
strictly distinguished.
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(1) For automobiles, the planning problem is rules or process based. They basically
drive in planar motions under relatively certain environments and operations on
road networks with determined risk levels. When an emergency issue occurs,
there is not more than one minute to switch from a cruising state to a safe state,
such as resting on the roadside and waiting for conditions to improve. They
have many control modes, such as forward motion, backward motion, steering,
acceleration, deceleration, pausing, and restarting. The difficulties lie in the time-
varying dynamic interactions with other vehicles, pedestrians, traffic conditions,
and road markings, as well as driving rules.

(2) Civil aircrafts usually fly in prescribed routes at fixed altitudes except for takeoff
and landing. They also have high control abilities, such as the forward motion,
upward motion, downward motion, steering, acceleration, and deceleration. The
main challenges lie in handling uncertainties autonomously, including the local
climate phenomena, variable weather, sudden surges, and out-of-service airports
due to delays. They are sensitive to climate conditions, such as the airflow, gales,
and thunderstorms. Emergency treatment is definitely needed considering the
available fuel, alternative airports and their altitudes, runway lengths, and slope
constraints, extended flights in harsh terrain (such as mountains or wilderness),
and possible survival concerns.

(3) Launchers are usually insensitive to abrupt climate changes, because they fly
across the atmosphere very quickly, and there are no dynamic constraints sim-
ilar to that of civil vehicles. The planning problem is strongly nonlinear due to
the gravitational and OE constraints. In fault conditions, there is no prescribed
parking orbit similar to alternative airports or roadsides, and finding an optimal
rescue orbit onboard is very challenging. The control modes are limited, and
no descent or stop inflight is available. The amplitude of the thrust is usually
fixed, and only the thrust direction can be adjusted. Unlike automobiles or air-
crafts, there are no database supports or high-performance computing platforms
onboard, even if a database is available.

The problems concerning various vehicles are different in terms of the guidance
control ormission planning. Except for the abrupt changes of the climate and dynamic
constraints, the AGMs of a launcher face more challenges. This is partly due to the
stronger nonlinearity in the optimization problemmainly induced by the gravitational
force, the terminal constraints, and a wider range of mass changes, while the other
reasons mainly lie in the weaker computing power of the on-board computer (OBC)
compared with those on automobiles or aircrafts.

AGMs can relax the pressure of attitude control. If the control deviations exist in
each guidance cycle, the accumulated errors can be eliminated in line with a newly
planned trajectory in the next cycle, and the influence of errors is retained within
a very short planning period. Thus, AGMs improve the robustness of a launcher to
disturbances or uncertainties.

It would become difficult to obtain analytical solutions with the increased num-
ber of variables that need to be determined, however, an analytical solution after
simplifying the problem is a preferable initial guess for AGMs. Even so, AGMs can-
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not solve too many constraints without affecting the computational efficiency, and
hundreds of milliseconds of the solving time are the maximum tolerance. Further,
divergence should be avoided in AGMs, but if it does occur, some countermeasures
must be scheduled in advance.

2.1.3 Summary

The history of ascent guidance methods applied in LMLVs is introduced here to sum
up the above discussion. The three stages are explained in Fig. 2.1, reflecting the
changes of the mission requirements and the evolution of the guidance methods. The
latter two stages in Fig. 2.1 represent two typical applications of AGMs:

(1) Closed-loop guidance methods for determined target orbit
When the target orbit is determined (i.e., the target matches the carrying capacity),
traditional or enhanced analytical methods can play a very good role in the extra-
atmospheric flight. For example, although the IGM shows weakness in large arc
flight profiles owing to its simplified mean gravitational field assumption, this can
be solved by the segmented processing if a coasting phase is inserted. An enhanced
PEG algorithm is also being developed by the SLS to adapt to extended flight times.

When flying in the atmosphere, the landing restrictions of the launcher’s jettisons,
such as the separated boosters and fairing, should be seriously considered. Then,
tracking control is still a relatively safe method under this condition to ensure that
the debris falls within a predictable area. Sun and Lu proposed the homotopy method
to deal with the atmospheric density onboard for the ascent guidance control, and
it showed a certain adaptability to the main engine thrust loss [22]. However, the
constraints of the landing area were not considered.

Fig. 2.1 Evolution of ascent guidance methods for Long March rockets



2 Autonomous Guidance Control for Ascent Flight 41

(2) Simultaneous optimization of target orbit and flight path
This only occurs when the PTO is no longer reachable and a new target orbit should
be determined. Onboard joint optimization of the new orbit and flight path is very
difficult, so a special failure mode, called “engine out,” is considered in the SLS, and
a similar approach was also used by the space shuttle. NASA expects a successful
mission even if one engine cuts off prematurely, so a sufficient performance margin
is definitely needed. When facing severe failures, the SLS can make decisions based
on the pre-uploaded alternatives, as introduced in sections above. In recent years,
the studies of the autonomous dynamic trajectory optimization under typical failure
modes have been initiated for LMLVs and obtained positive results.

At present, few studies on ascent AGMs have been publicly published when
considering the needs of mission re-constructions.

2.2 Motion Models of Launchers

2.2.1 Motion Models

The differential translational motion is usually described in the launch inertial coor-
dinate system (LICS) and is shown as follows:

ṙ = V ,

V̇ = FT +FR+FA+Fs+Fe+FD+G
m ,

ṁ = − (‖FT ‖−Se(Pe−Pa))
Ispg0

,

(2.1)

where r is the position vector, V is the velocity, G is the gravity. F is the other forces
acting on the vehicle, and the subscripts T , R, A, s, e, and D represent the engine
control, RCS, aerodynamic, sloshing, elastic, and interference torques, respectively.
Isp is the specific impulse of the engine, Se is the cross-sectional area of the nozzle,
Pe is the atmospheric pressure in the design state, Pa is the external atmospheric
pressure inflight, m is the mass, and g0 is the gravitational acceleration of the sea
level. The origin of the LICS is the launch point, the x-axis points in the launch
direction in the horizontal plane of the launch site, and the y-axis points to the sky
along the connecting line between the earth center and the launch point. The z-axis
satisfies the right-hand rule.

The aerodynamic force is related to the shape of the launcher and the dynamic
pressure inflight, which can be expressed as

FA = qSAC A. (2.2)

where q is the dynamic pressure, SA is the reference area, C A is the aerodynamic
coefficient related to the altitude, Mach number, angle of attack, and sideslip angle.
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The differential rotational motion is usually described in the vehicle’s body coor-
dinate system (BCS). The origin of the BCS is located at the center of mass of the
launcher, the x1-axis points to the head along the body axis, the y1-axis is perpen-
dicular to the longitudinal symmetry plane of the launcher and points upward, and
the z1-axis satisfies the right-hand rule.

The following equations reflect the influence of torques on the angular velocity
of the launcher:

ω̇ J = MT + M R + M A + Ms + Me + MD − ω × Jω. (2.3)

where ω is the angular velocity rotating around the axial direction, J is the moment
of inertia, and M is the torque acting on the rocket.

M A = (
qSAlACω

d ω/‖V‖ + qSAlACd
)
, (2.4)

where lA is the reference length,Cd is the aerodynamic torque, andCω
d is the damping

coefficient.

Me=
∑

i

(bϕ

1i q̇i + bϕ

2i qi ), (2.5)

where qi is the i-th order elastic generalized coordinate, b
ϕ

1i and b
ϕ

2i are the i-th order
elastic additional moment coefficients.

The propellant sloshing moment can be divided into three parts: normal, trans-
verse, and axial. For example, the propellant normal sloshing moment (Ms3) is

Ms3 =
∑

p

(bω3
4p�ÿp − bω3

5p�yp), (2.6)

where �yp is the p-th order longitudinal sloshing displacement, bω3
4p and b

ω3
5p are the

interaction coefficients of the sloshing moment and sloshing centroid in the pitch
channel.

The modeling of the elastic vibration is established according to the finite element
method [36]:

q̈i + 2ζi�i q̇i + � 2
i qi =

Dωz1
1i ωz1 + Dωz1

2i α3 + Dωz1
3i δωz1 + D

′′ωz1
3i δ̈ωz1

+∑

p
(G

′′ωz1
i p �ÿp + Gωz1

i p �yp) + ∑

j
(R

′ωz1
i j q̇ j + Rωz1

i j q j )

+D
ωy1

1i ωy1 + D
ωy1

2i α2 + D
ωy1

3i δωy1 + D
′′ωy1

3i δ̈ωy1

+∑

p
(G

′′ωy1

i p �z̈ p + G
ωy1

i p �z p) + ∑

j
(R

′ωy1

i j q̇ j + R
ωy1

i j q j )

+Dωx1
1i ωy1 + D

ωy1

2i α1 + Dωx1
3i δωx1 + D

′′ωx1
3i δ̈ωx1

+Q̄xi + Q̄yi + Q̄zi ,

(2.7)
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where ξi is the i-order elastic damping, �i is the i-order elastic frequency. �z p
is the p-th order transverse sloshing displacement. δωx1 , δωy1 , δωz1 are the engine

swing angles, G ′′ωz1
i p , Gωz1

i p , G
′′ωy1

i p , G
ωy1

i p are the coupling coefficients of the p-th

order sloshing to the i-th order elasticity, R′ωz1
i j , Rωz1

i j , R
′ωy1

i j , R
ωy1

i j are the coupling

coefficients of the j-th order to the i-th order elasticity, Q̄xi , Q̄yi , Q̄zi are the elastic
generalized disturbances.

The motion equation describing normal sloshing is

�ÿp + 2ζhp�p�ẏp + �2
p�yp =

−E1�θ̇ + E2�ϕ + E3�α − Epz�ϕ̈ + ∑

i
(E ′′

i pq̈iy + Eipqiy),
(2.8)

where E ′′
i p, Eip are the elastic hinge coupling coefficients, ζhp is the i-th order sloshing

damping, �p is the p-th order sloshing frequency.

2.2.2 Constraints and Objectives

(1) Initial state constraints
The takeoff time t0 is defined as the initial time. The initial position at t0 is the location
of the launch point, the initial velocity is that of the launch point generated by the
earth’s rotation, and the liftoff mass is the initial mass. The rocket flies vertically off
the launch pad, and the initial state constraints can be expressed as

[r, V ,m] (t0) = [r0, V 0,m0] , ϕ = 90◦, ψ = 0◦, (2.9)

where φ, ψ are the pitch and yaw angles, respectively.

(2) Process constraints
When flying in the atmosphere, the following constraints should be met to ensure
structural safety:

|qα| ≤ qαmax, N ≤ Nmax, q < qmax, (2.10)

where N is the overload, α is the angle of attack (AOA). The subscripts max and
min represent the maximum and minimum values of the corresponding constraints,
respectively.

Limited by the control ability of the actuators, the following constraints are pre-
scribed:

|δ| ≤ δmax, MH ≤ MHmax, (2.11)

where δ is the engine swing angle, and MH is the hinge moment. To ensure the
attitude stability, the following constraints are imposed:
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∣∣ωϕ

∣∣ ,
∣∣ωψ

∣∣ ≤ ωmax, ϕmin ≤ ϕ ≤ ϕmax, ψmin ≤ ψ ≤ ψmax,

uT (t) = [0, 1, 0]T , t ∈ [t0, t1] ,
(2.12)

where ωφ , ωψ are the corresponding angular velocities, uT is the thrust direction.
The rocket should keep rising vertically for a short time (t1) after takeoff, that is,

uT is perpendicular to the horizontal plane.
According to the engine configurations, the mass differential equation given by

Eq. (2.1) is revised to the following equation, where the equivalent thrust and specific
impulse of the k-stage engines are denoted by the superscript k:

ṁk = −
(∥∥Fk

T

∥∥ − Ske
(
Pk
e − Pk

e

))

I kspg0
. (2.13)

For the multi-stage launcher, the states of the velocity, position, and attitude
between the stages are continuous. During stage separations, the mass constraints
are included:

[
r0, V 0, ϕ0, ψ0

]k = [
r f , V f , ϕ f , ψ f

]k−1
, mk

0 = mk−1
f − mk−1

s , (2.14)

where ms is the separation mass, and the subscript f represents the terminal state of
each stage.
(3) Terminal constraints
When the payload is released from the launcher, it would enter into an orbit, which
is determined by the terminal states of the payload, the gravitational force, and
other perturbation forces. If only considering the gravitational effect, the OEs can be
calculated based on Vx , Vy , Vz , and x , y, z in the LICS.

First, we have the following equation:

xr = x + R0x , yr = y + R0y, zr = z + R0z,

r = √
x2r + y2r + z2r , V =

√
V 2
x + V 2

y + V 2
z ,

(2.15)

where Vx , Vy , Vz are the velocity components in LICS, and x , y, z are the position
components in LICS, R0x , R0y , R0z are the geocentric vector components to the
launch point.

Then, the OEs are
a = r

2−υ
, υ = rV 2

μ
, (2.16)

e = √
1 − (2 − υ) υcos2γ , γ = arcsin Vx xr+Vy yr+Vzzr

V r , (2.17)

h p = rp − Re, rp = a (1 − e) , ha = ra − Re, ra = a (1 − e) , (2.18)

where Re is the radius of the Earth; rp, ra are the distances from the center of the
Earth to perigee and apogee, respectively; μ is the gravitational constant.
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T = 2π

√
a3

μ
, (2.19)

where T is orbital period.
The parameters characterizing the orbital direction are i , �, and ω:

i = arccos hz
h ,

⎡

⎣
hx

hy

hz

⎤

⎦ =
⎡

⎣
yVz − zVy

zVx − xVz

xVy − yVx

⎤

⎦ , h =
√
h2x + h2y + h2z , (2.20)

where [hx , hy, hz]T is the vector product of velocity and position.

sin� = hx√
h2x+h2y

, cos� = − hy√
h2x+h2y

, (2.21)

where� ∈ [0, 2π ], and the quadrant is determined according to the symbols of sin�

and cos�. Furthermore,
w = u − f, (2.22)

where f is the true anomaly, u is the angular argument to the ascending node and
calculated by the following equation:

u =
{
arccos xr cos�+yr sin�

r , (zr ≥ 0)

2π − arccos xr cos�+yr sin�

r , (zr < 0)
, (2.23)

f is used to characterize the position of the payload in orbit and is expressed as
follows:

f =
⎧
⎨

⎩
arccos

a(1−e2)−r
er , (γ ≥ 0)

2π − arccos
a(1−e2)−r

er , (γ < 0)
. (2.24)

The terminal velocity and position are transformed into constraints of the OEs,
as well as a terminal mass constraint, shown as follows:

∥∥[as, es, is, �s, ws, fs]T − [a, e, i, �, w, f ]T (ts)
∥∥ ≤ �Orbit,

m (ts) ≤ mallow,
(2.25)

where ts is the terminal time and the subscript s represents the nominal state at the
departure time.�Orbit is themaximumallowance of the six orbital elements,mallow

is the minimum allowable mass at the end of the ascent phase.
(4) Objectives
The objective of the ascent guidance method of a launcher can be expressed as the
weighted sum of maximizing the residual mass at the payload departure time while
minimizing the terminal state deviations:



46 Z. Song et al.

min J = −m (ts) + λorbit

∥∥[as, es, is,�s, ws, fs]
T − [a, e, i,�,w, f ]T (ts)

∥∥ ,

(2.26)
where λorbit is the weight of the terminal state deviations.

In addition to ensuring a stable flight, the peak value of the hinge torque and the
peak power consumption of the servomechanisms need to be minimized:

min J = λMH |MH | + λsv

∫ t f

0
|MH × ωsv|dt. (2.27)

where λMH , λsv are the weight coefficients,ωsv is the angular velocity of servomech-
anisms.

This section constructs a complete motion model of a launch vehicle. It should be
pointed out that the tracking guidance is still used when flying in the atmosphere, so
the variables related to aerodynamics are interpolated according to the parameters of
the nominal trajectory. The exo-atmospheric guidance methods are the focuses of the
following discussion, and the rotational equations are not included in the AGMs due
to the assumption that the attitude control can track the guidance commands well.

2.3 Exo-Atmospheric Analytical Guidance Methods

2.3.1 Basic Closed-Loop Guidance Method for Long March
Launch Vehicles (LMLVs)

• The process of CLG

A closed-loop guidance method for LMLVs in a vacuum environment is summarized
as follows.

Step 1: Release the expectation of the fixed-point injection, and take five OEs
directly as terminal constraints.

Step 2: Find the most matching entry point according to the current state of the
launcher.

The state includes the velocity, position, mass, specific impulse, and mass flow
rate. The time-to-go and entry point are solved iteratively based on the above param-
eters, and the entry point is updated in each guidance cycle.

Step 3: Construct an optimization problem of the current guidance cycle in the
orbital coordinate system (OCS).

The main features of this optimization problem are as follows:

1. The objective function is to minimize the fuel consumption;
2. The OE constraints are transformed into the state variables after an optimal entry

point is found;
3. The terminal constraints in the OCS are further simplified, and only the velocity

along the oξ axis and the position along the oη axis are non-zero.
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4. Make the following conversion:

Ẇx1(t) = Px1
m(t)

= Isp · ṁ
m0 − ṁt

= Isp
τ − t

, (2.28)

where Px1 is the axial thrust, m0 is the initial mass, and ṁ is the mass-flow rate.
In this way, Ẇx1(t) is related to Isp and the mass flow ratio τ = m0/ṁ, rather
than the parameters that are difficult to measure in real time, such as Px1, m0,
and ṁ. It should be noted that τ can be determined by Ẇx1(0), then the analytical
expression of Ẇx1(t) can be obtained.

5. Design an analytic expression to represent the thrust direction, i.e., the pitch and
yaw commands.
Many simulations have shown that the optimal thrust direction in a vacuum envi-
ronment can be approximated as a linear function of time, as follows:

{
ϕcx (t) = ϕ̃ + (−k1 + k2 · t)
ψcx (t) = ψ̃ + (−k3 + k4 · t) . (2.29)

6. Solve for the unknown variables in Eq. (2.29) based on the terminal velocity and
position constraints, then obtain the guidance command of the current cycle for
the real-time control.

Step 4: Repeat Steps 2 and 3 during each guidance cycle until the cutoff equations
are met to shut down the engines.

The CLG is also known as the iterative guidancemode (IGM). The above process-
ing assumes that the PTO lies within the performance scope of the launcher, so we
can always find a matching entry point on the PTO, and the optimization problem is
converted to the planning of fixed-point terminal constraints in each guidance cycle.
In the following cycle, the entry point shall be updated again.

The CLG has the following advantages over the PGMs:

1. High injection accuracy. It predicts and regulates the entry point responsively,
mostly matching the states of the launcher and guaranteeing that all OEs are
met. The initial states, terminal constraints, and performance indices rather than a
reference trajectory are considered in the real-time planning, allowing deviations
from the prescribedflight path to counter interferences.On the contrary, PGMscan
only satisfy few constraints or synthesized objectives, flying nearby the nominal
trajectory.

2. Robust to thrust variations. This is due to its sensitivity to the change of the thrust,
and the flight path would be re-planned in line with the variations.

3. Responsive to the target orbit adjustment. If the target is re-scheduled just before
liftoff, only the new OEs need to be uploaded to the OBC, avoiding the hard work
of the reference trajectory preparation and guide coefficients tuning.

• The solutions of the guidance law variables

Seven parameters in the guidance law of Eq. (2.29), i.e., φ̃, ψ̃ , k1, ∼, k4, and t ,
need to be solved. Note that t represents the time-to-go, also denoted as Tk . The CLG
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Fig. 2.2 Definition of thrust
vector direction

is adopted when the rocket flies out of the atmosphere, so only the thrust and gravity
are considered as the external forces, and the aerodynamic drag is omitted, which
makes the following analytical solution possible.

The OCS is labeled as OE − ξηζ , where OEη points from the center of the earth
to the injection point, ξOEη denotes the orbital plan, and the three coordinate axes
follow the right-hand rule, as shown in Fig. 2.2.

Consider that the OEs are set as the terminal constraints and the flight has been
out of the atmosphere, the planning problem described in Sect. 2.2 is revised in the
OCS as follows:

Objective : J = ∫ Tk
0 dt̃ = Tk, (2.30)

Dynamics : Ẋ = f (X, u, t̃),

or

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇ξ (t̃) = Ẇx1(t̃) · cosϕ∗(t̃) · cosψ∗(t̃) + gξ (t̃)

V̇η(t̃) = Ẇx1(t̃) · sin ϕ∗(t̃) · cosψ∗(t̃) + gη(t̃)

V̇ζ (t̃) = −Ẇx1(t̃) · sinψ∗(t̃) + gζ (t̃)

ξ̇ (t̃) = Vξ (t̃)

η̇(t̃) = Vη(t̃)

ζ̇ (t̃) = Vζ (t̃)

,
(2.31)

Constraints:
X = [

Vξ0 Vη0 Vζ0 ξ0 η0 ζ0
]T

, (2.32)

N1 (X (Tk) , Tk) = 0. (2.33)
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The performance index, Eq. (2.30), is fuel-efficient and can also be expressed as
the shortest time for the liquid launcher considering a basically constant thrust and
mass flow rate. Equation (2.32) is the initial condition, and Eq. (2.33) represents the
terminal constraints, i.e., the target orbital elements.

The control variables are the directions of the thrust vectors, which can be
expressed by the Euler angles, φcx and ψcx , as follows:

u = [φcx (t), ψcx (t)]. (2.34)

Hypothesis 1: A uniform gravitational field is introduced to simplify the state equa-
tions, i.e., the gravity is expressed by the average of the gravity of the current and
entry point (the selection of the entry point will be introduced later):

⎧
⎨

⎩

gξ (t̃) = ḡξ

gη(t̃) = ḡη

gζ (t̃) = ḡζ

. (2.35)

The following Hamiltonian function is established:

H = 1 + λt f = 1 + λV ξ (Ẇx1 cosφ∗ cosψ∗ + ḡξ )

+λVη(Ẇx1 sin φ∗ cosψ∗ + ḡη) + λV ζ (−Ẇx1 sinψ∗

+ḡζ ) + λξVξ + ληVη + λζVζ .

(2.36)

Tomaximize theHamiltonian function Eq. (2.36), the following conditions should
be met:

∂H

∂φ∗ = Ẇx1 cosψ∗ (−λV ξ sin φ∗ + λVη cosφ∗) = 0, (2.37)

∂H

∂ψ∗ = Ẇx1
(−λV ξ cosφ∗ sinψ∗ − λVη sin φ∗ sinψ∗ − λV ζ cosψ∗) = 0. (2.38)

By solving the above equations, we obtain the following equations:

φ∗ = arctan
λVη

λV ξ

, (2.39)

ψ∗ = − arctan
λV ζ

λV ξ

cosφ∗. (2.40)

The adjoint equations are as follows:

λ̇V ξ = − ∂H
∂Vξ

= −λξ , λ̇Vη = − ∂H
∂Vμ

= −λη, λ̇V ζ = − ∂H
∂Vζ

= −λζ ,

λ̇ξ = − ∂H
∂ξ

= 0, λ̇η = − ∂H
∂η

= 0, λ̇ζ = − ∂H
∂ζ

= 0.
(2.41)
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The following solution is derived from Eq. (2.41):

λV ξ = λV ξ0 − λξ t̃, λVη = λVη0 − λη t̃, λV ζ = λV ζ0 − λζ t̃,

λξ = λξ0, λη = λη0, λζ = λζ0.
(2.42)

(1) First, only the velocity constraints are considered.
If only the terminal velocity constraints are considered and the terminal position
constraints are relaxed, then

λξ = λη = λζ = 0. (2.43)

Substituting Eqs. (2.43) and (2.42) into Eqs. (2.39) and (2.40), we obtain the
optimal solutions of the control variables:

φ∗ = arctan
λVη0

λV ξ0
= φ̃, (2.44)

ψ∗ = − arctan
λV ζ0

λV ξ0
cos φ̃ = ψ̃. (2.45)

Thus, an important conclusion is drawn: the optimal control variables are constant
if only the velocity constraints are taken into account. To determine this constant, we
substitute Eqs. (2.44) and (2.45) into the first three terms of state equations given by
Eq. (2.31): ⎧

⎪⎨

⎪⎩

V̇ξ (t̃) = Ẇx1(t̃) · cos ϕ̃ · cos ψ̃ + ḡξ

V̇η(t̃) = Ẇx1(t̃) · sin ϕ̃ · cos ψ̃ + ḡη

V̇ζ (t̃) = −Ẇx1(t̃) · sin ψ̃ + ḡζ

. (2.46)

Assuming that the time-to-go, Tk , and the entry point are known, so the terminal
velocity and position constraints are determined, then φ̃ and ψ̃ can be obtained by
integration: ⎧

⎪⎨

⎪⎩

Vξk − Vξ0 = L · cos φ̃ · cos ψ̃ + ḡξ · Tk
Vηk − Vη0 = L · sin φ̃ · cos ψ̃ + ḡη · Tk
Vζk − Vζ0 = −L · sin ψ̃ + ḡζ · Tk

, (2.47)

where L = ∫ Tk
0 Ẇx1dt̃ . Then,

φ̃ = arctan
Vηk − Vη0 − ḡη · Tk
Vξk − Vξ0 − ḡξ · Tk , (2.48)

ψ̃ = arcsin
−Vζk + Vζ0 + ḡζ · Tk

L
. (2.49)



2 Autonomous Guidance Control for Ascent Flight 51

L =
∫ Tk

0
Ẇx1dt̃ =

∫ Tk

0

Isp
τ − t̃

d t̃ =Isp · ln τ

τ − Tk
. (2.50)

Hypothesis 2: For the guidance law of Eq. (2.29), φ̃ and ψ̃ are used to ensure
the terminal velocity conditions, and they are determined by Eqs. (2.48) and (2.49),
respectively. The expressions (−k1 + k2 · t̃) and (−k3 + k4 · t̃) could be used tomeet
the terminal position conditions.
(2) Second, the position constraints are also included.
Thus the expressions of Eqs. (2.44), (2.45) are updated as follows:

φ∗ = φ̃ − k1 + k2t, ψ∗ = ψ̃ − k3 + k4t (2.51)

Based on the known entry point, the terminal conditions can be transformed into
the following:

X (Tk) =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

Vξk

Vηk

Vζk

ξk
ηk
ζk

⎤

⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢
⎢⎢⎢⎢⎢
⎣

Vk · cos θk
Vk · sin θk
0
0
Rk

0

⎤

⎥
⎥⎥⎥⎥⎥
⎦

, (2.52)

where Vk is the required injection velocity, θk is the terminal velocity inclination,
and Rk is the terminal geocentric vector diameter.

The state equation is converted to the following form:

⎧
⎨

⎩

ξ̈ (t̃) = Ẇx1(t̃) · cosϕ∗(t̃) · cosψ∗(t̃) + ḡξ

η̈(t̃) = Ẇx1(t̃) · sin ϕ∗(t̃) · cosψ∗(t̃) + ḡη

ζ̈ (t̃) = −Ẇx1(t̃) · sinψ∗(t̃) + ḡζ

. (2.53)

If (−k1 + k2 · t̃) and (−k3 + k4 · t̃) are small quantities, then

cos ki ≈ 1,
sin ki ≈ ki ,
cosφ∗ = cos φ̃ + k1 sin φ̃ − k2 t̃ sin φ̃,

sin φ∗ = sin φ̃ − k1 cos φ̃ + k2 t̃ cos φ̃,

cosψ∗ = cos ψ̃ + k3 sin ψ̃ − k4 t̃ sin ψ̃,

sinψ∗ = sin ψ̃ − k3 cos ψ̃ + k4 t̃ cos ψ̃.

(2.54)

The expressions (−k1 + k2 · t̃) and (−k3 + k4 · t̃) are required not to have appar-
ent effects on the terminal velocity, so

∫ tk
0 (−k1 + k2 · t)dt = 0, (2.55)

∫ tk
0 (−k3 + k4 · t)dt = 0. (2.56)



52 Z. Song et al.

Fig. 2.3 Solving of optimal entry point

The longitudinal position is mainly determined by Tk . Thus the transverse and
normal position constraints are:

ηk = η + vη · tk + ∫ tk
0

∫ t
0 η̈(t̃)dtdt, (2.57)

ζk = ζ + vζ · tk + ∫ tk
0

∫ t
0 ζ̈ (t̃)dtdt . (2.58)

The four equations, i.e., Eqs. (2.55)–(2.58), are used to solve k1 ∼ k4. The integral
processes are not complicated that the derivation is omitted, and interested readers
can refer to [37].
(3) Finally, the time-to-go and the entry point are solved based on the geocentric
angle.
Tk , the latest time-to-go, would be solved with the optimal entry point concurrently.
This process is illustrated in Fig. 2.3.

P0 is the current position of the launcher. The terminal position Pf can be predicted
according to the CLG command planned in the current cycle. According to the
geocentric angle between Pf and the ascending node �0 + ��, the position O f on
the target orbit can be determined with the same geocentric angle. If the velocities of
Pf and O f are the same, O f is then regarded as the latest entry point, and Tk needs
no compensation; otherwise, a correction time�t should be found to ensure the new
predicted terminal position after Tk + �t is located in the PTO, as shown as O∗

f in
Fig. 2.3. O∗

f is also considered to be a new entry point.
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According to the above analysis, Tk is updated by the following process:

v0 + L(Tk) + g̃(Tk + �t) + ∂L

∂t
· �t = fv(S) + ∂ fv(S)

∂t
· �t, (2.59)

Tk ← Tk + �t, (2.60)

where v0 is the current velocity of the rocket, L(Tk) denotes the apparent velocity
increment, g̃(Tk + �t) represents the gravitational effects on the velocity, fv denotes
the velocity of position S on the PTO, and S has the same geocentric angle as the
predicted terminal position of the launcher.

After Tk converges to a stable value during the iteration process, the orbit entry
point, O∗

f , is also determined. Thus the terminal velocity and position are known,
which are used by Eqs. (2.35), (2.48), (2.49), (2.57), (2.58).

At this point, all the variables in Eq. (2.29) have been solved, and the guidance
law is then updated and applied for current control. The above solving process is
carried out iteratively in each guidance cycle.

In the above treatment, some approximates are made, which would produce devi-
ations. However, as the rocket approaches the entry point, the accuracy of the above
processing is also continuously improved. If the flight arc is long, the gravitational
effect can be processed in segments, or a high-order approximation can be substituted.

The CLG is very sensitive to thrust variations, including thrust drops. Thus, it has
a certain fault-tolerance ability by adjusting the flight path in time.When performing
trajectory planning at fault time td and taking td as the start time of the following
flight, we obtain

Ẇx1(td) = Isp
τ(td)

, i.e., τ (td) = Isp
Ẇx1(td)

. (2.61)

That is, τ(td) is updated during each planning cycle according to the apparent
acceleration Ẇx1(td) measured by the IMU. Then, the dropped thrust is reflected in
the apparent acceleration, which causes τ(td) to increase. Under the assumption that
Isp and Tk remain unchanged, L decreases according to Eq. (2.50), so �t increases
therefrom according to Eq. (2.59), and then Tk increases. This means that the flight
time is extended and the orbit entry point is re-determined.

An example of LM-7 is given to illustrate IGM’s adaptability to thrust variations.
The engines of its second stage start up with a thrust of 150 kN, and then are tuned to
180 kN within 7 s. Four failure modes are considered, and the guidance commands
(the pitch Euler angles) are compared with those under nominal conditions, as shown
in Fig. 2.4, where the guidance commands are all re-planned after the failure occurs.
However, the premise of the fault tolerance is that there is sufficient remaining per-
formance to reach the PTO, and the measures if the performance is greatly degraded
are discussed in Sect. 2.4.

Nowadays, many enhanced algorithms have evolved from this basic method. The
improvements are mainly concentrated in Step 3 of Sect. 2.3.1, i.e., revising the form
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Fig. 2.4 Adaptability of CLG to thrust reduction

of the thrust directions or correcting the terminal velocity and position constraints.
These upgraded versions of CLGs are discussed in the following sections.

2.3.2 Evolutions of the Closed-Loop Guidance Methods

The evolution methods provide acceptable suboptimal solutions under more compli-
cated scenarios or constraints, which are proved to be feasible in real flights.

2.3.2.1 IGM Across Different Flight Phases

The above discussion only considers single powered flight phase. However, the IGM
is not always applied in the last stage. The earlier the IGM is introduced, the more
robust it is to faults.

During planning, the accelerations of the next stages need to be integrated to
obtain the terminal states, so the algorithm’s complexity is closely related to the
number of stages or segments, and each additional segment will require additional
calculations and control branches in the software. However, the number of segments
is also closely related to the change of the thrust-to-weight ratio, which is determined
by the trajectory characteristics. Therefore, the moment when the CLG is introduced
for the real-time control should be thoroughly studied.

Segmentation for continuous powered phases is applied in the LM-2F/Y8mission.
The CLG was introduced after the fairing was jettisoned. The second stage of the
LM-2F was operating at that moment, which was equipped with five engines, i.e.,
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Fig. 2.5 Thrust variation
with a coasting phase

•

one high-thrust main engine and four low-thrust swing engines. Thus, the flying was
divided into two segments: all five engines were working, or only four swing engines
were working after the main engine was shut down. During the working phase of
the five engines, the equivalent impulse for the second flight segment is set based
on the theoretical values of four swing engines; when the main engine shut down,
it was updated based on the apparent acceleration measured by the IMU. Thus, the
state equations were no longer continuous when facing different powered phases. An
example including two powered phases (two burns) and a coasting phase in between
is shown in Fig. 2.5.

The time-to-go has three components:

tk = tk1 + tk2 + tk3. (2.62)

The corresponding apparent acceleration is as follows:

Ẇx1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Isp1
τ1−t ta ≤ t < tb

0 tb ≤ t < tc
Isp3
τ̃3−t tc ≤ t ≤ td

. (2.63)

As discussed above, τ̃3 is set as a theoretical value during the iterative computing of
the first burn and then updated by the real flight data when the second burn initiates.
Thus, the closed-loop guidance across different flight phases are implemented by
replacing Eq. (2.28) with Eq. (2.63).

2.3.2.2 IGMs with Terminal Attitude Constraints

The guidance command is realized by adjusting the attitude of the launcher. To
meet the terminal velocity and position constraints simultaneously at the orbit entry
point, the guidance law requires the attitude to be tuned to a certain state to satisfy
the thrust vector requirements. Furthermore, the actual flight path would deviate
from the planned trajectory because of the existence of interferences and model
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uncertainties. These lead to large dispersions between the real and nominal attitude
when the payload is released, and the degree of dispersions is mainly related to the
magnitude of the interferences and the flight accelerations.

The missions with terminal attitude constraints are not uncommon, and usually
a reaction control system (RCS) is configured to regulate the attitude after the orbit
injection. However, if the guidance method could satisfy the constraints, the RCS
could be omitted to simplify the launcher, improve the reliability, and reduce the
cost. This demands that the guidance method satisfies OEs and attitude constraints
simultaneously only through the thrust vector control of the pitch, yaw, and cutoff
sequences.

An upgraded quadratic time-to-go function expressing the thrust direction is pro-
posed to meet the terminal attitude constraints, i.e., Eq. (2.29) is modified as follows:

{
ϕcx (t) = ϕ̃ + (−k1 + k2 · t + k5 · t2)
ψcx (t) = ψ̃ + (−k3 + k4 · t + k6 · t2) . (2.64)

The two new variables, k5 and k6, can be obtained based on the terminal pitch
and yaw attitude constraints. The solving of these new variables can be found in Ref.
[15], and the method is applied in the LM-2F/ T3 mission.

However, the terminal attitude cannot be set arbitrarily in this way. If the angle
between the thrust and the terminal velocity direction is too large, the assumption
that k1-k6 are small does not hold. This is the premise for deriving an analytical
guidance law by simplifying the trigonometric functions. In the next section, another
prediction and correction algorithm is proposed and compared to tackle the same
problem.

2.3.3 Prediction-Correction Iterative Guidance Method

To avoid the singularity in the solving of the IGM when approaching the cutoff
moment, the iterative calculation is terminated in advance before the engine shuts
down. The variables of the guidance law then remain unchanged for the follow-up
control. The errors arising therefrom should be compensated for, which is the initial
purpose of the prediction-correction IGM. Its process is described as follows [38]:
(1) Based on Eq. (2.29), calculate the pitch and yaw commands when the IGM is
terminated, φ(t f 0) and ψ(t f 0), respectively, where t f 0 = t f − �t , t f represents
terminal time, and t f 0 is the moment when the IGM is terminated.
(2) Construct the apparent acceleration model Ẇx1(t):

Ẇx1(t) = Isp
τ(t) − t

, (2.65)

where τ(t) = m(t f 0)/ṁ(t), and t takes t f 0 as the starting point:
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Ẇx1(t f 0) = Isp
τ(t) − 0

. (2.66)

Then,

Ẇx1(t) = Isp
Isp

Ẇx1(t f 0)
− t

. (2.67)

(3) Calculate the increases in the apparent velocity (or velocity) and position from
t f 0 to t f , and then obtain the predicted terminal state X∗

k(t f ) under this condition,
which can be expressed as a function of the following variables:

X∗
k(t f ) = fpts(Xk(t f 0), φ(t f 0), ψ(t f 0), Ẇx1(t)). (2.68)

where fpts denotes the function to calculate the terminal state.
The thrust vector remains the same after t f 0.

(4) Calculate the compensation to the terminal constraints �Xk(t f ) as follows:

�Xk(t f ) = Xk(t f )−X∗
k(t f ). (2.69)

(5) Update the terminal constraints Xk(t f ):

Xk(t f ) ← Xk(t f ) + �Xk(t f ). (2.70)

The terminal constraints, which include the velocity and position constraints,
were formerly determined by the entry point, however Eq. (2.70) renews them based
on error predictions, while the time-to-go remains the same. Then, the variables
of guidance law is re-calculated based on Eq. (2.70) in the current guidance cycle.
Although these updated terminal constraints are not strictly optimal, the simulations
show that the resulting errors are acceptable.

For different application scenarios, Eq. (2.69) has various updates. Note that
�Xk(t f ) represents the terminal constraint compensation induced by various factors
during the period from t f 0 (or other moments we are interested in) to t f . These
compensations are due to the systematic errors caused by conditions such as the
in-advance termination of the IGM, the deviations caused by the tracking control or
the cutoff thrust, and the other processing such as the attitude regulation.

2.3.3.1 Direct Injection Under High Thrust

Under high-thrust conditions before a payload is released to an orbit, the same attitude
tracking error would result in large lateral or normal velocity deviations, and the
disturbances and the uncertainties of the cutoff thrust also increase. All the above
effects are adverse to the entry accuracy, and this is what LM-7 faces when launching
cargo spacecrafts.
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In general, a terminal velocity correction system (TVCS) could be installed to
reduce the velocity errors after the main engines were shut down, but this auxiliary
system would increase the complexity and cost of the launcher, reduce the carrying
capacity and reliability. The final solution of LM-7 is to shut down two fixed engines
in the last stage ahead of the cutoff of two other swing engines to reduce the overload
before entering into an orbit. The time interval between these two cutoffs should not
be too long to affect the launcher’s performance, but a short interval would lead to
a rapid time-varying thrust due to the coupling of the cutoff thrusts of four engines,
and prominent variations in the guidance commands because the position constraints
are very sensitive to the thrust. This leads to the increases in the attitude tracking
errors and the injection deviations. To tackle this dilemma, the position constraints of
the CLG are relaxed just before the cutoff of two fixed engines, letting the guidance
commands quickly enter into a stable state. Although this strategy would produces
systematic position errors, but a relatively accurate prediction of the terminal position
is realized due to the stable guidance commands and high tracking accuracies, thus a
prediction-correction scheme could be adopted before the shutdown of the two fixed
engines.

The state vector at time t f , X
(2)
k (t f ), which indicates the scenario that only two

swing engines operatewhile the other twofixed engines shut down, could bepredicted
through the motion equation of the last stage in the vacuum regime. It should be
pointed out that after two fixed engines shut down, t f would not be updated again.

Similarly, Xk(t f ) represents the state vector predicted by the CLG if the four
engines shut down simultaneously in the end. The deviation is solved as follows:

�Xk(t f ) = Xk(t f ) − X(2)
k (t f ). (2.71)

The above deviation is introduced into the IGM terminal constraint:

Xk(t f ) ← Xk(t f ) + �Xk(t f ). (2.72)

The control variables of the IGM would not update when the two fixed engines
shut down and remain unchanged until the end of the flight. More detailed discussion
can refer to Ref. [13].

2.3.3.2 Error Correction of Terminal Velocity

Even if the TVCS is configured, the process of velocity corrections is general open-
loop. The entry accuracy mostly depends on whether the state vectors at the cutoff
time are consistent with the theoretical conditions. Owing to the influences of various
disturbances and deviations (such as thrust deviations), it is most probable that the
terminal state differs from the expected value. Thus, the open-loop velocity correction
based on the prescribed command sequences will lead to non-negligible velocity
errors, which is disadvantageous to the orbit entry accuracy. This problem can also
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be solved by the prediction-correction strategy, but at this time, only the terminal
velocity would be corrected.

After the engines shut down, the velocity increments caused by the cutoff thrust
can be predicted as follows in the target OCS:

⎧
⎪⎪⎨

⎪⎪⎩

�Wxcf = ∫ tcut
t f

Ẇc f (t) cosφ∗
f cosψ∗

f dt

�Wycf = ∫ tcut
t f

Ẇc f (t) sin φ∗
f cosψ∗

f dt

�Wzcf = ∫ tcut
t f

Ẇc f (t) sinψ∗
f dt

. (2.73)

where ϕ∗
f ,ψ

∗
f are the real pitch and yaw control commands at the cutoff moment, Ẇcf

is the apparent acceleration of the cutoff thrust, tcut is the moment when the cutoff
thrust ends, �Wxcf , �Wycf , �Wzcf are the apparent velocity increments induced by
the cutoff thrust under ϕ∗

f , ψ
∗
f commands.

Similarly, the nominal apparent velocity increments based on the prescribed pitch
and yaw angles can also be obtained as [�Wx f ,�Wyf ,�Wzf ]T , and then,

�Xk(t f ) = [�Wx f − �Wxcf ,�Wyf − �Wycf ,�Wzf − �Wzcf , 0, 0, 0]T .

(2.74)
This scheme plays a major role in the LM-8/Y1 mission. The deviation between

the terminal pitch command of the IGM and the nominal condition was 10.5◦, and if
no measures were adopted, the velocity errors caused by cutoff thrust would exceed
theTVCS’s correction ability, resulting in a timed shutdownof theTVCS (itsworking
timewas scheduled as 40 s). Thus, the velocity errors would not be fully compensated
for, thereby affecting the injection accuracy. Benefiting from the above algorithm,
the timed shutdown of the TVCS was avoided, and the accuracy of the semi-major
axis was ensured and greatly improved.

2.3.3.3 Handling of Terminal Attitude Constraints

Based on the prediction-correction strategy, a new approach different from that in
Sect. 2.3.2.2 is discussed to handle terminal attitude constraints. IGM is terminated at
time t f 0, which is close to the terminal time t f , and then an attitude adjustment phase
is introduced to regulate the thrust vector from the current values φ(t f 0), ψ(t f 0) to
the expected terminal states φ f , ψ f . Taking the pitch channel as an example, the
expression of the attitude adjustment is as follows:

φ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

2(φ f −φ(t f 0))

(t f 1−t f 0)
2 (t − t f 0)2 + φ f 0, t f 0 ≤ t ≤ t f 1+t f 0

2

− 2(φ f −φ(t f 0))

(t f 1−t f 0)
2 (t − t f 1)2 + φ f ,

t f 1+t f 0
2 < t ≤ t f 1

φ f , t f 1 < t ≤ t f

, (2.75)
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Fig. 2.6 Comparisons of Euler angles

where t f 1 is the moment when the attitude adjustment ends, φ (t) represents the
thrust vector at time t , and the expression ψ (t) in the yaw channel is similar and not
repeated.

The apparent acceleration during the attitude adjustment can be expressed as

Ẇx1(t) = Isp
τ − t

. (2.76)

Based on Eqs. (2.75) and (2.76), we can determine the terminal state as follows:

X∗
k(t f ) = fpts(Xk(t0), φ(t), ψ(t), Ẇx1(t)). (2.77)

The terminal compensation is

�Xk(t f ) = Xk(t f ) − X∗
k(t f ). (2.78)

Three cases under different methods, i.e., the fundamental CLG (labeled as
Case1_0), themethod introduced in this section (labeled as Case1_1), and themethod
introduced in Sect. 2.3.2.2 (labeled as Case1_2), are compared in the Fig. 2.6, where
FCX and PCX represent the pitch and yaw Euler angles, respectively.

Compared with the method introduced in Sect. 2.3.2.2, we can see an obvious
attitude regulation process before entering into an orbit, and the guidance commands
before the adjustment are more consistent with that of the fundamental method.

2.4 Joint Optimization of Target Orbit and Flight Path

For most launch failures caused by a thrust drop, the engines can continue to operate
without an explosion. If the engines deteriorate to a very risky level indicated by the
sensed data, active shutdown is preferable to ensure flight safety. No matter what
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measures are taken, the carrying capacity will degrade. If still using the prescribed
guidance law under this situation, whether an orbit is reachable depends on the
remaining carrying capacity. Under severe failures, the propellant will be exhausted
inflight, the terminal velocity and position will not be able meet the requirements of
circling the Earth, and LV/payloads will crash to the ground. Thus, onboard decision
making is required in the above situations to save missions.

The assumption for analytical CLGs is that we can always find an injection point
on the PTO that matches the current flight states, and how to find the target orbit is
not within the scope of guidance methods. However, this assumption does not hold
if the PTO is beyond the performance capabilities of the rocket. A possible rescue
orbit in which the rocket makes use of the remaining fuel should be found first, then
the flight path should be planned or solved concurrently. A rescue orbit refers to a
new target that is different from the PTO, where the payloads can enter as the starting
point for the follow-up orbital transfer to avoid crashing. It has the same meaning
as a parking orbit in most contexts, where the satellite can circle the Earth for many
rounds. To consume as little fuel as possible by the payloads during the orbit transfer,
an optimal rescue orbit becomes attractive. Under special conditions, a rescue orbit
can also be a sub-orbit with a negative perigee height. The payload could not circle
the Earth under this condition and should initiate the orbit transfer as soon as possible
when released by the rocket.

It is difficult to find an analytical optimal rescue orbit, so a numerical method is
usually adopted. This problem was first discussed in Refs. [40, 41]. In Ref. [40],
the errors of different OEs were regulated through weights of element deviations in
the objective. In Ref. [41], sequential optimization was conducted based on state-
triggered-indices (STI), so as to gradually approach the optimal rescue solution. A
convex optimization (COP) sub-problem was constructed, and its solution was taken
as the initial value of the rescue planning problem. During the COP process, the
geocentric angle of the injection point after the failure is estimated referring to the
IGM process, then the COP sub-problem is transformed to the OCS to simplify the
terminal constraints. This treatment greatly improves the calculation efficiency of the
COP. Reference [39] proposed solutions for themaximumorbital radius optimization
if the rescue orbit were confined to a circular orbit. However, none of the above
methods can adapt to the flight scenario where a coasting phase is inserted. In Ref.
[43], an autonomous mission reconfiguration algorithm considering the coasting
phase was discussed to handle the typical failure modes that occur in real launchers,
but the coasting orbit and the command sequences during coasting still refer to
the prescribed planning results. This treatment can obtain a feasible solution when
failures occur, but it may not make full use of the remaining performance. Thus the
study of the multiple graded optimization (MGO) continues, while solving theMGO
online is still very challenging.
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Fig. 2.7 Framework of STI method

2.4.1 State-Triggered-Indices (STI) Based Method for
Continuous Powered Phases

The process of the STI-based optimization is explained in Fig. 2.7 [41]. The impacts
of the deviations of the OEs on the fuel consumed to correct these errors are closely
related to the orbital characteristics and the launcher’s current state, which exhibit
strong nonlinear features. Thus, the objective in Fig. 2.7 cannot be solved directly
because of the concerns on the convergence or local optimal solutions, and it is
transferred to three sub-problems.
(1) For the sake of safety, the orbital height should be ensured first after a failure
occurs, so the first reaction is to find a maximum height circular orbit (MCO).

If the height is less than a safety value, it means the rocket can hardly stay in any
orbit, the rescue is then abandoned. If the height meets the safe threshold but is less
than the perigee height of the PTO, the circular orbit is then taken as the rescue orbit
(optimal circular orbit, OCO). However, if the height is much higher, it indicates that
there is a certain performance margin used to adjust other OE errors. Then, the next
planning is triggered.
(2) The orbital inclination and LAN are regulated while ensuring the height of the
perigee to obtain the optimal eclipse orbit (OEO).

The deviations of the inclination and LAN are eliminated as much as possible
while keeping the perigee height of the rescue orbit around the required value. If the
rescue orbit can be coplanar with the PTO, the following planning will be triggered
again.
(3) The argument of the perigee, semi-major axis, and eccentricity are regulated
whilemaintaining the perigee height and orbital planar elements to obtain the optimal
rescue orbit (ORO).
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During the optimization, the solution of the current sub-problem is taken as the
initial guess of the next sub-problem. The initial guess can meet the equality con-
straints of all the motion equations, improving the convergence and efficiency of the
numerical computation. However, to obtain a reasonable initial guess value of the
first sub-problem, the nonlinear terminal constraints of the OEs are transformed to
the OCS. This idea is inherited from the IGM, and the transformation matrix is as
follows:

GO =
⎡

⎣
− sin�0 cos i0 cos�0 cos i0 sin i0

cos�0 sin�0 0
− sin�0 sin i0 cos� sin i0 − cos i0

⎤

⎦

⎡

⎣
cos�k − sin�k 0
sin�k cos�k 0

0 0 1

⎤

⎦ , (2.79)

where �k is the geocentric angle between the orbit entry point and the ascending
node (see Fig. 2.3).

In the OCS labeled as O − ξηζ , the position components along the Oξ and Oζ

axes are 0, and the velocity components along the Oη and Oζ axes are 0. The terminal
constraints are summarized as follows:

ξ f = ζ f = 0, Vη = Vζ = 0, μ = η f V 2
ξ f . (2.80)

Compared with the constraints in the LICS, i.e., Eqs. (2.16)–(2.23), (2.80) is
greatly simplified, where �k in Fig. 2.3 can be predicted as follows [40]:

�k = �0 + d�, (2.81)

where �0 is the geocentric angle between the position of the launch vehicle at the
current time and the ascending node, and d� is the geocentric angle in the current
orbital plane during the remaining flight range.

d� ≈ d�re f

κ
, (2.82)

where κ is the percentage of nominal thrust after a failure occurs.

d�re f = arccos

(
Pre f · P0∥∥Pre f

∥∥ · ‖P0‖

)

. (2.83)

An example is given below. For a PTO with hp = 200 km and ha = 300 km, the
corresponding OEs are shown in Table 2.1. It is assumed that the thrust reduction is
caused by the decrease in the mass flow rate at 118.2 s, and the remaining thrust is
77.94%. The results in Fig. 2.8 were obtained by the STI-based processing.

Trajref is the nominal flight path. At the fault moment, �k is estimated as
171.05◦, and d�est = 15.6475◦. The OCS can be established when i0 = 41.27◦ and
�0 = 315.51◦ at the fault time. The result of theCOP is shownby the blue line labeled
TrajCVX, which can be taken as the initial guess for the OCO by the adaptive collo-
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Table 2.1 Orbital elements of prescribed target orbit

Orbital
elements

a e i w �

Values 6628140 (m) 7.54 × 10−3 42◦ 160◦ 315◦

Fig. 2.8 Trajectories of rescue results

Table 2.2 Orbital elements of OCO, OEO and ORO

Orbital
elements

a (km) e i (◦) � (◦) w (◦) hp (km) ha (km)

PTO 6628.1 0.0075 42 315 160 200 300

COP 6586.0 0.0 41.28 315.51 – 207.9 207.9

OCO 6586.9 0.0 41.28 315.51 – 208.8 208.8

OEO 6586.0 0.0012 42 315.01 161.49 200.1 215.6

ORO 6607.6 0.0045 42 315 160.40 199.5 259.4

cation method. The OCO result is represented by TrajOCO, and d�act = 15.6496◦,
showing that the deviation from the estimated value is 0.0021◦.

Since the height of OCO is 208.8 km, which is greater than the h p of the PTO, then
the followingplanning is triggered,where [λhp, λa, λi , λ�] = [10−3, 10−3, 1, 1]. The
result is shown as TrajOEO with hp = 200.1 km and ha = 215.6 km.

By defining εi = ε� = 0.05◦, �i and �� are both less than 0.05◦, triggering the
next planning. The result of the ORO is represented as TrajORO, and the OEs are
summarized in Table 2.2.
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Because thefirst planningof theOCOneeds to solve theCOPproblem toobtain the
initial guess, the calculation time accounts for more than 60% of the total planning
time. By taking the OCO as the initial value, the solutions of the OEO and ORO
problems can converge quickly.

More detailed discussion can be found in Ref. [41].

2.4.2 Segmented Rescue Optimization Crossing Coasting
Phase

If a coasting phase is inserted into the optimization of the rescue orbit, the complexity
of on-line planning will be further increased. Thus, a segmented planning strategy
(SPS) is studied first, and the continuous solution is discussed in the next section. The
SPS is similar to the IGM across the coasting phase, i.e., the coasting obit is taken
as the target orbit of the first burn. Under nominal conditions, the IGM across the
coasting arc does not lose optimality, because the terminal constraints of each flight
phase are reachable. However, these constraints might not best match the remaining
performance and guidance command sequences when a failure occurs, leading to the
handover conditions between phases being unreachable.

However, the SPS relaxes the computational burden of online planning and
demonstrates its effectiveness under the typical failure modes [42]. Under the back-
ground of launching satellites to the GTO using a two-stage rocket, its solutions are
briefly explained as follows:

(1) Identify the fault mode first.
Three failure modes are considered. If the engine is going to explode, shut it down
immediately, and let the subsequent stages make up for the performance loss of the
premature cutoff. If an engine fails to start or shuts down by accident, restart it again if
it has multiple burns. The restart may succeed or fail; even if it succeeds, it will make
the engine unable to operate the following scheduled startup owing to the restriction
on re-ignition times. However, the restarting scheme has the effect of postponing the
fault moment and reducing the impact on the performance degradation. If only the
thrust drops and there is no emergent risk, let the engine continue working. In the
discussion in this section, it is assumed that there is no leakage, and all the remaining
propellants can be utilized.
(2) Judge the flying regimes. If flying in the atmosphere and considering the landing
area of the rocket debris, call the PGM for the tracing control until the fuel in the
boosters is exhausted, then turn off the engines.
(3) If flying out of the atmosphere, evaluate the remaining performance by the ES-
IGM algorithm [42].

If flying before coasting, first evaluate whether the prescribed coasting orbit is
reachable; if flying after coasting, evaluate whether the PTO is reachable. The ES-
IGM algorithm is based on the numerical integration and summarized in Ref. [42].
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(4) Call the STI to optimize the new orbit and flight path if the prescribed orbit
is beyond the remaining performance capabilities; otherwise, call the IGM for the
guidance control.

The above algorithm is an approximate processing because the coasting phase
is not optimized according to the fault state. If the coasting orbit is still reachable,
the guidance command consequence is inherited during the coasting; if not, a new
transfer orbit is planned by the STI method, and the triggering of the second burn is
scheduled nearby the apogee of the new coasting orbit.

The discussion in Ref. [42] indicated that, if the PGM is adopted from the current
point to the end or if the IGM is called only during the last burn, the LV/satellite
may fall out of space under fault conditions with a high probability. In contrast, if the
IGM is called as early as possible, the payload could be deployed into an orbit. This
echoes the previous conclusions, the earlier the IGM is adopted inflight, the stronger
the fault adaptability becomes. However, the IGM cannot guarantee a safe parking
orbit, so the evaluation of the remaining performance is very important to support
onboard decision making.

2.4.3 Multiple Graded Optimization

The STI method specifies the minimum orbital height as a safety constraint, for
example, not less than 150 km. Thus, the satellite could circle the Earth and then
carry out an orbital transfer at an appropriate point. If taking the payload as the final
stage of a launcher, the flight process of the LV/payload can be jointly optimized,
which is the meaning of the E2E optimization. At this time, we can relax the safety
restrictions on the orbital height, even plan a sub-orbit (the perigee height is negative)
to increase the apogee height, and make the orbital transfer responsively when flying
to the apogee. E2E optimization can reduce the propellant consumed during the
orbital transfer.

With the increase in commercial launches and constellations, multiple-satellite
ridesharing launches are becoming more and more common. The purpose of the
MGO is to separate some payloads in advance during the coasting phase while
sending the remaining payloads to the PTO if the performance of the launcher is
greatly reduced.

To clearly explain the MGO problem, the trajectory planning problems of the
powered-coasting-powered profiles are summarized in Table 2.3. Offline numerical
optimization is applied to analyze and compare the features of IGM, autonomous
coasting reconstruction (ACRC), and MGO under thrust drop failures.

In Table 2.3, FT is the nominal thrust, F1
T and F

2
T are the nominal thrustmagnitude

of the 1st and the 2nd powered phase, respectively, and κ is the percentage of the
remaining thrust to its nominal value; t0 and t f are defined as the fault time and
the terminal time of the second stage, t1 and t2 are the engine cutoff time of the
1st powered phase and the start time of the 2nd powered phase, respectively; tc0,
tc f are the initial and terminal times of the coasting phase; t1max and tcool are the
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Table 2.3 Description of typical optimization problems
Method IGM ACRC MGO

Objective J = −m
(
t f

)

Common constraints s.t. Dynamics : ṙ = V , V̇ = κFT
m − μ

‖r‖3 r, ṁ = − κ
∥∥FT

∥∥
Ispg0

phase1 :

⎧
⎪⎨

⎪⎩

[
r0, V0, m0

]
=

[
r, V , m

]
(t0) ,

‖FT (t)‖ = F1
T , t ∈ [

t0, t1
]
, t1 ≤ t1max

phasec :
⎧
⎨

⎩

[
r, V , m

] (
tc0

) =
[
r, V , m

]
(t1) ,

‖FT (t)‖ = 0, t ∈ [
tc0, tc f

]
,

phase2 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
r, V , m

]
(t2) =

[
r, V , m

] (
tc f

)
,

‖FT (t)‖ = F2
T , t ∈ [

t2, t f
]
,

[
are f , ere f , ire f , �re f , wre f

]

= Funorbit
(
r
(
t f

)
, V

(
t f

))
,

t f − t2 ≥ t2min,

Special constraints phase1 :
[ac, ec, ic,�c, wc]

= Fun (r (t1) , V (t1)) ,

phasec :
tc f − tc0 = tcoast ,

phase2 :
m

(
t f

) ≥ mmin .

phasec :
tc f − t1 ∈ [tcool , tcmax],
phase2 :
m

(
t f

) ≥ mmin .

phasec :
{
m

(
tc0

) = m (t1) − msep ,

tc f − t1 ∈ [tcool , tcmax],
phase2 :
m

(
t f

) ≥ mmin − msep .

maximum first burn time and the engine cooling time; tcmax, t2min are the maximum
coast phase time and the minimum second burn time; tcoast is the standard coasting
time,mmin andmsep are the minimum mass of the rocket and the separation mass off
the payloads.

For the IGM, the coasting OEs [ac, ec, ic,�c, wc] = Fun (r (t1) , V (t1)) are
introduced as the terminal constraints in the first powered flight phase. After entering
the coasting phase, a timed schedule is applied as the startup condition of the second
powered flight phase. Then, the IGM is called again to fly to the PTO.

For the ACRC method, the planning of the powered-coasting-powered profiles is
optimized simultaneously while taking all payloads as a whole, so the coasting orbit
will be re-planned, and there are no fixed OEs as the constraints of the first burn.
The coasting time is planned onboard only considering the cryogenic propellant
management and the precooling time required to restart engines. The terminal mass
constraint is the same as that of the IGM.

Compared with the ACRC, the MGO method considers the solution of departing
parts of the payloads during the coasting. Thus, m (tc0) = m (t1) − msep, and the
terminal mass constraint of the second burn is reduced accordingly.

• Fault adaptability analysis

The following analysis is based on a two-stage launcher, and the launch site and PTO
parameters are shown in Tables 2.4 and 2.5.
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Table 2.4 Main parameters

Rocket Thrust (kN) Specific impulse
(m/s)

Structural mass
(kg)

Propellant quality
(kg)

Side booster 2400 2924 15000 141000

First stage 2400 2924 18500 153500

Second stage 328.8 4295 4350 16950

Fairing – – 2200 –

Table 2.5 Parameters of PTO and launch site

PTO Launch site

a (m) e i (◦) � (◦) Longitude (◦) Latitude (◦)
7078140 0 50 94.5 110.95 19.61

We set tcool as 60 s, tcmax as 850 s, and t2min as 50 s. The adaptive collocation
method is used to plan the nominal trajectory of the launcher off-line, as shown in
Fig. 2.9. The superscript ‘1st’ represents the flight state during the flight phase when
the side and core boosters are working, and ‘2nd’, ‘3rd’, and ‘4th’ represent the first
burn, coasting, and second burn of the second stage, respectively. According to the
optimization results, the performance of the rocket is 5840 kg without considering
the orbital height constraints of the coasting orbit.

According to the nominal trajectory, tcoast in the IGM is defined as 528.5 s. It
is assumed that the launcher carries 10 identical satellites, each weighing 584 kg.
The failure time is introduced in the time interval of 200–350 s of the first burn, and
the thrust after failure occurs is represented by a factor κ . The simulation results
are shown in Fig. 2.10, where S3 represents the fault adaptation range of the IGM,
S2 represents the range of the ACRC, which is more than that of the IGM, and S1
represents the range of the MGO, which is greater than that of the ACRC. Method 1
and Method 2 represent the lower limits of fault adaptation ranges of the IGM and
ACRC, respectively, and Method 3-1 and Method 3-2 represent the lower limits of
the MGO corresponding to departing 5 or 9 satellites during coasting, respectively.

For Method 1, the IGM can only endure the thrust dropping by 10% if the fail-
ure occurs at 200 s. With the delay of the failure, the dropping tolerance increases
exponentially, and 33% of the total thrust can still send the payloads to the PTO if
the failure occurs at 350 s. For Method 2, if the coasting could be re-planned online,
the allowable dropping thrust could be extended to 64% at 200 s and 6% at 350 s. If
the failure state of the thrust were deteriorated beyond the lower limit, for example,
thrust dropping to 45% at 200 s, all the payloads could not enter into the PTO. How-
ever, for Method 3-1 under this condition, the MGO could send half of the payloads
to the PTO by releasing the other half during coasting, avoiding the complete loss of
the mission. The more payloads released during the coasting, the more severe thrust
drop failure could be endured, but fewer payloads would be sent to the PTO.
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Fig. 2.9 Parameters of the nominal flight trajectory

Fig. 2.10 Fault adaptation ranges
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Compared with the IGM, the ACRC could adaptively adjust the coasting orbital
inclination and LAN by extending the flight time of the first burn, regulate the shape
of the coasting orbit, and elevate its perigee height to reduce the fuel consumption
of the second burn. For the MGO method, the main mission of the second burn was
to elevate the apogee height by boosting the speed, so the acceleration of the second
burn could be improved by releasing parts of the payloads in advance.

• Case analysis

A test case is provided shown in Table 2.6.
If the minimum departure mass of 2625.5 kg could be determined onboard, five

payloads should be separated in advance. With msep as 5 × 584 kg in the MGO, the
optimization results are shown in Fig. 2.11.

The flight time of each phase by the MGO is shown in Table 2.7. The coasting
OEs are shown in Table 2.8.

In the above analysis, the coasting orbit is optimized as a sub-orbit, and the satel-
lites released during the coastingwill inevitably crash to the ground.Another solution
is to constrain a minimum safe perigee height of the coasting orbit, so the departed
satellites could still circle the Earth and wait for rescue, but the number of satellites
that could be put into the PTOwould greatly decrease. No matter which solution was
adopted, the MGO could avoid the complete loss of payloads for rideshare launches.

Table 2.6 Failure state of test case

t (s) κ x (km) y (km) z (km) Vx (m/s) Vy (m/s) Vz (m/s) m (kg)

250 31% 548.8 135.8 55.8 4863.0 718.4 81.9 25880.4

Fig. 2.11 MGO planning results

Table 2.7 Flight time

Cutoff of the first burn (s) Startup of the second burn (s) Cutoff of the second burn (s)

719.5659 1268.7850 1318.7850
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Table 2.8 Coasting orbital elements

a (km) e i (◦) � (◦) w (◦) hp (km) ha (km)

6076.2 0.1648 50.0092 94.6643 –94.3177 –1303.5 699.7

However, the discussion in this section is based on off-line plannings, and onboard
ACRC or MGO plannings are still challenging. A special issue is analyzed in Ref.
[43], where the payload could still enter into the PTO by adjusting the coasting orbit.

2.5 Conclusions

Ascent guidance methods are a basic, fully studied, and seemly mature technology.
The off-line planning and on-line tracking strategy were widely applied in the early
stage and have achieved good results; they are even still used currently. Considering
thewind load relief and the restrictions of the debris landing area, theOLGor tracking
guidance is still playing a major role in endo-atmospheric flight.

CLGs perform well for exo-atmospheric guidance. No structural load constraints
and atmospheric disturbances are considered. The optimization problem is then sim-
plified to obtain analytical solutions based on optimal control theories. Compared
with the tracking guidance, the CLGs are more adaptive to model uncertainties and
interferences, and they are capable of satisfying multiple terminal constraints such
as six OEs to obtain higher injection accuracies. If mild thrust drop failures occur,
they can also be taken as disturbances handled by the CLGs.

It’s assumed that model uncertainties and disturbances are bounded. If the faults’
effect is far beyond the limits, the CLGs no longer work. Thus, the AGMs are attract-
ing more interest. AGMs cannot ensure an entry into the PTO, because they cannot
violate physical laws under severe failures, but they may reconstruct the mission to
avoid the complete loss of the payloads.

In conclusion, the AGMs need to solve the following sub-problems: (1) onboard
model identification or reconstruction, which mainly occurs in the case of abnor-
mal conditions, such as loss of thrust; (2) evaluation of the remaining performance,
which is to simplify the decision making: whether to use the CLGs to the PTO or
to reconstruct the mission; and (3) determination of the optimization objectives, i.e.,
keeping the payload in an orbit, the end-to-end planning, or the graded optimization
for rideshare launches.

Although there is no perfect or groundbreaking method to solve all the above
problems, the collocation method with smart initial guesses provides a strategy for
complex onboard planning. The convergence is not guaranteed, but it is better than
doing nothing to let the LV/payload assembly fall from space. Any solution, although
not optimal, is acceptable under these failure scenarios. The study of the AGMs to
reconstruct the mission is just beginning, while the study of the analytical guidance
is still important because it is often the first choice of the initial guess.
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Chapter 3
Ascent Predictive Guidance for Thrust
Drop Fault of Launch Vehicles Using
Improved GS-MPSP

Xiaodong Yan and Cong Zhou

3.1 Introduction

Increasing complex space missions require launch vehicles to be with greater load-
carrying capacity, better orbit injection accuracy and higher reliability. Such demands
also cause the increased complexity of the vehicle, leading to a higher probability of
fault, especially for the propulsion system. To remedy this issue, an advanced and
robust ascent guidance capable of fault-tolerant is critical for the success of mission.
Iterative guidance method [1] (IGM) and powered explicit guidance [2] (PEG) are
two commonly used methods for the ascent phase of launch vehicles. These two
guidance methods work well in the nominal condition and can adapt to many off-
nominal conditions [3]. However, they lack of strong adaptive capacity, which cannot
guarantee the reliability when the dynamicmodel or parameters change significantly.
Alternatively, numerical approaches based on the optimal control theory may be the
better choice. The existing algorithms can be divided into direct methods and indi-
rect methods. Using the indirect methods, the guidance problem is transformed into
Hamilton two-point boundary value problems [4] (TPBVP), but the solving pro-
cess of this Hamilton two-point boundary value problem is complicated and highly
sensitive to the initial guess. Using the direct method, the guidance problem is trans-
formed into a nonlinear programming problem [5] (NLP). However, solving such
problem is extremely computational intensive, which is difficult to meet the real-time
requirement for online application.

In recent years, computational guidance has been proposed, which allows for
onboard to generate guidance commands by the rapid trajectory optimization or
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other numerical computation [6]. Convex optimization method is the most popular
one in this field [7]. The advantage of convex optimization is that the convex prob-
lem can be reliably solved by the interior point method to gain global optimality
in polynomial time, regardless of the initial guess. Owing to the high efficiency,
the convex optimization methods have been applied into various guidance designs,
such as entry guidance [8], landing guidance [9], as well as ascent guidance [10]. A
Newton-Kantorovich pseudospectral convex programming method was presented in
[10] to solve the ascent trajectory planning problem. The combination of Newton-
Kantorovich and pseudospectral discrete furtherly improves the computational effi-
ciency. Similarly, Li et al. [11] presented a pseudospectral based convex optimization
approach to solve the ascent guidance problem in the presence of thrust drop fault.
Song et al. [12] investigated online joint optimization of the target orbit and flight
trajectory for launch vehicles under a propulsion system fault. Most recently, the
optimal abort orbit problem is studied in [13], which employed the SOCP approach
to solve the circular abort orbit with the maximum of the radius. Through these
literature, the computational guidance and online programming methods for ascent
problems have been studied extensively. However, most of them are still limited in
terms of the computational efficiency.

Another promising approach for online application is model predictive static pro-
gramming (MPSP) [14]. Owing to featuring an explicit closed-form solution and
avoiding numerical complexities of optimal control theory, this method exhibits a
higher computational efficiency over convex optimization methods. In our previ-
ous work, a new developed generalized quasi-spectral MPSP (GS-MPSP) has been
proposed [15], which furtherly improves the computational speed by using spectral
discretization and collocation method. This new algorithm also offers the advantage
of smooth control and better usability, and hence holds great promise for online
application.

In this chapter, based on the GS-MPSP philosophy, an ascent guidance for the
thrust drop fault of the launch vehicle is presented. For the ascent guidance problem,
the thrust drop fault may lead to the flight time substantially changing compared
to the nominal trajectory, and a proper final time or orbit injection point is not
easy to give out. In this case, the ability to search the final time in a large range is
required for the guidance algorithm. The original GS-MPSP [15] is able to address
the free terminal time problem by formulating a sensitive relation between the final
time and final outputs, and taking the final time as the additional variable to be
determined. However, this operation is quite rough and feasible just for slightly
adjusting the terminal time when a proper initial guess is provided. Therefore, an
improvedGS-MPSP (IGS-MPSP)method is first proposed,which furtherly enhances
the convergence robustness for the free final time in the presence of the poor initial
guess by introducing a scale factor of time interval. Then, the ascent guidance is
systematically formulated using this improved algorithm. Consequently, a numerical
simulation for the case of injecting into a circular orbit is conducted to verify the
effectiveness of the proposed method. The comparison with the SOCP based method
is also carried out.
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3.2 Generic Theory of the IGS-MPSP Method

TheGS-MPSPmethod is proposed for efficiently solving a class of nonlinear terminal
constraint problem. The considered nonlinear system dynamics is as follows:

Ẋ(t) = f (X,U, t), t ∈ [t0, t f ] (3.1)

Y(t) = h(X, t) (3.2)

where X ∈ Rn , U ∈ Rm and Y ∈ R p denote the state, control and output vectors,
respectively. The purpose of this approach is to find suitable control history U(t)
to ensure that the final system output Y f (t f ) approaches the desired value Y d with
minimum control effort.

3.2.1 The Sensitivity Relation for Free-Terminal Time
Continuous System

In this subsection, a sensitivity relation for the continuous system with the
free -terminal time is derived. It is based on the sensitivity relation developed in
Ref. [15, 16]. The brief introduction is presented in the following.

In the proposed method, it is considered that the terminal time is adjusted by
uniformly scaling the length of time interval [t0, t f ]. Thus, the updated terminal time
can be written as:

t l+1
f = t lf + �κ · (t lf − t0) (3.3)

where �κ ∈ R is the scale factor, and the superscript l and l + 1 denotes the current
step and the update step. The differential of Eq. (3.3) is given by

dtl+1 = dtl + �κ · dtl , t ∈ [t0, t lf ] (3.4)

Note that in Eq. (3.4), the term �κ · dtl denotes the changed time length for each
infinitesimal time interval, dt, t ∈ [t0, t lf ]. Next, the final output vector of the system
(3.1) can be expressed as follow by introducing a weighting matrix W(t) ∈ R p×n

Y(X(t f )) = Y(X(t f )) +
t f∫

t0

[
W(t) · ( f (X,U, t) − Ẋ)

]
dt (3.5)

We then differentiate both sides of Eq. (3.5), it gives
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dY(X(t f )) = ∂Y(X(t))

∂X(t)
· dX(t f ) +

t f∫

t0

[
W(t) · ∂ f (X,U, t)

∂X(t)
· δX(t)

+W(t) · ∂ f (X,U, t)

∂U(t)
· δU(t) − W(t) · d Ẋ(t)

]
dt

(3.6)

Note that in Eq. (3.6), dX(t) denotes the differential of X(t) taking into account
the differential change of time interval, �κ · dt , and δX denotes the variation in X
when the time interval is assumed to be fixed. They have the relationship as follow

dX(t) = δX(t) + Ẋ(t) · �κ · dt (3.7)

We conduct the first order differential of Eq.(3.7) respect to the time, it yields

d Ẋ(t) = δ Ẋ(t) + Ẋ(t) · �κ (3.8)

Substituting the d Ẋ(t) for Eq. (3.8) into the term of the integrand on right side of
Eq. (3.6) leads to

dY(X(t f )) = ∂Y(X(t))

∂X(t)
· dX(t f ) +

t f∫

t0

[
W(t) · ∂ f (X,U, t)

∂X(t)
· δX(t)

+W(t) · ∂ f (X,U, t)

∂U(t)
· δU(t) − W(t) · Ẋ(t) · �κ − W(t) · δ Ẋ(t)

]
dt

(3.9)

By integrating the last term on the right side of Eq. (3.6), we obtain

dY(X(t f )) = ∂Y(X(t f ))

∂X(t f )
· δX(t f ) − [W(t) · δX(t)]t=t f + [W(t) · δX(t)]t=t0

+
t f∫

t0

[
W(t) · ∂ f (X,U, t)

∂X(t)
· δX(t) + Ẇ(t) · δX(t)

+W(t) · ∂ f (X,U, t)

∂U(t)
· δU(t) − W(t) · Ẋ(t) · �κ

]
dt

(3.10)
Equation (3.10) can be further rearranged as



3 Ascent Predictive Guidance for Thrust Drop Fault of Launch Vehicles … 79

dY(X(t f )) =
(

∂Y(X(t f ))

∂X(t f )
− [W(t)]t=t f

)
· δX(t f ) + [W(t) · δX(t)]t=t0

+
t f∫

t0

[(
W(t) · ∂ f (X,U, t)

∂X(t)
+Ẇ (t)

)
· δX(t) + W(t) · ∂ f (X,U, t)

∂U(t)
· δU(t)

−W(t) · Ẋ(t) · �κ
]
dt

(3.11)
Here, it is necessary to choose W(t) so that eliminates the coefficients of δX(t)

and δX(t f ) in Eq. (3.11), which leads to the following weighting matrix dynamics
with the associated boundary condition at the final time t f :

Ẇ(t) = −W(t) · ∂ f (X,U, t)

∂X(t)
(3.12)

W(t f ) = ∂Y(X(t f ))

∂X(t f )
(3.13)

In Eq. (3.11), it is straight to obtain δX(t0) = 0 with the fact that the initial
conditions are specified. Then use this observation and theweightingmatrix dynamic
as presented in Eqs. (3.12) and (3.13), the Eq. (3.11) can be further simplified as

dY(X(t f )) =
t f∫

t0

[
W(t) · ∂ f (X,U, t)

∂U(t)
· δU(t)

]
dt +

t f∫

t0

[
−W(t) · Ẋ(t) · �κ

]
dt

=
t f∫

t0

[Bs(t) · δU(t)] dt + Bκ · �κ

(3.14)

where

Bs(t) � W(t) · ∂ f (X,U, t)

∂U(t)
(3.15)

Bκ � −
t f∫

t0

[
W(t) · Ẋ(t)

]
dt (3.16)

where Bs(t) is the sensitivity matrix that relates the error δU to dY as per Ref. [16].
And Bκ can be interpreted as the sensitivity matrix that relates the scale factor of
time internal, �κ to the final out error dY . Note that in here, the sensitive relation
for terminal time is indirectly formulated by the scale factor of time internal, �κ .
Compared with the original way in GS-MPSP, this strategy is more accurate since
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it uniformly scales each infinitesimal time interval on [t0, t f ], rather than roughly
adjust the final time.

3.2.2 The Mathematical of IGS-MPSP Method

In IGS-MPSP, the control vector is represented by a weighted summation of some
basic spectral functions to reduce the number of various to be optimized:

U(t) =
Np∑
i=1

C i Pi (t) (3.17)

where C j = [c1 j , c2 j , . . . , cmj ]T is the coefficient vector corresponding to the j th
spectral function. Np is the number of basic functions in the expression, and P j (t)
is the basic spectral function. The spectral functions can be selected as Legendre
series, Chebyshev series, etc.

Next, the new developed relationship as presented in Eq. (3.14) is applied to
derive the GS-MPSP method for the free-time problem. Since the control history
U(t), t ∈ [t0, t f ] has been represented by the spectral functions in Eq. (3.17), and a
new scale factor of time internal, �κ , is introduced to adjust the unspecified final
time as in Eq. (3.3), both the coefficient vector [C1,C2, . . . ,CNp ] and scale factor
δκ are selected as variable to be determined.

First, the variationof the control history during the time t = [t0, t f ] canbeobtained
from Eq. (3.17):

dU(t) =
Np∑
j=1

dC j Pj (t) (3.18)

Substituting Eq. (3.18) into Eq. (3.14), it yields

dY N =
t f∫

t0

⎡
⎣Bs(t) ·

Np∑
j=1

δC j Pj (t)

⎤
⎦dt + Bκ · �κ

=
Np∑
j=1

A j · dC j + Bκ · �κ

(3.19)

in which

A j =
t f∫

t0

Bs(t) · Pj (t)dt, j = 1, 2 . . . Np (3.20)
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In Eq. (3.19), A j is the spectral sensitivity matrix as per Ref. [15], which relates
the error of the coefficient of the j th spectral function, dC j , to the error of the output
dY N . Thus, a linear formula for the error of the final output and the error of each
coefficient vector as well as the scale factor is obtained. Then the desired coefficients
and scale factor can be worked out by formulating a static programming problem:

The update equation for coefficient vectors can be written as

C l+1
j = C l

j − dC l
j (3.21)

where C l
j denotes as the j th coefficient at the current iteration (represented by super-

script l), and C l+1
j denotes the updated coefficient in the next iteration (represented

by superscript l + 1). After substituting the expression of dC l
j in Eq. (3.21) into Eq.

(3.19), the error of final output can be written as

dY N =
Np∑
j=1

F jδC l
j =

Np∑
j=1

Fj (C l
j − C l+1

j ) = cλ −
Np∑
j=1

A jC
l+1
j + Bκ · �κ (3.22)

where

cλ =
Np∑
j=1

A jC l
j (3.23)

Equation (3.22) is apparently a linear equations set about C l+1
j and �κ , which con-

tains Np × m + 1 unknowns and p equations where Np × m + 1 > p. Hence, Eq.
(3.22) represents an under-constrained system and it is necessary to impose an appro-
priate performance index to facilitate a solution. In here, we consider to minimum
the control effort, that is

J = 1

2

t lf∫

t0

[
U l+1(t)T R(t)U l+1(t)

] · dt + Rκ�κ2 (3.24)

where R(t) and Rκ are the weight matrix for control and scale factor. Substituting
Eq. (3.17) into Eq. (3.24), it yields

J = 1

2

t lf∫

t0

⎡
⎢⎣

⎛
⎝

Np∑
i=1

C l+1
i Pi (t)

⎞
⎠

T

R(t)

⎛
⎝

Np∑
i=1

C l+1
i Pi (t)

⎞
⎠

⎤
⎥⎦ · dt + Rκ�κ2 (3.25)

Then, combined with the cost function (3.25) and the constraints given in Eq. (3.22),
a static programming problem for the coefficient vector and scale vector can be
formulated. The augmented cost function of this problem is given by
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J̄ = J + λT

(
dY N − cλ +

Np∑
j=1

A jC
l+1
j − Bκ · �κ

)
(3.26)

where λ ∈ R p is Lagrange multiplier. The first-order optimality conditions are

∂ J̄

∂dC j
=

Np∑
i=1

Ri j · C l+1
j − A j

T · λ = 0,

j = 1, 2 · · · Np

(3.27)

∂ J̄

∂�κ
= Rκ · �κ − Bκ

T · λ = 0 (3.28)

where

Ri j =
t lf∫

t0

[
Pi (t)R(t)Pj (t)

] · dt (3.29)

Thus, Eqs. (3.22), (3.27) and (3.28) make up a equation set about C l+1
j , λ and δκ ,

which can be written as a compact form as follow

D · X̃ = E (3.30)

where

D =

⎡
⎢⎢⎢⎢⎢⎣

R11 · · · R1Np −A1
T 0

...
. . .

...
... 0

RNp1 · · · RNpNp −ANp
T 0

A1 · · · ANp0 −Bκ

0 · · · 0 −Bκ
T Rκ

⎤
⎥⎥⎥⎥⎥⎦

, X̃ =

⎡
⎢⎢⎢⎢⎢⎣

C l+1
1
...

C l+1
Np

λ

�κ

⎤
⎥⎥⎥⎥⎥⎦

, E =

⎡
⎢⎢⎢⎢⎢⎣

0
...

0
cλ − dY N

0

⎤
⎥⎥⎥⎥⎥⎦

(3.31)

The Eq. (3.30) contains Np × m + p + 1 unknowns (i.e., C l+1
1 ,C l+1

2 · · ·C l+1
Np

,

λ,�κ) and the same number of equations.Assuming that thematrix D is nonsingular,
the unknown vector X̃ can be solved by

X̃ = D−1 · E (3.32)

Consequently, the updated coefficients C l+1
j and scale factor �κ are obtained from

the solution of X̃ . Then substituting the �κ into Eq. (3.3), the update terminal time
can be obtained by

t l+1
f = t lf + �κ · (t lf − t0) (3.33)
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And substitute C l+1
j ( j = 1, 2 · · · Np) into Eq. (3.17), the updated control history

at time t ∈ [t0, t l+1
f ] is eventually given by

U l+1(t) =
Np∑
i=1

C l+1
i Pi (t), t ∈ [t0, t l+1

f ] (3.34)

Remark 1 To implement the IGS-MPSP algorithm, the sensitivity matrix A j , Bκ

and Ri j are necessary to be worked out in each iteration. The Gauss Quadrature
Collocation method can be applied to efficiently compute such matrix and ensure the
computational efficiency of this approach. The detailed procedure will be presented
in the next subsection.

Remark 2 Compared with the original algorithm [15], the improved method intro-
duces a scale factor of time internal to adjust the terminal time, and accordingly a
sensitive relation for this factor is derived. This way improves the accuracy of sen-
sitive relation for terminal time and hence is able to search the final time in a wide
range when a poor initial guess is provided. That is, the convergence robustness for
initial guess of final time is improved.

3.2.3 The Computation of Sensitive Matrix by Gauss
Quadrature Collocation

In this subsection, the Gauss Quadrature Collocation method is applied to efficiently
compute the sensitive matrix A j , Bκ and Ri j . The detailed procedure is presented
as follow.

For the convenience of solving, the physical time t ∈ [t0, t f ] is converted to the
scale time τ ∈ [−1, 1] by the following relation:

t ≡ t (τ, t0, t f ) = t f − t0
2

τ + t f + t0
2

(3.35)

Next, the collocation method is used to solve the weighting dynamic equation as
presented in Eqs. (3.12) and (3.13). First, we rewrite the matrix equation (3.12) as
the following vector equation with the independent variable τ :

Ẇ k(τ ) = −W k(τ ) · f x (τ )

k = 1, 2, . . . , p
(3.36)

where W k(τ ) denotes the kth row vector of matrix W(t), and f x (τ ) is defined by

f x (τ ) � ∂ f (X,U, t)

∂X(t)
· t f − t0

2
(3.37)
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Then N Lagrange interpolating polynomials Li (τ )(i = 1, 2, . . . , N ) are used
to appropriate both sides of Eq. (3.36), by which the differential equation can be
converted to a series of algeria equations at specified collocation points τi (i =
1, 2 · · · N ). In here, the Gauss-Lobatto type collocation is used, such as Legendre-
Gauss-Lobatto (LGL), or Chebyshev-Gauss-Lobatto (CGL) series. Note that, in prin-
ciple W k(τ ) must satisfy Eq. (3.36) at all collocation points τi (i = 1, 2, . . . , N ).
However, W k is generally computed by integrating the matrix dynamics (3.36)
backward from τN to τ1 since the value at the final time t f (τN ) is known. This
meansW k(τ )|τ=τ1 is the last integral step as well as the integration result. Therefore,
W k(τ )|τ=τ1 is not necessary to strictly satisfy the differential equation (3.36), and
we just consider the N − 1 collocation points τi (i = 1, 2, . . . , N ) for the accord-
ing collocation equations. Consequently, the collocation equations are given in the
compact form:

(D ⊗ In) · �k = − f · �k (3.38)

where �k = [W k(τ1),W k(τ2), . . .W k(τN )]T ; In is an n × n identity matrix and
D ⊗ In denotes the Kronecker product of D and In; D ∈ R

(N−1)×N is known as the
differential matrix. The matrix D and f are given by

D =

∣∣∣∣∣∣∣∣∣

L̇1(τ2) L̇2(τ2) · · · L̇ N (τ2)

L̇1(τ3) L̇2(τ3) · · · L̇ N (τ3)
...

...
. . .

...

L̇1(τN ) L̇2(τN ) · · · L̇ N (τN )

∣∣∣∣∣∣∣∣∣
, f = diag

∣∣∣∣∣∣∣∣∣

0n(N−1)×n

f Tx (τ2)

. . .

f Tx (τN )

∣∣∣∣∣∣∣∣∣
(3.39)

Equation (3.38) can be further simplified by

A�k = 0 (3.40)

where A = f + (D ⊗ In) ∈ R(N−1)n×Nn . Equation (3.40) contains (N − 1)n linear
equations and the same number of unknowns (that isW k(τi )(i = 1, 2, . . . , N − 1)).
Defining the unknown vector as Xk = [

W k(τ1),W k(τ2), . . .W k(τN−1)
]T
, it is easy

to obtain�k = [
Xk

T Wk(τN)
]T
. Next A is rearranged as A = [AF , AN ], where AF

and AN denote the first (N − 1)n columns and the rest n columns of A, respectively.
Using these relations, the linear equations can be further expressed as

A�k = [AF,AN ] ·
[

Xk

W k(τN )T

]
= AFXk+ANW k(τN )T = 0 (3.41)

Assuming that the matrix AF is nonsingular, the Xk is eventually solved by

Xk = −A−1
F AN · W k(τN )T (3.42)

The solution of Xk gives the value of kth row of matrix W(τ ) at the collocation
points τk (τ1, τ2, . . . , τN−1). By repeating the above calculation procedure for each
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row (k = 1, 2, · · · , p), the matrixW(τ ) at all the collocation points (τ1, τ2, . . . , τN )
can be obtained.

Subsequently, the sensitivity matrix Bs(t) at collocation points can be calculated
out according to Eq. (3.15):

Bs(τi ) = W(τi ) · ∂ f (X,U, t)

∂U(t)

∣∣∣∣
t=τi

, i = 1, 2, . . . , N (3.43)

Lastly, the principle of Gaussian quadrature [16] is applied to compute the sensi-
tive matrix A j ,Bκ and Ri j :

A j =
t f∫

t0

Bs(t) · Pj (t)dt = t f − t0
2

N∑
i=1

Bs(τi ) · Pj (τi ) · ηi

j = 1, 2, . . . , Np

(3.44)

Bκ
�= −

t f∫

t0

[
W(t) · Ẋ(t)

]
= − t f − t0

2

N∑
i=1

W(τi ) · Ẋ(τi ) · ηi (3.45)

Ri j =
t f∫

t0

[
Pi (t)R(t)Pj (t)

] · dt = t f − t0
2

N∑
k=1

Pi (τk)R(τk)Pj (τk) · ηk

i, j = 1, 2, . . . , Np

(3.46)

where ηi is the weight coefficient of Gaussian quadrature corresponding to the col-
location point τi . In this way, such sensitive matrix is obtained by a set of algebraic
operation at very few collocation points.

Remark 3 In the calculation loop for each row of thematrixW , thematrix A remains
unchanged and just need to be computed once, since which only upon to the given
collocated points τi (i = 1, 2, . . . , N ) and f x (τi ). This feature effectively reduces
the computational complexity.

Remark 4 Since the spectral sensitivitymatrix is directlyworked out by theGaussian
quadrature method in Eqs. (3.42)–(3.46) and avoids heavy computational consump-
tion produced by the numerical integration of a series ofmatrix differential equations,
the computational efficiency is improved significantly.
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3.2.4 The Implementation Step of IGS-MPSP

The implementation procedure of this approach is provided in Algorithm 1. This
method starts from the initial guess for spectral coefficients and terminal time. Then
the final output errors and trajectory state are evaluated out. If the tolerance of the
output errors is small enough, the desired control sequence is obtained. Otherwise,
the corresponding sensitivity matrices are recalculated and the spectral coefficients
as well as terminal time are updated. Then, the updated control history is generated,
and the output errors are evaluated again. This iterative procedure is repeated until a
specified criterion for the terminal output errors is met.

Algorithm 1: IGS-MPSP algorithm

Step 1: Initialize the initial guessC0
j , t

0
f , the stopping criterions δy, the number of spectral

function Np, the number of collocation points N
Step 2: For k = 0, 1, 2, . . .

(2.1)Compute the control historyUk(t), t ∈ [t0, t f ] by Eq.(3.17);
Integrate the system dynamic to obtain the trajectory state as well as the output error,
‖dY N‖∞;

(2.2) If ‖dY‖∞ < δy
Output the current control historyUk(t) and break the iteration;
Otherwise continue the iteration.

(2.3)Compute the sensitive matrix A j , Bκ and Ri j according to Eq.(3.42) − Eq.(3.46);
Solve the linear equation (3.32) to obtain the updated solution;

(2.4)Update the terminal time by
t l+1
f = t lf + �κ · (t lf − t0)

(2.5)Obtain the update coefficient vector Ck+1
j from the updated solution X̃;

Since the spectral coefficients have no physicalmeaning, it’s not straightforward to
assign an initial guess with appropriate values. Therefore, the least-squares algorithm
is applied to obtain the initial guess of the spectral coefficients when an initial guess
of control sequence is provided.

Denoting Ĉ
0 = [Ĉ0

1, Ĉ
0

2, . . . , Ĉ
0

Np
] as the initial guess of the spectral coefficients,

as per Eq. (3.17), the control vector represented by the guess Ĉ
0
at time step tk, k =

1, 2, . . . , n can be written as

Û
0

k =
Np∑
j=1

Pj (tk)Ĉ
0

j , k = 1, 2, . . . , n (3.47)

In matrix form, Eq. (3.47) can be written as

Û
0 = Ĉ

0
P (3.48)

where Û
0 = [Û0

1, Û
0

2, . . . , Û
0

n], and
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P =

∣∣∣∣∣∣∣∣∣

P1(t1) P1(t2) . . . P1(tn)
P2(t1) P2(t2) . . . P2(tn)

...
...

. . .
...

PNp (t1) PNp (t2) . . . PNp (tn)

∣∣∣∣∣∣∣∣∣
(3.49)

If the initial control guess sequence U0 = [U0
1,U

0
2, . . . ,U

0
n] is given, the proper

spectral function coefficients Ĉ
0
are to be found so as to minimize |Û0 − U0|.

According to the principle of the least squares, the coefficients are estimated as

Ĉ
0 = U0PT · (P PT )−1 (3.50)

The initial guess of the spectral coefficients is obtained from Eq. (3.50).

3.3 The Ascent Predictive Guidance Under Thrust Drop
Fault

In this subsection, the proposed method is employed to solve the ascent guidance
problem of launch vehicle under thrust drop fault. The problem formula is firstly
introduced, then the detailed procedure to address this problem is presented.

3.3.1 Problem Formulation

To be solved conveniently, a modified orbital inertial (MOI) coordinate system is
firstly defined as follow. As shown in Fig. 3.1, PF is the position of launch vehicle
when the fault occurs; P ′

F is the projection of PF onto the injected orbital plane; Pf

is the nominal injection point. Then, the origin of this modified orbital coordinate
(MOC) is located at the center of the earth. The coordinate plane coincides with the
injected orbital plane OP ′

F Pf , in which the axis OeY directing to the midpoint of
the arc P ′

F Pf and the axis OeX perpendicular to the OeY . Lastly, the axis OeZ is
determined by the right-hand-thread rule.

Note that the MOI coordinate can be determined by the position of launch vehicle
at the time that the fault occurs and the injected orbit information (the inclination
i f , longitude of ascending node � f , and injection point for nominal trajectory). The
relationship between the Modified orbital inertial (MOI) coordinate and the Earth-
centered inertial (ECI) system is given by

XMOI = MMOI
EC I (� f , i f , P

′
F ) · XEC I (3.51)
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Fig. 3.1 Modified orbital inertial (MOI) coordinate system

where MMOI
EC I denotes the transformation matrix from the ECI coordinate system to

the MOI system.
It is considered the thrust drop fault occurs at the second stage of the launch vehi-

cle. In this flight stage, the launch vehicle is assumed to fly out of the dense atmo-
sphere and the aerodynamic forces can be ignored. Therefore, the three-dimensional
point-mass dynamic equations of launch vehicles build in the (MOI) coordinate is
given as follow: ⎧⎪⎨

⎪⎩
ṙ = V

V̇ = T · eT /m − μr/r3

ṁ = −me

(3.52)

where r = [rx , ry, rz]T is the position vector in the MOI coordinate system; V =
[Vx , Vy, Vz]T is the inertial velocity vector; T is the thrust magnitude, which is
considered to be constant; m is the mass of vehicle and me is the mass flow rate;
eT denotes the thrust direction vector, which is generally aligned with the body
longitudinal axis of the vehicle and can be given by

eT = [cosϕ cosψ, sin ϕ cosψ,− sinψ]T (3.53)

where ϕ and ψ are the pitch angle and yaw angle relative to the MOI coordinate
system, respectively. The dynamic equations as presented in Eqs. (3.52) and (3.53)
can be written as the compact form
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ẋ = f (x, u) (3.54)

where x = [rx , ry, rz, Vx , Vy, Vz]T is the state vector and u = [ϕ,ψ]T is the control
vector of the system.

Remark 5 Since the flight path angle and angle of attack of the launch vehicle is
generally small in the second stage, the defined MOI and the according dynamic
equation will ensure the pitch angle of the vehicle remain a small value. This can
effectively reduce the nonlinearity of the controls as presented in Eq. (3.53) and
improve the convergence of the algorithm. Moreover, such definition can simplify
the terminal constraint to be introduced later.

3.3.2 Terminal Constraints

It is assumed that the thrust fault of the launch vehicle takes place at the initial time
t0, and the corresponding states are given by:

X(t0) = X0 (3.55)

The final orbital injection time t f is constrained by

t f ≤ t f,max (3.56)

where t f,max is the maximum burn time of the vehicle, which is determined by the
remaining fuel and mass flow rate.

The terminal constraints of ascent guidance are determined by the orbital insertion
conditions, which are generally provided by the semi-major axis a f , eccentricity e f ,
orbital inclination i f , and longitude of ascending node � f . In here, we consider to
entry into a circular orbit (e f = 0). Then, the first two conditions can be equivalently
described by ∥∥r(t f )∥∥ = r∗

f (3.57)

∥∥V (t f )
∥∥ = V ∗

f (3.58)

rT (t f )V (t f ) = 0 (3.59)

Moreover, in the modified orbital inertial (MOI) coordinate system, the final two
orbital insertion conditions i f and� f are equivalent to make the final position vector
component rz(t f ) and velocity vector component Vz(t f ) to be zero. Therefore, the
terminal constraints of this ascent guidance problem are defined by
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h(x(t f )) =

⎡
⎢⎢⎢⎢⎣

∥∥r(t f )∥∥ = r∗
f∥∥V (t f )

∥∥ = V ∗
f

rT (t f )V (t f )
rz(t f )
Vz(t f )

⎤
⎥⎥⎥⎥⎦ = 0 (3.60)

Thus, the ascent guidance problem can be organized by
P0 : find t f , u(t), t ∈ [t0, t f ]
subject to:

x(t) = f(x(t),u(t),t) (3.61)

x(t0) = x0 (3.62)

h(x(t f )) = 0 (3.63)

t f ≤ t f,max (3.64)

3.3.3 Solved by the IGS-MPSP

As introduced earlier, the proposed algorithm is able to solve the free-final time
guidance problem. However, this algorithm cannot directly handle the inequality
constraint as given in Eq. (3.64). Therefore, a numerical trick is additionally con-
ducted to address this constraint.

First, the proposed method is employed to solve the problem P0 in which the
constraint (3.64) is omitted. Then the obtained terminal time t f is checked. If this
value is smaller than the maximum t f,max, it means the solution is feasible and the
obtained control history can be used as the renewed commands of the launch vehicle.
Otherwise, it implies the solution is infeasible for this problem. That is, the launch
vehicle cannot directly entry into the required orbit. In this situation, a new guidance
strategy is needed, such as entering into a new parking orbit or transfer orbit. This
case is beyond the scope of this work.

The detailed implementation steps are summarized as follow. As presented in Fig.
3.2, the guidance strategy is triggered by a fault detection. Then the current state t0, x0
is employed as the initial state of the proposed algorithm, and the terminal time and
control of nominal trajectory is used as the initial guess. Obviously, these controls
and terminal time guess cannot steer the launch vehicle to well meet the required
terminal states in the presence of thrust drop fault. Thus, the proposed algorithm is
iteratively conducted to obtain the updated terminal time and control history. If the
updated terminal time is smaller than the maximum value, then the corresponding
control history is directly used as the new guidance for the launch vehicle. Otherwise,
it implies that the launch vehicle cannot directly inject into the original orbit.
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Fig. 3.2 Ascent guidance strategy for launch vehicle under thrust drop fault

3.4 Numerical Results

In this section, the numeric simulation is carried out to demonstrate the performance
of the proposed method in term of accuracy and computational efficiency. It is con-
sidered that the fault of thrust drop occurs at the second stage flight phase of a launch
vehicle. The nominal parameters of the launch vehicle are illustrated in Table 3.1.
Both the initial conditions (at the fault occurring time) and target orbit’s parameters
are given in Table 3.2.

The proposedmethod is employed to solve such guidance problemwhen the thrust
of the launch vehicle drops to 70% and 80% of the nominal value, respectively. In
the algorithm implementation, the six order Legendre polynomials are used as the
spectral function of control, and the Legendre-Gauss-Latto (LGL) points are selected
as the collocation points in computing the spectral sensitivity matrix. In addition, the
number of LGL nodes is taken as 15.

Additionally, a SOCP based method [11] is conducted in here as the comparison
of the proposed method. This algorithm takes the minimum fuel consumption as
the optimization object, and the classical Euler method is used to discrete the prob-
lems. The number of discretization nodes is set to be 50, which is determined by
comprehensively considering the solving accuracy and efficiency.

Table 3.1 Nominal parameters of the launch vehicle

Parameter Value Unit

Initial mass m0 27.769 ton

Dry mass mdry 17 ton

Nominal thrust T 98 KN

Dry mass me 22.138 kg/s
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Table 3.2 Initial conditions and target orbit

Parameter Value Unit

Initial position vector r0 [368502, 6508822, 7201] m

Initial velocity vector v0 [6148.49, 99.79, −18.13] m/s

Target orbit semi-major axis
a f

6578145 m

Target orbit eccentricity e f 0

Target orbit inclination i f 0.5068 rad

Target orbit ascending node
� f

6.2368 rad

In simulations, the terminal time and control history of nominal trajectory are used
as the initial guess of the proposed method and SOCP based method. Moreover, all
numerical simulations are implemented in the MATLAB 2021a environment on a
personal desktop (Intel i7-8750H, 3.2 GHz). The CVX [17] optimization toolbox
with SDPT3 4.0 [18] is employed as the solver of the SOCP based method.

3.4.1 The Results by the Proposed Method

The proposed method reaches the required tolerance of terminal conditions by 8
iterations. Figure 3.3 depicts the altitude profiles of the trajectories with the thrust
of 70% and 80% nominal value. Additionally, the nominal trajectory and the trajec-

0 100 200 300 400 500 600 700 800 900
t(s)

140

150

160

170

180

190

200

210

220

H
(k

m
)

Target orbit
Nominal trajectory
Nominal control in 80% thrust
Nominal control in 70% thrust
The proposed method in 80% thrust
The proposed method in 70% thrust

Fig. 3.3 Altitude profiles for nominal trajectory and the trajectories obtained by IGS-MPSP
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Fig. 3.4 Control profiles for the nominal trajectory

tories obtained by the nominal control in the case of thrust drop are also provided
in Fig. 3.3. It can be seen that with the nominal control, the launch vehicle fails to
enter into the target orbit under the thrust drop. The proposed method succeeds in
regenerating the updated guidance commands (shown in Fig. 3.4) to steer the vehicle
into the original target orbit. Specially, the trajectory states for each iteration of the
proposed algorithm when the thrust is 80% of nominal value is presented in Fig.
3.5. It clearly reflects that the proposed method reaches the required orbit injection
parameters by a few iterations, even if the relatively poor control and terminal time
guess (nominal trajectory) are given. At the same time, the orbit injection time is
considerably increased as compared to the nominal value, but still smaller than the
maximum allowable value. These results demonstrate the effectiveness of the pro-
posedmethod, which is able to re-plan the ascent trajectory under the thrust drop, and
search the appropriate orbit injection time when a relatively accurate guess cannot
not be given out.

3.4.2 Comparison with SOCP Method

Furthermore, the comparison between the proposedmethod and SOCP basedmethod
are provided in Table 3.3, Figs. 3.6 and 3.7.

The Table 3.3 illustrates the terminal mass and terminal time achieved by the
proposed algorithm and SOCP based method, respectively. It can be noted that the
results obtained by the proposed algorithm are very close to that produced by SOCP
method. The deviations are less than 0.025%. This means the proposed method
achieves a near optimality for the fuel consumption compared to the SOCP based
method. Moreover, the control histories and trajectories for the proposed method and
SOCP are depicted in Figs. 3.6 and 3.7. As it can be seen, the control profiles as well
as the trajectories by the proposed method are similar to those of SOCP, no matter in
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Fig. 3.5 The trajectory for each iteration in the 80% of nominal thrust

Table 3.3 The results of final time and final mass

80% of nominal thrust 70% of nominal thrust

t f (s) m f (kg) t f (s) m f (kg)

The proposed
method

533.9370 18312.7483 641.2647 17831.5629

SOCP 533.6772 18317.3497 641.2007 17832.5554

the case of 70%of the nominal thrust or 80%of the nominal thrust. This demonstrates
the proposed method produces approximate effect of SOCP based method to solve
the ascent guidance problem with the thrust drop fault.

Lastly, the computational efficiency of the proposed method and SOCP method
are comparatively investigated by conducting the same simulation case. Figure 3.8
and Table 3.4 present the CPU time consumed by two methods, in which the time
elapses for one iteration and the total are shown. It can be seen that, the CPU time
consumed by the proposed method is almost one-sixtieth or one-seventieth of that
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Fig. 3.6 The Control profile for IGS-MPSP and SOCP method

by the SOCP method for one iteration and the total value. This result clearly demon-
strates the superiority of the proposed method in the computational speed. Such
highly computational efficiency is achieved by a series of careful design such as
the spectral representation of control, sensitive matrix computation conducted by
collocation method. Hence, the proposed method owns the great potential for online
application.

3.5 Conclusion

In this chapter, a predictive ascent guidance based on the IGS-MPSP for the thrust
drop fault of the launch vehicle is presented. Firstly, an IGS-MPSPmethod is derived.
Compared with the original GS-MPSP method, this approach introduces a scale
factor for the time internal as the additional variable to adjust the terminal time.
Then, a new sensitive relation for the final time is established. Since the accuracy
of the sensitive relation is improved, the approach owns the better performance to
search the appropriate final time in the presence of the poor initial guess. Hence,
it is more suitable for the ascent guidance problem. Secondly, the application of
the proposed method for the ascent guidance problem under the thrust drop fault
is detailed introduced. The numerical simulation for a typical case and comparison
with the SOCP based method are carried out. The results indicate the effectiveness
of the proposed method, which generate approximate results with the SOCP method
but with considerably higher computing efficiency.
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Fig. 3.7 Trajectories by various methods
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Fig. 3.8 CPU time
consumed by various
methods
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Table 3.4 The CPU time consumed by various methods

Method CPU time for one
iteration (s)

Iterations number Total CPU time(s)

SOCP 0.451 10 4.512

IGS-MPSP 0.008 8 0.064
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Chapter 4
Birkhoff Pseudospectral Method and
Convex Programming for Trajectory
Optimization

Dangjun Zhao, Zhiwei Zhang, and Mingzhen Gui

4.1 Introduction

Trajectory optimization, an optimal control problem (OCP) in essence, is an impor-
tant issue in many engineering applications including space missions, such as orbit
insertion of launchers, orbit rescue, formation flying, etc. There exist two kinds of
solving methods for OCP, i.e., indirect and direct methods. For some simple OCPs,
using the indirect methods can result in analytic solutions, which are not easy to be
obtained for complicated systems. Direct methods transcribe an OCPs into a finite-
dimensional nonlinear programming (NLP) problem via discretizing the states and
the controls at a set of mesh points, which should be carefully designed via com-
promising the computational burden and the solution accuracy. In general, the larger
number of mesh points, the more accurate solution as well as the larger computa-
tional cost including CPU time and memory [1]. There are many numerical methods
have been developed for the transcription of OCPs, and the most common method is
by using Pseudospectral (PS) collocation scheme [2], which is an optimal choice of
mesh points in the reason ofwell-established rules of approximation theory [3]. Actu-
ally, there have several mature optimal control toolkits based PS methods, such as
DIDO [4], GPOPS [5]. The resulting NLP problem can be solved by the well-known
algorithm packages, such as IPOPT [6] or SNOPT [7]. However, these algorithms
cannot obtain a solution in polynomial-time, and the resulting solution is locally
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optimal. Moreover, a good initial guess solution should be provided for complicated
problems.

Convex optimization method provides a polynomial-time complexity for solving
convex programming problem, and has been wildly used for solving OCP, especially
for complicated space missions [8–11]. In convex optimization framework, the orig-
inal OCP is converted into a second-order conic programming (SOCP) problem by
using some convexification techniques and discretization on uniformly distributed
points. To achieve sufficiently accurate solution, one way is to choose a large num-
ber of discretized points, which leads to extra computational burden, and an-other
way is employing PS method [12–14]. In [15], the various discretization methods,
including the zeroth order hold (ZOH), the first order hold (FOH), the classical
Runge–Kutta fourth order integration method, and global PS methods (Chebyshev-
Gauss-Lobatto, CGL, Legendre-Gauss-Radau, LGR) are considered in the convex
optimization framework for solving the planetary powered landing trajectory opti-
mization problem, and the authors con-clude that PS methods can provide more
consistent solutions, which are less sensitive to the number of mesh points.

It is to note that only the cases ofmesh points are considered in [15], while in some
certain applications, especially aerospace applications, to achieve more accuracy,
the more mesh points are required [16]. However, purely increasing will lead to
ill-conditioned NLP problem [17], which is hard to solve or cannot to be solved.
In order to overcome such ill-conditioned phenomenon, some well-conditioned PS
methods for ordinary differential equations (ODEs) have been proposed in [17, 18], in
which, Birkhoff PS method stemmed from Birkhoff interpolation [19] is introduced
to solve higher-order ODEs. In [16, 19], the first-order Chebyshev Birkhoff PS
(CBPS) method is proposed to transcribe general OCP into NLP, and the advantages
of CBPS over other PS methods, especially for large mesh grids, is demonstrated by
its application in solving an orbital transfer problem.

In this chapter, we apply PS methods using Bikrhoff polynomials to the con-
vex optimization framework for OCPs, particularly, the first order and second-order
Birkhoff PS (BPS) methods with LGL and CGL collocation schemes are applied to
transcribe a class of cascaded second-order systems, which may be convex or not.
The first-order BPS method in convex optimization framework is similar to that in
[16], hence we focus on the PS transcription for convexified OCP by using second-
order Birkhoff polynomials. The main contributions of this paper lie in two aspects:
(1) the unified matrix formulation of OCP by using BPS method within the convex
optimization framework is proposed and validated; and (2) the computational per-
formances and solution accuracies resulted from various PS schemes are extensively
exploited thereby a useful conclusion that, using BPS method renders the remark-
able drops in the condition number for the generated programming problem therefore
lowering the computational cost.

The remainder of this chapter is organized as follows. The preliminaries of convex
programming and PS method for general convexified optimal control problems are
presented in Sect. 4.2, then the proposed well-conditioned PS method via Birkhoff
polynomials within the convex optimization framework is detailed in Sect. 4.3. The
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demonstrated examples of a simple cart problem as well as a rescue orbit searching
problem for validating the effective-ness and efficiency of the proposed method are
presented in Sect. 4.4 followed by the conclusions in Sect. 4.5.

4.2 Preliminaries of Convex Programming and PS Method
for Optimal Control

In general, the free-final-time OCP can be converted into a fixed-final-time problem
by normalizing the time into the domain of [0, 1], consequently, only the fixed-final-
time problem is considered in this chapter. A typical OCP is given as the following
problem G.

ProblemGmin J = ∫t f
t0 L(x,u)dt (4.1)

s.t. ẋ =
[
ẋ1
ẋ2

]
=

[
x2
f(x1, x2,u)

]
�= F(x,u) (4.2)

P(x,u) ≤ 0 (4.3)

x(t0) = x0,ψ(x(t f )) = 0 (4.4)

where the prescribed time instants t0 < t f < ∞, the state vector x = [xT1 , xT2 ] ∈ R
2n ,

the control vector u ∈ R
m , ˙x(t0) and ˙x(tf) are specified with the boundary constraints

(4.4), the nonlinear path constraints in (4.3) may be various form in terms of x and u.
The problemG is a kind of Lagrange problem, in which, the performance index (4.1)
is the integral of Lagrange function [9] L(x,u) on time domain [t0, t f ]. According to
the optimal control theory [20], other types including Mayer, Bollza, and Quadratic
problems can be converted into a Lagrange problem. The nonlinear dynamics in
(4.2) is a typical cascaded second-order system, which is widely used to formulate
the linear motion of a spacecraft, such as the Mars landing [8], launch ascent [21],
etc.

4.2.1 Convex Programming Method for OCP

To solve the general problem G by convex programming method, the performance
index (4.1) and the constraints (4.2)∼(4.4) should be the form of linear or second-
order cone (SOC), thus the convexification techniques are required for converting
the nonlinear or concave constraints to the corresponding convex formulation. The
most important issue lies in the conversion process is to guarantee the solution of the
converted problem is still that of the original problem.



102 D. Zhao et al.

For some typical problems with the form of G, which are relatively simple, one
can introduce some auxiliary state and (or) control variables as well as some unique
relaxation to obtain the convex versions of the original problems. Such procedure
is called a lossless convexification technique, which can be found in [8, 9, 22, 23].
For general OCPs, successive convex programming (SCP) method is proposed for
handling more general nonconvex constraints [10, 24–26]. The main idea of SCP is
to solve a nonlinear and nonconvex problems via iteratively solving a series of local
convex approximate problem using linearization on the solution of last iteration.
Denote the solution of the kth iteration to the original problemG as

{
xk,uk

}
, thereby

the following sequential convex version

ProblemSC : min J = ∫t f
t0

[
L(zk) + [

Lz(zk)
]T

(z − zk)
]
dt

with z = [xT ,uT ]T
s.t. ẋ1 = x2

ẋ2 = ak1x1 + ak2x2 + gku + ck

P(zk) + Pk
x (z − zk) ≤ 0

x(t0) = x0

ψ(xkt f ) + ψk
xt f (x(t f ) − xkt f ) = 0

|z − zk| ≤ ε

(4.5)

which is a first-order approximation of the problem G, and the symbols denote the
following:

(1) The performance index L(x,u) is approximated by its Taylor first order expan-
sion, and Lz(zk) = ∂L/∂z|z=zk . Similarly the path constraints (4.3) and the boundary
constraints (4.4) are first-orderly approximated, and

Pk
z = ∂P/∂z|z=zk , ψ

k
xt f = ∂ψ/∂xtf |xtf =xktf

.

(2) The dynamic constraints (4.2) are linearized on the trajectory
{
xk,uk

}
, and

the linearizing coefficients are given by

ak1 = ∂f/∂x1|x=xk ,u=uk , ak2 = ∂f/∂x2|x=xk ,u=uk

gk = ∂f/∂u|x=xk ,u=uk

ck = f(xk,uk) − ak1x
k
1 − ak2x

k
1 − gkuk

(4.6)

(3) The trust region constraints |z − zk| ≤ ε are introduced in problem SC to
ensure its solution is still that of original problem G, and the reason lies in that the
first-order approximation is only reasonable within a small neighborhood around
{xk,uk}.
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For convex problem SC, one can use some appropriate discretizing methods, and
let the states and controls on the discrete points be decision variables henceforth
a convex programming problem (or an SOCP problem), which can be efficiently
solved by the classical conjugate gradient method [13] or the popular primal-dual
interior method, such as ECOS [27], Mosek [28].

Remark 1 Unlike the second-order approximations used in sequential quadratic pro-
gramming (SQP) [29], the above procedure in themanner of first-order guarantees the
approximations are convex and suitable be solved by efficient convex programming
algorithms. In [10], the authors have presented a thoroughly theoretical analysis,
and pointed out that, by introducing appropriate trust region constraints, the iterative
solutions of the series problem SC will converge to that of the original problem G.

In this chapter, we concentrate on the PS method for problem SC, which contains
various constraints and tedious bookkeeping, and may cause distractions. In fact, the
emphasis of discretizing procedure is about the dynamic constraints, hence a distilled
convex optimal control problem is given by

Variables :x = [xT1 , xT2 ]T ∈ 2n,u ∈ m, τ ∈ [−1, 1] (4.7)

ProblemC : min J [x(·),u(·)] = E(x(−1), x(1)) (4.8)

s.t. ẋ1(τ ) = sx2(τ )

ẋ2(τ ) = s
[
a1x1(τ ) + a2x2(τ ) + gu(τ )

] (4.9)

e(x(−1), x(1)) = 0 (4.10)

where the index function E(·) and the boundary constraints e(·) are reasonably
supposed to be convex; the time mapping scale factor s = dt/dτ = (t f − t0)/2,
which is resulted from that, the time dependent variable t ∈ [t0, t f ] is converted into
the PS time τ ∈ [−1, 1] by using the mapping t = (t f − t0)τ/2 + (t f + t0)/2.

In problem C, the dynamic constraint (4.9) and boundary constraint (4.9) are
considered, while the path constraints P(·) are not considered for the convenience
of subsequent discussions. It is a reasonable simplification, since the PS results
generated for problem C can be easily recovered to problem SC as shown in [16,
30].

4.2.2 PS Method for Convex Optimal Control Problem

In PS optimal control techniques, any time signal f (·) can be expressed as a linear
combination of a series of orthogonally Lagrange polynomials
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f (τ ) =
N∑
i=0

fiLi (τ ) (4.11)

where the spectral coefficient fi = f (τi );π N := [τ0, τ1, . . . , τN ] is the discrete point
set such that −1 ≤ τ0 ≤ τ1 ≤ · · · ≤ τN−1 ≤ τN ≤ 1 and Li ∈ PN are the Lagrange
orthogonally interpolating polynomials at the freedom of degree N , which satisfy
the Kronecker relationship

L j (τi ) = δi j (4.12)

Differentiating (4.11) and evaluating f (τ ) on the discrete points yields:

ḟ (τi ) =
N∑
j=0

f j L̇ j (τi )
�= ḟ = Df (4.13)

where the PS differentiation matrix (PSDM) D ∈ (N+1)×(N+1) is given by di j =
L̇ j (τi ) for 0 ≤ i, j ≤ N ; and f = [ f0, . . . , fN ]T . It’s to note that the higher-order
differentiation matrix is given by [31]

D(k) = DD . . .D = Dk (4.14)

Particularly for second differential of f (τ ), we have

f̈ = D(2)f (4.15)

The best choices forLi are the Legendre and Chebyshev polynomials [30] hence-
forth the Legendre and Chebyshev PS methods. When mesh points defined by
τi ∈ (−1, 1), the mesh points are Gauss points, while for Gauss-Labotto points, τi ∈
[−1, 1] contain the two boundary points, and forGauss-Radau points, τi ∈ (−1, 1] or
τi ∈ [−1, 1). Since the boundary points must be constrained in many OCPs, Legend-
Gauss-Labotto (LGL) andChebyshev-Gauss-Labotto (CGL) collocation schemes are
usually used in PS methods [32].

The PS transcription by using (4.13) for the general problem G can be found in
[5, 33]. Here two types of PS transcription with matrix formulations for the convex
problem C are presented as follows.

(1) Consider the dynamic constraints in problem C as a first-order system, and let

X = [x0, x1, . . . , xN ]T = [x(τ0), x(τ1), . . . , x(τN )]T ∈ (N+1)×2n

U = [u0,u1, . . . ,uN ]T = [u(τ0),u(τ1), . . . ,u(τN )]T ∈ (N+1)×m (4.16)

Using (4.13) yields
DX = Ẋ (4.17)
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For the convenience of representation, rewrite the dynamic constraint (4.9) in prob-
lem C as

ẋ(τ ) =
[
ẋ1(τ )

ẋ2(τ )

]
= s

[
0 I
a1 a2

]
x(τ ) + s

[
0
g

]
u(τ )

�= F(x,u) (4.18)

Denote

F (X,U) = [F0,F1, . . . ,FN ]T = [F(x(τ0), u(τ0)),F(x(τ1), u(τ1)), . . . ,F(x(τN ), u(τN ))]T
(4.19)

Thus, problem C can be transcribed as

Decision Variables : X =∈ (N+1)×2n,U ∈ (N+1)×m

Problem DPSC1 : min J N [X,U] := E(x0, xN )

s.t. DX = F (X,U)

e(x0, xN ) = 0

(4.20)

(2) An alternative PS method for problem C is taking its dynamic constraints as
a second-order systems:

ẍ1(τ ) = sẋ2(τ ) = s2
[
a1x1(τ ) + a2ẋ1(τ ) + gu

] �= f(x1(τ ), ẋ1(τ ),u(τ )) (4.21)

and let

X1 = [x10, x11, . . . , x1N ]T = [x1(τ0), x1(τ1), . . . , x1(τN )]T ∈ (N+1)×n (4.22)

F (X1, Ẋ1,U) = [f0, . . . , fN ]T = [f(x1(τ0), ẋ1(τ0), u(τ0)) . . . , f(x1(τN ), ẋ1(τN ), u(τN ))]T
(4.23)

thus, the system (4.18) can be transcribed as

DX1 = Ẋ1 = sX2 = s[x20, x21, . . . , x2N ]T = s[x2(τ0), x2(τ1), . . . , x2(τN )]T
(4.24)

and
D(2)X1 = Ẍ1 = F (X1, Ẋ1,U) = F (X1,X2,U) (4.25)

Combining (4.21), (4.25), problem C can be transcribed as the following second-
order form:

Decision Variables : X1 ∈ (N+1)×n,U ∈ (N+1)×m

Temporal Variable : X2 = DX1/s
Problem DPSC2 : min J N [X,U] := E(x0, xN ),X = [XT

1 ,X2
T ]T

s.t. D(2)X1 = F (X1,X2,U)

e(x0, xN ) = 0

(4.26)
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where the temporal variable X2 is algebraically represented by the decision variable
X1.

It is obviously that the number of decision variables in problem DPSC2 is only
half of that in problem DPSC2, and this will reduce the scale of convexified prob-
lem and alleviate the requirement of computational memory. It is to note that such
reduction of decision variables will make the transcribed problem denser, which will
undermine the solving efficiency for some convex optimization solver. The PSDM
D and D(2) usually include large round-off error which is resulted from the large
condition number [34], particularly, the condition numbers of the generated prob-
lems DPSC1 and DPSC2, irrespectively, dramatically grow in the manner of O(N 3)

and O(N 4) (shown in Fig. in the subsequent of this chapter), where N is the number
of mesh grids. The overlarge condition number will lead to an ill conditioned prob-
lem DPSC1 and DPSC2, which are difficult to solve since the numerically unstable
phenomenon accompanying with the large condition number. Hence, the mesh grid
number should be limited to alleviate numerical difficulties, meanwhile, the limited
mesh grid number potentially undermines the pursuit of more accurate solution.

Actually, in order to reduce the condition number, there have many studies (see
[17] and references therein) to find an appropriate preconditioner M for PS method
with the forms of (4.20) and (4.26), such that the discretized dynamic constrains can
be written as

MDX = MF (X,U) (4.27)

for (4.20), or
MD(2)X = MF (X1,X2U) (4.28)

for (4.26). The function of the matrix M is to reduce the condition number of the
matrix equations resulted byMD orMD(2). However, given a non-diagonal matrix
M, the sparsity of the right hand of (4.27) and (4.28) will decrease therefore increas-
ing the computational burden of the resulted mathematical programming problem
[16]. An alternative method is show in the next section, in which, the use of Birkhoff
interpolating polynomials [18] provides a new PS method by which solutions can be
obtained over thousands of mesh points in a stable manner.

4.3 Well-Conditioned Second-Order Birkhoff PS Method

4.3.1 Birkhoff Interpolation at GL Points

Let f (τ ) be a second-order continuously differentiable function on the interval τ ∈
[−1, 1], then the second-order Birkhoff interpolation polynomial f N (τ ) is given as

f N (τ ) := f (τ0)B0(x) +
N−1∑
i=1

f̈ (τi )Bi (τ ) + f (τN )BN (τ ), τ ∈ [−1, 1] (4.29)
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where π N = [τ0, τ1, . . . , τN ] with τ0 = −1 and τN = 1 is a GL point grid, and
Bi (i = 0, . . . , N ), the counterpart of the Lagrange basis polynomials {L}Ni=0, are
the Birkhoff interpolation basis polynomials of order N or less, meanwhile, the
following interpolation condition on mesh points must be satisfied:

f̈ N (τi ) = f̈ (τi ) for 1 ≤ i ≤ N − 1 and f N (±1) = f (±1) (4.30)

If the interpolation (4.29) exists, then Bi satisfy the following [18]

B0(τ0) = 1, BN (τ0) = 0, Bj (τ0) = 0, j = 1, . . . , N − 1
B0(τN ) = 0, BN (τN ) = 1, Bj (τN ) = 0, j = 1, . . . , N − 1
B̈0(τi ) = 0, B̈N (τi ) = 0, B̈ j (τi ) = δi j i = 1, . . . , N − 1; j = 1, . . . , N − 1

(4.31)
According to Theorem 3.1 proposed in [18], Bi can be defined in terms of the
Lagrange basis polynomials {L̃i }N−1

i=1 of degree N − 2, therefore

B0(τ ) = 1−τ
2

Bi (τ ) = 1+τ
2

∫ 1
−1 (τ − 1)L̃i (τ )dτ + ∫ τ

−1 (τ − t)L̃i (t)dt, j = 1, . . . , N − 1

BN (τ ) = 1+τ
2 .

(4.32)
Evaluate the Birkhoff basis interpolation polynomials on the given GL points π N ,
and let bi j = Bj (τi ), thus the second-order Birkhoff PS integration matrix (BPSIM)
as

B = [bi j ]|0≤i, j≤N ∈ (N+1)×(N+1)

Bin = [bi j ]|1≤i, j≤N−1 ∈ (N−1)×(N−1) (4.33)

Using the matrix defined in (4.33), rewrite (4.29) on, we henceforth have:

Bf̃ (2) = f (4.34)

where f̃ (2)=[ f (τ0), f̈ (τ1), . . . , f̈ (τN−1), f (τN )]T , f=[ f (τ0), f (τ1), . . . , f (τN−1),

f (τN )]T . In light of (4.13), differentiating two sides of (4.34) with respect to PS
time yields

DBf̃ (2) = B(1)f̃ (2) = Df = ḟ (4.35)

and, second-order differentiating has

D(2)Bf̃ (2) = B(2)f̃ (2) = D(2)f = f̈ (4.36)

The above equations can be generalized as [18]

B(k) = D(k)B = DkB = DB(k−1), k ≥ 1 (4.37)
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Recall (4.15), and replace the first row and the last row ofD(2) by e1 = [1, 0, . . . , 0]
and e1 = [1, 0, . . . , 0], respectively, therefore a matrix denoted by D̃(2). Then there
has

D̃2f = f̃2 (4.38)

From (4.34) and (4.38), it is obvious that D̃2f = D̃2Bf̃ (2) = f̃ (2, consequently, we
have

D̃2B = IN+1,D2
inBin = IN−1 (4.39)

where D(2)
in is a submatrix of D(2), i.e, D2

in = [di, j ]1≤i, j≤N−1 ; and In is an identity
matrix.

According to (4.39), we can compute B by the inverse of D̃2. Unfortunately, the
condition number of D̃2 will dramatically increase for the overlarge mesh points, and
thiswill lead to the loss of accuracy for thematrix inverse computation.Consequently,
it is necessary to formulate the Birkhoff integration matrix in accordance with (4.32),
and the details for computing B can be found in [18].

Besides the second-order Birkhoff interpolation polynomial given by (4.29), one
can easily obtain the first-order Birkhoff polynomial and the corresponding first-
order BPSIM. The applications of first-order BPSIM for the OCP are demonstrated
in [18, 35], in which, the OCP is transcribed into an NLP problem by first-order
Birkhoff PS method. The interesting readers can found the details about first-order
BPSIM in [35].

4.3.2 Preconditioned Birkhoff PS Method

It is possible to facilitate solving problem DPSC2 by using Birkhoff PSIM as pre-
conditioners. Let the mesh grid π N = [τ0, τ N

in , τN ] where π N
in is the set of inner

points except boundary points τ0 and τN , and partition the algebraic equation
D(2)X1 = F (X1,X2,U) in (4.26) as

⎡
⎢⎣

d(2)
0,0 d(2)

0,1:N−1 d(2)
0,N

d(2)
1:N−1,0 Din d(2)

1:N−1,N

d(2)
N ,0 d(2)

N ,1:N−1 d(2)
N ,N

⎤
⎥⎦

⎡
⎣ X10

X1in

X1N

⎤
⎦ =

⎡
⎣ F0(X1,X2,U)

Fin(X1,X2,U)

FN (X1,X2,U)

⎤
⎦ (4.40)

where d(2)
i, j is the entry of the second PSDM D(2). We henceforth have

DinXin = Fin(X1,X2,U) − d(2)
1:N−1,0X10 − d(2)

1:N−1,NX1N (4.41)

Left-multiplying both sides of (4.41) by Bin and using (4.39) yield

Xin = BinFin(X1,X2,U) − Bind
(2)
1:N−1,0X10 − Bind

(2)
1:N−1,NX1N (4.42)
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Meanwhile, the boundary points at τ0 and τN are constrained by

D(2)
0 X1 = F (X10,X20,U0),D(2)

N X1 = F (X1N ,X2N ,UN ) (4.43)

where a matrix with subscript i represents the i th row vector of the matrix.
Based on (4.41) (4.43), the preconditioned problem DPSC2 is given as follows

DecisionVariables : X1 ∈ (N+1)×n,U ∈ (N+1)×m

TemporalVariable : X2 = DX1/s
Problem P−DPSC2 : min J N [X,U] := E(x0, xN ),X = [XT

1 ,X2
T ]T

s.t. D(2)
0 X1 = F (X10,X20,U0),

Xin = BinFin(X1,X2,U) − Bind
(2)
1:N−1,0X10 − Bind

(2)
1:N−1,NX1N

D(2)
N X1 = F (X1N ,X2N ,UN )

e(x0, xN ) = 0
(4.44)

4.3.3 Birkhoff PS Method for Convex Optimal Control

In order to apply the Birkhoff interpolates of the previous subsection to problem C.
Denote the unknown optimization variables over the mesh grid π N by

VN = [x10, x11, . . . , x1N ]T = [x1(τ0), ẍ1(τ1), . . . , ẍ1(N−1)(τN−1), x1(τN )]T ∈ R
(N+1)×n

(4.45)
correspondingly, over the inner points τ N

in we have

VN
in = [x11, . . . , x1(N−1)]T = [ẍ1(τ1), . . . , ẍ1(N−1)(τN−1)]T ∈ R

(N+1)×n (4.46)

According to (4.34) (4.37) we have

X1 =
⎡
⎣ X10

X1in

X1N

⎤
⎦ = BV = B

⎡
⎣ V0

Vin

VN

⎤
⎦ (4.47)

B(1)V = DBV = DX1 = Ẋ1 = sX2 (4.48)

B(2)V = D2BV = D2X1 = Ẍ1 (4.49)

where B0 and BN , respectively, are the first and last row of B. Thus, for the dynamic
constraints (4.21) we have

B(2)
0· V = F (X10, Ẋ10,U0) (4.50)
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Vin = Fin(X1in, Ẋ1in,Uin) (4.51)

B(2)
N ·V = F (X1N , Ẋ1N ,UN ) (4.52)

The Birkhoff equality constraints (4.50) and (4.52) impose the differential equation
(4.21) at the boundary point τ0 and τN . The following proposition presents the equiv-
alency between the above Birkhoff equality constraints and the differential equation
via the Lagrange condition.

Proposition Let X1 j = xT1 j = xT1 (τ j ), At τ = τ0 and τ = τN , the Lagrange and
Birkhoff interpolants respectively satisfy the conditions

N∑
j=0

X1 j

..L(τ0) = B(2)
0· V (4.53)

and
N∑
j=0

X1 j

..L(τN ) = B(2)
N ·V (4.54)

Proof Recall the Birkhoff interpolation polynomial (4.29) and the Lagrange inter-
polants, we have

X1(τ ) =
N∑
j=0

X1 jL(τ ) = X10B0(τ ) +
N−1∑
j=1

Vi Bi (τ ) + X1N BN (τ )

= V1B0(τ ) +
N−1∑
j=1

Vi Bi (τ ) + VN BN (τ )

(4.55)

where Vi denotes the i th row of V. Differentiating (4.55) twice with respect to PS
time τ yields

N∑
j=0

X1 j L̈(τ ) = V0 B̈0(τ ) +
N−1∑
j=1

Vi B̈i (τ ) + VN B̈N (τ )

= [
B̈0(τ ), B̈1(τ ), . . . , B̈N (τ )

]
V

(4.56)

Evaluating (4.56) at τ = τ0 we henceforth have

N∑
j=0

X1 j L̈(τ0) = [
B̈0(τ0), B̈1(τ0), . . . , B̈N (τ0)

]
V (4.57)

It is obvious that the first row of BPSIM is the evaluating value of Bj (τ )( j =
0, . . . , N ) at τ = τ0 in light of (4.33), further, the first row of B(2) denoted by
B(2)

0· = [
B̈0(τ0), B̈1(τ0), . . . , B̈N (τ0)

]
. Thus (4.53) holds, and it is similar to (4.54).

�
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Collecting the above relevant equation, the problem C can be transcribed as the
follows

DecisionVariables : V ∈ (N+1)×n,U ∈ (N+1)×m

TemporalVariables : X1 = BV,X2 = B(1)V
ProblemBPSC2 : min J N [X,U] := E(x0, xN ),X = [XT

1 ,X2
T ]T

s.t. B(2)
0· V = F (X10, Ẋ10,U0)

Vin = Fin(X1in, Ẋ1in,Uin)

B(2)
N ·V = F (X1N , Ẋ1N ,UN )

e(x0, xN ) = 0.

(4.58)

4.4 Application Examples

To demonstrate the effectiveness of the proposedmethod for OCPs by using Birkhoff
PS method and convex programming algorithms, two application examples are con-
sidered in this section. One is a simple cart problem with boundary position and
velocity constraints, which is convex in nature. Another is an online rescue trajec-
tory optimization problem for launch ascent to orbital insertion, which is concave
and complicated, and SCP method by using successive linearization is required.

The following numerical results are obtained on a laptop computer with an Intel
Core i7-1065G7 CPU @ 1.3GHz and 32G RAM. YALMIP [36] and ECOS [27,
37] are used for modeling and solving problems. YALMIP is a MATLAB toolbox
for the rapid modeling for mathematical optimization problems, while ECOS is a
light embedded toolkit based on the primal-dual interior-point algorithm. ECOS is
designed to solve the following standard SOCP problem.

min cT x
s.t.Ax = b
Gx + s = h, s ∈ K

(4.59)

where x are decision variables to be optimized, s are the slack variables, and K
are conic constraints. The previous problems of DPSC2, P-DPSC2, and BPSC2
are modeled by using YALMIP therefore a programming problem with the form
of (4.59). The matrix A in equality constraints in (4.59) strongly depends on the
collocation scheme, and the condition number of A will dramatically impacts on
the efficiency of solving algorithms, although many special skills are proposed in
ECOS to handle such phenomenon. Hence in the following numerical studies, the
condition number ofA is taken as an index to evaluate the performance of different
PS schemes including the first-order and second-order methods.

In the remainder of this paper, three second-order methods refer to DPSC2 in
(4.26), P-DPSC2 in (4.44) and BPSC2 in (4.58). While three first-order methods,
respectively, are problem DPSC1 in (4.20), the preconditioned version denoted by
P-DPSC1, and BPSC1 transcribed by using the first-order Birkhoff PS method. Note
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the formulations of P-DPSC1 and BPSC1 resulted from the first-order Birkhoff
PS method are not presented in this paper, actually they are similar to P-DPSC2
and BPSC2, and the interested readers can find the details in [16]. Moreover, to
demonstrate the effects of different collocation schemes, CGL and LGL collocation
schemes are considered. The computation of BPSIM relating to Chebyshev and
Legendre polynomials are given in [18].

4.4.1 Simple Cart Problem

An OCP of a simple cart system with fixed final time is given as follows [38]

min J = ∫t f
0 u2dt

s.t.ẋ1 = x2, ẋ2 = −x2 + u
x1(0) = 0, x2(0) = 0
ax1(t f ) + bx2(t f ) − c = 0

(4.60)

where the parameters a = 1.0, b = −2.694528, c = −1.155356, the final time
t f = 2. Using the indirect method for (4.60) results the analytical solutions given as

u(t) = 1
4e

t − 1
2

x1(t) = − 3
8e

−t + 1
8e

t − 1
2 t + 1

4
x2(t) = 3

8e
−t + 1

8e
t − 1

2

(4.61)

with the optimal performance index Jana = 0.577678.
The problem (4.60) is convex in nature, hence the aforementioned six PSmethods

with convex programming can be directly used, and the convexifying operations are
not required. Figure 4.1 presents the analytical solution as well as that of BPSC2
with LGL mesh grid. The interpolating curves based on the optimized values on
mesh points via Lagrange polynomials at the freedom of degree almost identify with
the analytical solution.

The comparison results are demonstrated by Tables 4.1 and 4.2, in which, six
PS methods (DPSC1, P-DPSC1, BPSC1, DPSC2, P-DPSC2 and BPSC2) are imple-
mented through CGL and LGL mesh grids (N = 5, 20, 60, 120), respectively. Four
different indices are listed as follows.

(1) Cond.A refers to the condition number of the matrix in equality constraint of
(4.59).

(2) The integration error e in two tables is defined by

e = ‖x − xana‖∞ (4.62)

where xana = [x1ana, x2ana] are given by (4.61), x = [x1, x2]T are the integration
solution of simple cart system via 4-order Runge–Kuta algorithm with the control
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Fig. 4.1 Optimal solution via BPSC2 with LGL collocation scheme and the analytical solution
(mesh grid N = 5)

input u(t) which is interpolated from the optimized control variables uN on mesh
nodes, and the step of Runge-Kuta integration is ts = 0.001s.

(3) �J = |J N − Jana|, where JN is resulted from optimized algorithms on dif-
ferent mesh grid N .

(4) Solve time in millisecond refer to the time consumed by ECOS.
Observe from Tables 4.1 and 4.2 that the proposed second-order BPSC methods

provide a more stable performance than other methods while increasing the num-
ber of mesh grids N . The crucial reason lies that when the mesh grids increase, the
condition number of A in DPSC2 will dramatically grows like O(N 4), and that in
BPSC2 behaves like O(N ). The growth of condition number of A resulted from
DPSC1, DPSC2, BPSC1, and BPSC2 is clearly illustrated in Fig. 4.2 from which,
CGL collocation scheme is slightly advantageous over than LGL. Meanwhile, the
solver time consumptions of all mentioned methods provided in Tables 4.1 and 4.2
strongly relate to the condition number. It is also can be observed that when N ≥ 60,
DPSC2 and P-DPSC2 cannot provide a reasonable solution since the numerical insta-
bility aroused by the overlarge condition number. It can be seen that, preconditioned
method using BPSIM according to the method in [16], and the main reason lies in
the handling of boundary constraints. In [17], the authors proposed another precon-
ditioning method, however, the method concentrates on solving general ODEs with
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Fig. 4.2 Condition numbers of A resulted from DPSC1, DPSC2, BPSC1 and BPSC2

boundary conditions, the control input cannot been considered. Moreover, compar-
ing BPSC1 and BPSC2, the latter method demonstrates more efficiency while the
increase of mesh grid number.

4.4.2 Rescue Orbit Searching Problem

The second illustrative problem is about launch insertion while thrust failure. When
a thrust drop failure occurs during a launch mission, may the prescribed target orbit
be reachable or not? This question can be addressed by searching a maximum-height
circular orbit (MCO) in the orbital plane formed at the time of failure, and this is
validated by [21], inwhichMCO is obtained by solving the following optimal control
problem.

ProblemMCO :min J = −h f (4.63)

s.t. ṙ = v
v̇ = − 1

r3 r + κT
m ib, ‖ib‖ = 1

(4.64)
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ṁ = − κT

Ispg0
(4.65)

e(t f ) = 0 ⇔
{
r(t f )T v(t f ) = 0
r(t f )v2(t f ) − μ = 0

(4.66)

i(t f ) = it f ⇔
{
r(t f )T ihref = 0
v(t f )T ihref = 0

(4.67)

r(t0) = r0, v(t0) = v0 (4.68)

where r and v are the position and velocity vectors of the launch vehicle in the earth
centered inertial (ECI) coordinate, respectively, normalized by the Earth radius RE

and
√
REgE , where gE is the gravitational acceleration at sea level, meanwhile their

magnitudes defined by r = ||r||, v = ||v||; the dependent variable t is normalized
by

√
RE/gE ; the thrust direction is given by ib; thrust failure factor κ refers to

the percentage of the failure thrust compared to the nominal thrust T normalized
by m0gE , where m0 is the initial mass of vehicle; the mass m is scaled by m0,
and the rocket engine’s specific impulse Is p in seconds is scaled by

√
RE/gE ; g0

represents normalized gravitational acceleration by gE ;. The equations (4.66) and
(4.67), respectively, impose constraints on the eccentricity e and the inclination angle
i on the final time t f . The reference normalized orbital angular moment is provided
by

ihref= [sin
re f sin ire f ,− cos
re f sin ire f , cos ire f ]T (4.69)

where
re f and ire f are the longitude of the ascending node (LAN) and the inclination
angle, which are predefined by the nominal trajectory without any failure.

To solve problem MCO via convex programming method, an initial trajectory
is necessary for linearizing and convexifying the non-convex constraints. However,
a good initial trajectory, which can make solving procedure definitely converges, is
hard to be obtained. In [22], through estimating the geocentric angle of injection point,
a temporary orbital coordinate system (OCS) was established, then the maximum
height searching was conducted in OCS, in which, the problem MCO is confined
in 2-dimensional space. The solution obtained in OCS was converted into original
inertial coordinate system, and was taken as the initial trajectory of problem MCO.

In this paper, a new procedure for solving problem MCO is presented. Note that
the specific impulse Isp remains whatever unchanged, and the thrust magnitude is
assumed being a known constant after the thrust drop. Hence the mass rate ṁ as
well as the remaining flight time tgo = mprop/ṁ can be calculated after thrust failure
occurring, where mprop is the known remaining propellent. As a result, the mass
variation equation in (4.65) can be replaced by an algebraic equation

m(t) = m0 − (t − t0)ṁ, t0 ≤ t ≤ t0 + tgo (4.70)

Correspondingly, the acceleration magnitude in any time instant is given by
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A(t) = κT

m(t)
(4.71)

Hence the dynamic constraints in (4.65) can be omitted in the subsequent optimiza-
tion procedure, and the term of T/m in (4.64) can be replaced by A in (4.71).

The proposed iteratively solving procedure via SC algorithm is as follows.
Step 1. In the first iteration k = 0, let the radius of vehicle r0(t) be a straight line

from the vehicle’s current radius r(t0) and the prescribed radius r(t f ) of the nominal
trajectory. Irrespective of the constraints (4.66), we henceforth have the following
simplified convex version of problem MCO.

Subproblem0 :
min J = −xof
s.t.ṙ = v, v̇ = −r/(r0)3 + A(t)ib
r(t f )T ih′ = 0, v(t f )T ih′ = 0
r(t0) = r0, v(t0) = v0
‖ib‖ ≤ 1

(4.72)

Here, the index performance

xof = [1, 0, 0]TO ′
EC I r(t f ) (4.73)

represents the position along the x-axis in a temporary OCS, which is defined by the
LAN 
′ and the inclination angle i ′ when the thrust failure occurs, as well as the
prescribed argument of the perigee ωre f , thereby

TO ′
EC I =

⎡
⎣ cos
′ cosωre f − sin
′ sinωre f cos i ′ sin
′ sinωre f + cos
′ sinωre f cos i ′ sinωre f sin i ′

− cos
′ sinωre f − sin
′ cosωre f cos i ′ − sin
′ sinωre f + cos
′ cosωre f cos i ′ cosωre f sin i ′
sin
′ sin i ′ − cos
′ sin i ′ cos i ′

⎤
⎦

(4.74)
Note that 
′ and i ′ can be calculated by the current position r0 and velocity v0 of the
vehicle. Correspondingly, the desired terminal position and the velocity vectors are
constrained by ih′ defined by

ih′= [sin
′ sin i ′,− cos
′ sin′, cos i ′]T (4.75)

Problem (4.72) canbe solvedbySOCPsolver after discretization, thereby the solution
denoted by {r1, v1, i1b}

Step 2. When k ≥ 1, the constraints (4.64) and (4.66) in problem MCO can be
linearized on the solution of last iteration {rk, vk, ikb} thereby the convex subproblem
1 as follows
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Subproblem1 :
min J = −

(
rkf

)2 − 2rkf
(
rkf

)T
(r f − rkf ) ⇐ J = −∥∥r f

∥∥2

s.t. ṙ = v, v̇ = −r/(rk)3 + A(t)ib, rk(t) = ||rk(t)||
h(rkf v

k
f ) + ∂h

∂r f

∣∣∣
r f =rkf ,v f =vkf

(r f − rkf ) + ∂h
∂v f

∣∣∣
r f =rkf ,v f =vkf

(v f − vkf ) = 0

r(t f )T ihref = 0, v(t f )T ihref = 0
r(t0) = r0, v(t0) = v0
‖ib‖ ≤ 1

(4.76)

where the square of final radius, equivalent to the maximum height, is taken as
the optimization objective, i.e. J = −∥∥r f

∥∥2
. In accordance with the convexification

techniques provided by [10], the performance index J and the nonlinear equality
constraints in (4.66), denoted by h(r f , v f ) = 0 in (4.76), are linearized on {rkf , vkf }
which represent the final position and velocity vectors of the kth iterative solution.
Solving problem (4.76) yields the solution {rk+1, vk+1, ik+1

b }.
Step3.Compute error = ||rk+1(t) − rk(t)||. If error ≥ δ,where δ is a prescribed

small positive number, then set k = k + 1, and go to step 2; otherwise, terminate the

Fig. 4.3 Flow chart for solving problem MCO via BPSC2
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iteration, and the optimal solution is found to be {rk+1, vk+1, ik+1
b }., thus themaximum

circular orbital height is given by hopt = ||rk+1
f || − RE .

The above solving procedures can be summarized as the flow chart shown in
Fig. 4.3, in which, the BPSC2 method proposed in (4.58) is used to transcribe the
subproblem 0 and subproblem 1. In accordance with the flow chart, one can easily
use YALMIP to model and solve problem MCO.

Remark 2 In Step 1, since it is not easy to provide a three dimensional trajectory
for initializing problem (4.72), only simply linear radius profile of the vehicle from
the current position to the prescribed orbital insertion point is used for establishing
problem (4.72). On this scenario, r f and v f on the final time cannot be initialized,
hence the constraints (4.66), which enforce the orbital eccentricity be zero, are not
considered. Further, the constraints (4.67),which confine thefinal orbit in the nominal
orbital plane, are relaxed to confine the final states of vehicle in the current orbital
plane, and this is effective demonstrated by the latter numerical results.

Remark 3 InStep2, problem (4.76) is formulated by avery rough trajectory provided
the first iteration in Step 1, in which, the terminal states r1f and v

1
f are hard to satisfy

the constraints in (4.66), this results in that, directly linearizing (4.66) on r1f and
v1f is not reasonable. Actually, the numerical studies reveal such linearizing manner
cannot guarantee the convergence. Hence, the constraints (4.66) are relaxed as

(
rkf

)T
v(t f ) = 0rkf v

2(t f ) − μ = 0 (4.77)

which enforce the final velocity vector v(t f ) be perpendicular to the final position
vector rkf provided by the last iteration solution, meanwhile, their magnitudes satisfy
with the requirement of circular orbit. Such relaxations are reasonable in the above
solving procedure, because in Step 3, when the iterative termination criterion is sat-
isfied, we have rk+1

f → rkf , which means the relaxed constraints in (4.77) almost are
equivalent to those in (4.66). Obviously, the degree of almost equivalence depends on
the iterative termination condition δ, which is set as 10−6 in the following numerical
studies.

According to the above procedure, the proposed DPSC1, BPSC1, and BPSC2
are used to solve problem MCO, and the aforementioned preconditioned methods
(P-DPSC and P-DPSC2) are not considered since their poor performance demon-
strated in the last subsection. Moreover, GPOPS is adopted to obtain a baseline
solution for problem MCO.

Remark 4 The thrust direction ib in problemMCO is constrained by ‖ib‖ = 1, which
is non-convex and relaxed to a conic constraint ‖ib‖ ≥ 1 in (4.72) and (4.76). Such
relaxation is similar to that in [8, 25], and it can be proved that the optimal solution
obtained by solving (4.76) will satisfy

∥∥i∗b(t)∥∥ = 1, t ∈ [t0, t f ] as shown in Fig. 4.4.
In the subsequent numerical studies, the vehicle parameters are same to those in

the appendix A of [21]. Without loss of generality, the thrust drop occurs in the start
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of the second stage of vehicle. When the thrust failure factor, the optimized height
and velocity trajectories by using GPOPS and BPSC2 are shown in Fig. 4.4, which
reveals the results of two method are almost same. The results of DPSC1 and BPSC1
is similar to that of BPSC2, hence they are not presented in Fig. 4.4. DPSC2 cannot
converge for any mesh grid, and DPSC1 converges only when mesh grid. It is to note
that in DPSC1, the trust region constraints should be carefully selected, otherwise it
cannot converge at all. Meanwhile, the trust region constraints can be discarded in
BPSC1 and BPSC2, which are still converged. Figures 4.5 and 4.6, irrespectively,
present the iterative procedures of DPSC1 and BPSC2, and it can be seen that BPSC2
is more efficient and accurate than DPSC1.

Table 4.3 presents the performance comparison between GPOPS, BPSC1 and
BPSC2 for different thrust failure factor κ . CGL collocation scheme with N = 40
is adopted in Birkhoff PS methods. The resulted trajectory profiles by using BPSC2
for different κ and the nominal trajectory without any failure are presented in Fig.

Fig. 4.4 Optimal height,
velocity and control profiles
by using GPOPS and BPSC2
(N = 10, κ = 0.85)
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Fig. 4.5 Iterative procedure of DPSC1 (N = 10, κ = 0.85, 17 iterations, maximum height
165.0785 km, eccentricity 1.9445e-4)

Fig. 4.6 Iterative procedure of DPSC1 (N = 10, κ = 0.85, 17 iterations, maximum height
165.2726 km, eccentricity 7.0068e-07)

4.7. Observing Table 4.3, for each scenario, the index of maximum height and the
eccentricity provided by GPOPS are the best among three methods. The reason lies
in that, GPOPS directly solves the original problemMCO, while BPSC1 and BPSC2
solve a series of convexified and relaxed problems. Particularly, the constraints on
eccentricity of MCO are relaxed as (4.77) in our PS methods. However, BPSC1
and BPSC2 is more efficient than GPOPS, meanwhile, the optimized orbits with
very small eccentricities are almost circular, and such performance is acceptable in
practical engineering.
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Table 4.3 Comparison of GPOPS, BPSC1, and BPSC2 for different thrust failure factor
κ GPOPS BPSC1 BPSC2

Maximum
height(km)

Eccentricity Solve
time(s)

Maximum
height(km)

Eccentricity Solve
time(s)

Maximum
height(km)

Eccentricity Solve
time(s)

1.00 236.4511 2.29E-13 9.3881 236.3851 8.02E-07 0.574 236.3848 1.49E-06 0.262

0.95 222.1213 1.96E-14 3.301 222.0533 3.52E-07 0.605 222.0533 4.21E-07 0.321

0.90 200.1612 2.32E-13 2.9653 200.0895 6.97E-07 0.549 200.0895 4.55E-07 0.286

0.85 165.3954 1.02E-14 10.0759 165.3075 5.76E-07 0.799 165.3082 4.97E-07 0.288

0.80 99.0316 8.60E-15 15.721 98.7585 3.41E-07 1.18 98.7581 4.91E-07 0.313

Fig. 4.7 Height and velocity profiles via BPSC2 for different thrust failure factor and the nominal
trajectory

Further, the performances of BPSC1 and BPSC2 with different collocation
schemes and different mesh grids are listed in Table 4.4. In general, the compu-
tational time consuming of BPSC2 is less than that of BPSC1 since the less decision
variables used in BPSC2 thereby smaller scale of the transcribed SOCP problem.
The growth of condition number of generated by CGL and LGL with respect to the
mesh grid N is similar to Fig. 4.2, and CGL scheme is better than LGL to some
degree.
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4.5 Conclusions

In this chapter, Birkhoff polynomial based PS method is introduced to solve OCPs
via convex programming algorithms. The constrained optimal control problem for
a type of general second-order cascaded system is mainly considered. The matrix
formulation of PS method with BPSIM under the convex programming framework
for general OCPs is proposed, meanwhile, the solving procedure is generalized.
Comparing to other PS methods using PSDM, the Birkhoff PS method renders a
well-conditioned programming problem since the unique characteristics of BPSIM,
which will alleviate the computational burden for the programming solvers. This
advantage is remarkably demonstrated in the transcription of cascaded second-order
systems, in which, the condition number of DPSC2 behaves like while that of BPSC2
like. Moreover, this allows us using more mesh points to improve accuracy of solu-
tion. From the view of application, BPSC and BPSC2 with LGL as well as CGL
collocation scheme present similar performance while, however, for complicated
problem, BPSC2 renders smaller scale of generated problem than that of BPSC1
while, consequently less computational time consuming. In general, for the typical
cascaded second order, BPSC2 method is the best choice among the mentioned PS
methods, and it can be potentially used in online trajectory optimization and guidance
for ascent and recovery of launch vehicles.
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Chapter 5
Autonomous Descent Guidance
via Sequential Pseudospectral Convex
Programming

Marco Sagliano, David Seelbinder, and Stephan Theil

5.1 Introduction

The last ten years have been disruptive for rocket technology. We are witnessing a
paradigm shift which has its focus on reusability, a dreampursued since the beginning
of the Space Shuttle program [8], but that only nowwe are able to fully see as weekly-
based, operative technology. This ismainly the result of SpaceXefforts. The company
led by Elon Musk paved the way for a deep reshaping of the conception of rockets,
mainly with their Falcon 9 program, able, at the moment that this chapter is getting
written, to successfully complete its 100th landing [25]. The concurrent development
of the even more ambitious Starship program [26], together with the efforts of other
players, such as Rocket Labwith its Neutron [9] and Blue Origin with the NewGlenn
rocket [16] confirms that the disruption we are experiencing is irreversible, and needs
to be embraced rather than feared. With this spirit agencies and intergovernmental
institutions are updating their plans to keep the pace of the private sector.

In this complex scenario the German Aerospace Center (DLR), the Japan
Aerospace Exploration Agency (JAXA), and the French National Centre for Space
Studies (CNES) decided to join their resources and know-how in a trilateral agree-
ment aiming at developing and demonstrating the technologies that will be needed
for future reusable launch vehicles. The agreement led to the CALLISTO project
(Cooperative Action Leading to Launcher Innovation in Stage Toss back Operations)
[7], whose demonstrator is currently in development. Its objective is to develop and
improve all the critical technologies that are required for making reusable launch
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systems operative at industrial level in the next decade. The CALLISTO project will
culminate in a series of flights that will performed from the Kourou Space Center
(KSC), in French Guiana.

To maximize the know-how return of each partner it was decided to have two
parallel lines of development for the Guidance and Control (G&C) subsystem. One
will be developed by CNES, whereas DLR and JAXA decided to strengthen their
efforts and develop a unique, fully integrated G&C solution [23]. Since the focus
is to demonstrate reusability technologies for an end-to-end scenario the mission
profile consists of multiple flight phases, corresponding to different aerodynamic
configurations of the vehicle and different actuation capabilities. Specifically, we
identify four main phases of flight, which correspond to different G&C strategies:
the ascent phase, the boostback maneuver, the aerodynamic phase, and the powered
descent and landing phase. Consequently, several algorithms are required to cope
with each of the phases to be able to successfully and autonomously complete such
an ambitious mission.

This chapter focuses on the guidance strategy applicable to the last two phases,
namely the aerodynamic descent phase and the powered landing phase. As a matter
of fact it is well-known that the non-powered, aerodynamically guided phase is
critical for the error management in terms of position and velocity [3]. Moreover,
large uncertainties due to both the atmosphere and the aerodynamic properties of
the vehicle affect the resulting trajectory. Lastly, there will be errors coming from
previous segments of flight that the G&C subsystem has to compensate for. All these
aspects make the aerodynamic guidance a challenging problem, which requires the
capability to generate valid solutions rapidly, in reliable way, and in case significant
off-nominal conditions are experienced during the mission, these need be taken into
account. On the other hand the powered landing phase requires high accuracy and
a perfect coordination of thrust, position, velocity and attitude to meet the strict
requirements allowing for a safe and accurate touchdown, the so-called pinpoint
landing [4].

Given the aforementioned reasons, the problem of generating valid guidance solu-
tions in the frame of Entry, Descent, and Landing (EDL) has gained great attention,
and multiple research groups and companies have worked on the subject. In many
different solutions the key technology is represented by the use of Convex Optimiza-
tion [6], a sub-branch of Numerical Optimization characterized by several intriguing
properties, including the guarantee to find a solution if there exists one, a limited
dependency on initial guesses, and the computation rapidness, due to state-of-the-art
interior point primal-dual solvers [2]. In the specific frame of EDL large attention
was dedicated to the application of Second-Order Conic Programming (SOCP), a
specific subset of convex optimization, in which all the inequality constraints are
formulated in linear or conic form.

Among the proposed methodologies a break-through was represented by the for-
mulation of the entry problem in the energy domain [11]. In this case the non-convex
constraints were transformed into upper and lower bounds on the altitude, by express-
ing the speed as a function of the energy. Moreover, to overcome the non-convexity
intrinsically associated with the bank angle σ , two new controls, defined as the sine
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and the cosine of the bank angle, were adopted. The substitution was then made
valid by ensuring that the identity sin σ 2 + cos σ 2 = 1 was satisfied. Moreover, this
formulation overcomes the difficulties of having free-final time, since the final value
of energy is automatically obtained by the corresponding final altitude and speed.
With the idea of retrieving the benefits of the Space Shuttle Entry Guidance, and
generalizing it through the use of convex-optimization technologies, a drag-energy
approach based on the application of pseudospectral methods was proposed [22]. In
this case a valid drag-energy profile was computed by reformulating the problem in
terms of inverse of drag acceleration, and the solution was mapped against longi-
tudinal states to obtain a complete guidance solution. An interesting approach was
also formulated by Wang and Grant by exploiting second-order conic programming
[29]. In this case the problem was directly transcribed in the time domain by using
a direct linearization approach of the nonlinear equations underlying the problem.
Wang and Lu further improved the method [30] by means of line-search and trust
region techniques that were introduced to speed up the convergence process. The
previous approaches were mainly applied to VTHL (Vertical Take-off, Horizontal
Landing) vehicles.

For what regards VTVL (Vertical Take-off, Vertical Landing) rockets, the landing
phase was extensively treated in the last years, starting from the seminal work of
Acikmese et al. [1], and this research area is still very active now, with multiple
applications of Convex Optimization [4], Successive Convex Optimization [27, 28],
and Pseudospectral Convex Optimization in its standard and generalized forms [18,
20, 21].Moreover, a first, successful attempt to combine aerodynamic and propulsive
control was also proposed by Xinfu Liu [10], where the problem was reduced to two
dimensions, and a new set of variables, needed to convexify the subproblem, was
introduced. Yang and Liu also proposed to use altitude as independent variable to
be able to deal with free-final time powered descent problems [31], through the
corresponding manipulation of the equations of motion.

As pointed out by the authors in this last work themethods to dealwith non-convex
approach through convex techniques can be mainly divided intoDirect Linearization
Approach andNonlinearity-Kept andLinearizationApproach. In the former the equa-
tions of motion, as well as the constraints and the cost function are directly obtained
by linearizing the problem around the solution found at the previous iteration. The
validity of the approach is ensured by an ad-hoc choice of the static trust regions radii.
For this class of methods a drawback can be a slow convergence, and further strate-
gies might be needed to improve the quality of the process [30]. Note that in these
approaches the authors introduce some variable transformations aiming at convexi-
fying the problem while keeping nonlinear features of the original formulation. The
difficulties in this case arise because of the peculiarity of the transformations needed
(which strongly depend on the nature of the problem), the assumptions required to
ensure that some simplifications and transformations are valid, and the difficulty to
generalize the method (for example it can be hard to extend to the 3-D case the
transformations obtained for the in-plane scenario).

In thisworkwepropose a third approach,meant asmiddle-groundbetween the two
aforementioned techniques. There are four main novelties associated with this work.
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First, we endorse an ad-hoc formulation of the equations of motion which minimizes
the presence of non-convex terms. For example, by using Cartesian representation
for position and velocity we avoid the trigonometric terms appearing in the equations
of motion for longitude and latitude, which are typically used for aerodynamic entry
trajectories [15]. Second, we introduce a different parametrization of controls, based
on Euler-angle rates defined with respect to the target-centered Altitude-Crossrange-
Downrange directions, in addition to the thrust-rate already adopted in literature.
This choice allows to maximize the presence of linear terms in our differential equa-
tions while having the controls appearing in affine form, a property which simplifies
the convergence process, as pointed out by Liu et al. [12]. Moreover the proposed
approach gives us the chance to explicitly limit control rates as well, leading to
smooth solutions, and therefore to trajectories which can be more easily tracked by
the attitude controller.

The third novelty relies on entirely convoying the nonlinearities into the terms
appearing in the differential equations representing the accelerations for the aerody-
namic phase and the mass rate. We consequently apply numerical linearization only
to these terms, obtaining therefore an hybrid computation of the matrix representing
the equation of motion in linearized form.

The fourth aspect we want to emphasize is the use of a systematic transcription
based on generalized hp pseudospectral methods, already adopted for the powered
landing problem [20], but here extended to deal with the aerodynamic phase problem
too. This choice benefits from the properties of pseudospectral methods [19], such as
the quasi-exponential (or spectral) convergence, and the easiness of implementation.
Moreover, its mapping between time and pseudotime is conveniently exploited to
formulate the free-final time problem, leading to an increased capability of handling
initial dispersions, since we don’t need any accurate a-priori knowledge or estimate
of the flight time for off-nominal cases.

A last remark concerns the non-convex accelerations, with special focus on the
aerodynamic terms: it is in fact worth mentioning that in related works some sim-
plifications (e.g., constant drag coefficient) are typically made, given their relative
importance. However, in this work we focus on conditions which are as close as pos-
sible to what the vehicle in a real scenario will experience. Therefore we reject these
simplifications typically used for this class of methods, (e.g., constant gravity, neg-
ligible lift, or constant drag coefficient). Instead, we use a full-blown aerodynamic
database, which includes lift, drag, side-force, as well as aerodynamic torques, which
depend on the 3-D attitude of the vehicle as well as on the Mach number [14]. These
assumptions are required given the centrality of the aerodynamic accelerations for
this type of problems.

Numerical results are shown for a CALLISTO-class rocket. We extend our recent
results [21] by also analyzing off-nominal conditions for both the flight phases.
The chapter is organized as follows: in Sect. 5.2 the mission and the vehicle are
briefly described, while Sect. 5.3 focuses on the problem formulation in continuous
form. Sections5.4 and 5.5 describe the convexified approach and its corresponding
pseudospectral transcription, respectively, while numerical results are described in
Sect. 5.6. Finally, we draw some conclusions in Sect. 5.7.
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5.2 Mission and Vehicle

In this section we provide an overview of the mission scenario as well as of the
vehicle.

5.2.1 Vehicle and Mission Overview

Asmentioned in the introduction the vehicle considered in this work is a 40-kN class
rocket. The rocket thrust can be throttled between 40 and 110% of its nominal max-
imum value, and the engine is mounted on a gimballed system able to provide pitch
and yaw control capability during the powered phases, namely ascent and landing.
Roll control is ensured by a set of eight reaction control system (RCS) thrusters,
mounted on top of the rocket. During the unpowered phases we can rely on a set of
four steerable fins mounted on top. They are able to provide complete aerodynamic
control, ensuring full control throughout the entire mission. An impression of the
rocket used as example for this work is depicted in Fig. 5.1. The mission considered
is a Return To Launch Site (RTLS) Scenario. This means that the rocket will fly
back and perform the landing onto a platform that is very close to the launch site, as
visible in Fig. 5.1. A series of flights will take place at the Guiana Space Center, the
European Spaceport in French Guiana. This flight campaign will give indications on
the level of refurbishment required between two consecutive flights performed with
the same vehicle, while providing first-hand data to all the partners to further enhance
the knowledge of reusable technologies and some of the related critical technologies,
especially in terms of Guidance, Navigation and Control domain.

5.2.2 Rocket Modeling

While mass and center of mass (CoM) are considered constant during the aero-
dynamic descent, during the powered phase the vehicle experiences a significant
variation of both these variables. This effect is accounted for by storing the CoM as
a lookup-table depending on the current mass. Mass variations coming from RCS
are in this context neglected. Therefore, we can express this dependency as

CoM = CoM(m) (5.1)

The axis-symmetry of the vehicle has been exploited to compute aerodynamic coef-
ficients as function of an horizontal and a vertical angle of attack α1 and α2, as
illustrated in Fig. 5.2. The aerodynamic force coefficients with respect to the body
axes

Caero
BODY = [Caero

BODY,x C
aero
BODY,y C

aero
BODY,z]T
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(a) CALLISTO experimental vehicle

(b) Return-to-Launch-Site mission profile

Fig. 5.1 Mission and vehicle overview: a CALLISTO rocket, b Reference mission profile

Fig. 5.2 Vertical and horizontal angles of attack
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are provided as multidimensional look-up tables, which depend on Mach number
M , and angles of attack α1 and α2, and on the four fin deflections δ1,δ2,δ3,δ4.

Caero
BODY =

⎡
⎢⎣
Caero

BODY,x (M, α1, α2, δ1, δ2, δ3, δ4)

Caero
BODY,y(M, α1, α2, δ1, δ2, δ3, δ4)

Caero
BODY,z(M, α1, α2, δ1, δ2, δ3, δ4)

⎤
⎥⎦ (5.2)

From these coefficients the aerodynamic force can be computed as

Faero
BODY,i = 1

2ρV
2 SCaero

BODY,i , i = x, y, z (5.3)

with the reference surface S equal to 0.95m. The term ρ represents the atmospheric
density, which depends on altitude, whereas V is the speed of the vehicle with respect
to the air. For what regards the atmospheric density we employ a model coming from
experimental measures, and provided as look-up table, where the geodetic altitude
is the independent variable.

ρ = ρ(h)

This choice confirms oncemore that no strong simplifications (i.e., exponential atmo-
spheric profile) are required with the proposed method.

Remark 1: Note that, although this solution is inherently based on a 3-DOFmodelwe
are interested to generate solutions which we define 6-DOF capable, which means
the generated trajectory has to provide an attitude which can be trimmed by the
aerodynamic fins. This aspect is currently included in the present work, as it will be
shown in Sect. 5.6.

5.3 Problem Formulation

In this sectionwe describe in detail the problem formulation for both the aerodynamic
descent and the powered landing phases of the flight.

Aerodynamic Descent

A. Equations of Motion
We describe the aerodynamic guidance problem in a target-centered Downrange-
Crossrange-Altitude (DCA) reference frame, as depicted in Fig. 5.1. This reference
frame can be thought of as a Up-East-North local reference frame rotated around
the x-axis to align the z-axis with the plane containing most of the trajectory. We
cannot rely on thrust during this phase, and therefore only the aerodynamic forces
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can be used to control the vehicle. These forces are a direct function of the speed
and the relative attitude of the body axes with respect to the airflow. Therefore the
attitude is implicitly the main way to control the rocket, modeled in this work as a
3-DOF point mass. The desired attitude will then define the reference signals to be
tracked by the attitude controller, which is realized by using the fins to generate the
desired aerodynamic torques. The translational dynamics equations can be described
as follows.Note that fromnowon the reference frame indication is omitted for brevity.

ṙ = v
v̇ = agrav + aaero − 2ω × v − ω × (ω × r)

θ̇ = uθ

ψ̇ = uψ

(5.4)

The terms r and v are the position and the velocity of theCoMof the vehicle expressed
in the DCA reference frame. We include non-inertial terms due to the rotation of the
Earth ω, whereas θ and ψ are the pitch and yaw angle of the rocket with respect
to the target-centered Downrange-Crossrange-Altitude reference frame. We assume
that the roll angle is kept constant during the descent to maximize the decoupling
between pitch and yaw axes. Note that the controls we effectively use are the pitch
rate uθ and the yaw rate uψ . This choice is twofold beneficial: first, it decouples the
control matrix from the states, as we will see. Second, it allows to impose explicit
bounds on the control rates, making the solution smoother. The sources of non-
convexity are in this case two: the gravity, which is a non-linear function of position,
and the aerodynamic accelerations, which depend nonlinearly on altitude, velocity,
and attitude angles. Forwhat regards the gravitywe can assume a central-bodymodel,

agrav = −μ⊕
r + rT

‖r + rT ‖32
(5.5)

with μ⊕ representing the gravitational parameter of the Earth, while rT is the posi-
tion vector of the target site with respect to the center of the Earth. Note that with
this formulation more accurate models, like the one based on the World Geodetic
System 84, could be adopted. However, this more advanced modeling is kept for
future development, and a simpler choice was here preferred. For what regards the
aerodynamic accelerations they represent a nonlinear combination of the states. In
fact, the aerodynamic accelerations are, for the rocket under analysis, expressed in
body-reference frame as

aaeroBODY = 1

m
Faero
BODY (α1, α2, M, qdyn, δ1, . . . , δ4) (5.6)

where α1 and α2 are the vertical and horizontal angle of attack (introduced in Fig. 5.2
and used to exploit the axis-symmetry of the vehicle)M represents theMach number,
while qdyn is the dynamic pressure, function of the altitude (through the atmospheric
density ρ) and the speed V .
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qdyn = 1

2
ρV 2 (5.7)

Since we are interested to express the aerodynamic accelerations in DCA coordinates
it is necessary to transform the outcome of Eq. (5.6) as

aaeroDCA = RDCA
BODY · aaeroBODY (5.8)

where RDCA
BODY represents the rotation matrix from BODY to DCA. This matrix is

composed by two different contributions.

RDCA
BODY = RDCA

UEN · RUEN
BODY (5.9)

with UEN representing the target-fixed Up-East-North reference frame. Note that
the first term of the right hand side of Eq. (5.9) is only function of the target position
rT and of the angle χ identifying the trajectory plane. Both are constant,

RDCA
UEN = RDCA

UEN (rT , χ) (5.10)

while the second contribution is a direct function of the attitude of the body. In fact,
we can write

RUEN
BODY = RUEN

BODY (θ, ψ) (5.11)

and this relationship embeds part of the nonlinearities requiring linearization. Note
that the derivation of the aerodynamic accelerations in DCA is not only necessary
for the formulation of the equations of motion, but is also useful because it gives us
an indication of the dependencies to be considered when the linearized equations of
motion are derived.

B. Boundary Conditions
The problem will have fixed initial and final conditions, coming from previous and
successive phases of flight,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rDCA(t0)
vDCA(t0)
θDCA(t0)
ψDCA(t0)
rDCA(tF )

vDCA(tF )

θDCA(tF )

ψDCA(tF )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rDCA,0

vDCA,0

θDCA,0

ψDCA,0

rDCA,F

vDCA,F

θDCA,F

ψDCA,F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.12)
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as we want, at the end of the aerodynamic descent (occurring at the free final time tF )
to be in conditions of correctly switching to the powered phase in optimal conditions
for the pinpoint landing.

Remark 2: Note that the Euler angles adopted throughout this work are built on the
Up-East-North convention, and not on the traditional North-East-Down. This choice
is motivated by the need to avoid the classical singularity of the pitch angle at 90◦,
which is what would happen for a vertical descending vehicle. With the adopted
convention we ensure to be away from the singularity, as the vertical descent is asso-
ciated with a pitch angle θ = 0◦.

C. Constraints
For the aerodynamic phase no nonlinear constraints were taken into account in this
specific example, even though it is possible to do it by directly linearizing them ([21,
29]).

D. States and controls bounds
Finally, we want to have a meaningful upper bound and lower bound on the states,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx L
ry L
rz L
vx L
vy L
vz L
θL
ψL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx
ry
rz
vx
vy

vz
θ

ψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rxU
ryU
rzU
vxU
vyU
vzU
θU
ψU

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.13)

which derive mainly from flight-safety studies. Moreover, to limit the closed-loop
bandwidth associated with the attitude controller, and generate a smooth solution,
upper and lower bounds are also assigned to the rates of pitch and yaw angles, with
uθ,max = uψ,max = 10◦/s.

[ −uθ,max

−uψ,max

]
≤

[
uθ

uψ

]
≤

[
uθ,max

uψ,max

]
(5.14)

E. Cost function
Finally, for this problem we are interested to minimize the control activity, therefore
we simply express the cost function as

J =
∫ tF

t0

[
u2θ (t) + u2ψ(t)

]
dt (5.15)

where Eq. (5.15) will be weighted by a user-defined positive weight wu , whose
value is formally irrelevant here, but becomes important in the construction of an



5 Autonomous Descent Guidance via Sequential Pseudospectral Convex Programming 139

augmented cost function that takes also other effects into account, as it will be shown
in Sects. 5.4 and 5.5. The problem to be solved is therefore the following: we aim at
minimizing Eq. (5.15) with the system subject to the differential equations defined
in Eq. (5.4). The solution has to satisfy the boundary conditions given by Eq. (5.12),
as well as states and control box constraints defined according to Eqs. (5.13) and
(5.14).

Powered Landing

A. Equations of motion
We can extend the previous formulation to the powered landing problem. Several ele-
gant formulations have been proposed over the years to deal with this problem. Here
we aim at including the presence of realistic effects, which in order of relevance are
(1) the thrust-aerodynamic forces interaction, (2) the minimization of aerodynamic
torques that could prevent the 6-DOF feasibility of the trajectory, (3) the motion of
the center of mass while descending, (4) the effect of the pressure on the effective
thrust generated, and 5) other effects, like non-constant gravitational acceleration and
non-inertial forces due to the rotation of the Earth. While in the previous subsection
we were using the aerodynamic forces as means of control in this case their effect is
combined with the force exerted by the engine to dominate the motion of the rocket.
The corresponding model is a 3-DOF point having variable mass, and its evolution
is described by the following set of equations:

ṙ = v
v̇ = athr + agrav + aaero − 2ω × v − ω × (ω × r)

ṁ = − Tvac
Ispg0

φ̇ = uφ

θ̇ = uθ

ψ̇ = uψ

Ṫatmo = uT

(5.16)

Note the presence of the roll angle φ, the massm and the atmospheric thrust Tatmo,
with the last two terms linked to the vacuum thrust Tvac through the equation

Tatmo = Tvac − Anz p (5.17)

with Anz indicating the nozzle area, p the atmospheric pressure, and Tvac the thrust
generated in vacuum. The controls are for this scenario the Euler angle rates uφ , uθ ,
uψ . Moreover, to limit the instantaneous change of thrust, not compatible with the
physical rocket engine, we include the thrust rate uT . This choice gives the chance to
decouple the control matrix from the states as done for the aerodynamic descent, and
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at the same time to obtain solution physically realizable by the rocket’s actuators.
For this problem there are four different sources of non-convexity: in addition to
the aforementioned gravity and aerodynamic accelerations we have now the accel-
eration caused by the thrust athr = Tatmo/m. Moreover, there is an exponential-like
dependence on the massflow from the altitude through the pressure in virtue of Eq.
(5.17). The aerodynamic accelerations can be computed again by invoking Eq. (5.6)
and we can convert them into their DCA representation exactly as done through Eqs.
(5.8)–(5.10). The only difference is represented by the modification of Eq. (5.11),
which, in virtue of the dependence on the roll angle φ is re-written as follows.

RUEN
BODY = RUEN

BODY (φ, θ, ψ) (5.18)

B. Boundary Conditions
The boundary conditions described in Eqs. (5.12) are still valid. We augment them
with some further conditions coming from the new variables included in the problem
as follows.

⎡
⎢⎢⎣

m(t0)
φDCA(t0)
T (t0)

φDCA(tF )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

m0

φDCA,0

T0
φDCA,F

⎤
⎥⎥⎦ (5.19)

Note that we omitted the final value of mass and thrust, as they are determined by
the algorithm. Moreover, we include final conditions for the attitude to ensure that
the vehicle lands with its x-body axis being normal to the local horizontal plane.

C. Constraints
Three types of constraints are included here: first, we introduce the classical glides-
lope constraint to enforce the vehicle to impose a controlled ratio between reduction
of horizontal and vertical distance with respect to the landing spot.

rA∥∥rD,C

∥∥ ≥ tan γgs (5.20)

with glideslope angle equal to 70◦. To further enforce a vertical motion towards the
end of the pinpoint landing sequence it is imposed that in the last segment of the
trajectory, approximately corresponding to the last 5 s of flight, both side-components
of position and velocity are bounded, and specifically

∥∥rD,C(t ≤ tF − t∗)
∥∥ ≤ rD,C,max∥∥vD,C (t ≤ tF − t∗)
∥∥ ≤ vD,C,max

(5.21)

with t∗ equal to 5 s, rD,C,max equal to 1m, and vD,C,max defined as 0.1m/s.
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Note that all these constraints can be modeled as second-order conic constraints,
and therefore do not require linearization.

D. States and controls bounds
While Eqs. (5.13)–(5.14) still hold for the powered phase too, we augment them
according to the problem definition by adding the following box constraints for the
states,

⎡
⎣
mL

φL

TL

⎤
⎦ ≤

⎡
⎣
m
φ

T

⎤
⎦ ≤

⎡
⎣
mu

φU

TU

⎤
⎦ (5.22)

and the controls
[−uφ,max

−uT,max

]
≤

[
uφ

uT

]
≤

[
uφ,max

uT,max

]
(5.23)

with uθ,max = uψ,max = 5◦/s, while the roll rate is limited to 0.1◦/s. Finally, a max-
imum throttle rate uT,max here normalized, is included in the formulation. Finally,
note that with the current formulation the thrust vector inclination is not constrained,
as we are relying on a 3-DoF formulation. However, given the constraint on the final
body axes the thrust tilt angle is implicitly constrained to be within ±δT VC,max with
respect to the local vertical axes at touchdown, where δT VC,max is the maximum
thrust gimbal angle.

E. Cost function
The cost function we build for this problem is made of different contributions: first,
we are interested to maximize the final mass of the vehicle, which corresponds to
the minimization of the fuel required to perform the landing maneuver. Moreover,
we introduce a penalization of the control rates to ensure that the solution we obtain
is smooth enough.

J = −wmm(tF ) + wu

∫ tF

t0

(
uT · R · u)

dt (5.24)

The vector u embeds all the four controls included in the formulation through R,
defined as a unitary diagonal matrix, while the termswm andwu measure the relative
importance of the two terms in the optimization process, with the former not exces-
sively larger than the latter. This choice is motivated by the fact that while we are
interested to optimize the fuel consumption, we also want to discourage through the
presence of the term wu large variations of the control rates. In fact, larger control
variations could lead to hectic control profiles, whichmight be slightly more efficient
from the fuel-consumption perspective, but less safe. We have therefore completely
defined the problem to be solved: we aim at minimizing Eq. (5.24) with the system
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subject to the differential equations defined in Eq. (5.16). The solution has to satisfy
the boundary conditions given by Eqs. (5.12), (5.19) and (5.13)–(5.14), (5.22)–(5.23)
as well as the constraints of Eqs. (5.20) and (5.21).

5.4 Convex Formulation

In this section we will transform the two continuous problems described in Sect. 5.3
into a sequence of convex problems, to be solved iteratively.

Aerodynamic Descent

A. Equations of motion
For what regards the equations of motion during the aerodynamic phase we can
decompose the system described in Eq. (5.4) in a convex part, and a non-convex
part. Defined the state vector as

x = [
rDCA vDCA θ ψ

]T
(5.25)

we can write the equations of motion as

ẋ = fnc(x) + fc(x) + Bu + Cν (5.26)

with
u = [

uθ uψ

]T
(5.27)

representing the physical controls used to manipulate the attitude of the vehicle, and
consequently, the aerodynamic forces generated, while the vector ν ∈ R

ns , defined
as

v = [
νrx νry νrz νvx νvy νvz νθ νψ

]T
(5.28)

represents the virtual controls, required to avoid artificial infeasibility [28]. The
matrix C is a design parameter to decide which and how many virtual controls will
be used to help the convergence process. For this work the matrix is defined as

C =
[
I6×6 O6×2

O2×6 O2×2

]
(5.29)

which implies that virtual controls are only applied to the translational states, act-
ing as synthetic accelerations and velocities affecting the differential equations of
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v and r, respectively. This choice is due to the nature of the problem, given that
including virtual controls affecting the attitude states might not provide any physical
improvement to the convergence process.

For what regards the convex terms, they are represented by

fc(x) =
⎡
⎣

vDCA

−2ω × vDCA − ω × (ω × rDCA)

O2×1

⎤
⎦ = Ac · x (5.30)

with

Ac �

⎡
⎣

O[3×3] I[3×3] O[3×2]
−ω × (ω×) −2ω× O[3×2]

O[3×3] O[3×3] O[3×2]

⎤
⎦ (5.31)

The matrix Ac only contains constant terms, and is therefore computed only once
during the initialization of the algorithm.

The non-convex term can be convoyed into the fourth, fifth and sixth elements of
the vector

fnc(x) =

⎡
⎢⎢⎣

O3×1

agrav

DCA + aaeroDCA

O2×1

⎤
⎥⎥⎦ (5.32)

and this contribution represents the only term that requires linearization. Finally, the
control matrix B is

B =
[
O6×2

I2×2

]
(5.33)

We can see that the system is affine in control, which is a very important property
of the problem to be iteratively solved by using sequential convex programming,
as demonstrated by Liu et al. [12]. Moreover, the structure chosen to represent the
problem suggests us that we can apply a partial linearization and perform sequential
convex programming by exploiting the distinction between convex and non-convex
terms. On this purpose, suppose we have solved the problem k times, with k =
0, . . . , kmax . The solution with k = 0 can either be a propagation of dummy controls,
or a linear interpolation between initial and final states and controls. To solve the
(k + 1)th sub-problemwe linearize thenonlinear termsof equations ofmotion around
the sub-solution k. The subscript k will indicate the terms computed by using the
corresponding kth solution. We can therefore rewrite the system described in Eq.
(5.26) as

ẋ = Acx + Akx + Bu + Cν + Gk (5.34)

where

Ak � ∂fnc (x)
∂x

∣∣∣∣
x=xk

(5.35)
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and
Gk � fnc(xk) − Akxk (5.36)

Note that, as highlighted by multiple authors [28, 30] it is necessary that the new
solution does not largely differ from the previous one. This condition is needed to
ensure that the nonlinear behavior of the system is well captured by the first two
terms of the Taylor expansions underlying the linearization. To have a meaningful
linearization process trust-region constraints are adopted. The way to implement
trust-region constraints has been widely treated in literature in multiple forms. Some
researchers prefer to express the trust-region radius as a user-defined vector [10].
This approach has the advantage to reduce the size of the problem, since the trust-
region size is an input to the subproblem to be solved, rather than a variable to
be optimized. Other relevant works include update rules for shrinking or enlarging
their size depending on some metrics measuring the validity of the linearization at
each iteration [5, 13]. Finally, a further approach consists in introducing dynamic
upper bounds for the trust region as part of the subproblem formulation [28]. In a
similar fashion to this last approach we introduce trust-region upper bounds on the
difference between the new solution and the previous iteration, used to build the
current subproblem to be solved.

∥∥∥X̃(t) − X̃k(t)
∥∥∥ ≤ ζ(t) (5.37)

with

X̃ �
[
x(t)
u(t)

]
, X̃k �

[
xk(t)
uk(t)

]
(5.38)

and ζ representing an upper bound that limits the excursion between two consecutive
iterations, to be penalized as well through a corresponding slack variable

‖ζ‖2 ≤ sζ , sζ ∈ R (5.39)

Note that the problemmust be scaled in order to have the construction of the norm
in Eq. (5.37) to be a legitimate operation.

B. Constraints
As mentioned in Sect. 5.3 no nonlinear constraints have been considered in the
formulation of the aerodynamic guidance problem. However other constraints need
to be included: specifically, we define upper and lower bounds on states and controls
corresponding to Eqs. (5.13)–(5.14) as pointwise linear inequalities. Moreover, we
need to impose constraints on virtual controls. Since they are only used to avoid
artificial obstructions, it is required to reduce them to a negligible value along the
convergence process to ensure that the computed trajectory is a physical solution to
our problem. For this reason, as already proposed in literature ([28]) every virtual
control vector is bounded by a corresponding slack variable ην
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‖ν‖2 ≤ ην, ην ∈ R
np (5.40)

and to ensure that the virtual controls are minimized over the process, we include a
further slack variable as upper bound for the norm of ην :

‖ην‖2 ≤ sη (5.41)

with the term sη included in the cost function, and scaled by a positive value wη.

C. Augmented Cost function
To include the penalization of trust regions and virtual controls in the formulation
the augmented cost function for the subproblem is defined as

Jaug(x,u, ν, ζ, sη, sζ ) = wu J + wη · sη + wζ · sζ (5.42)

with the weights wη and wζ measuring the relative importance of the penalization of
virtual control and trust region with respect to the true cost function J defined in Eq.
(5.15), which is weighted bywu . In this workwη is assumed equal to 104 for both the
descent and the landing phases, whilewζ is equal to 10−1 for the aerodynamic phase,
and to 1 for the powered segment. This choice gives full priority to the reduction
of the virtual controls, and poses as secondary objective the shrinkage of the trust-
region radii. A unitary value of wu is associated with the original cost function.
In conclusions during the aerodynamic phase we are interested to optimize at each
iteration Eq. (5.42), subject to Eqs. (5.34) while ensuring proper penalization of both
the trust region size through Eqs. (5.37) and (5.39), and a shrinkage of virtual controls
through Eqs. (5.40) and (5.41).

Powered Landing

A. Equations of motion
By extending the logic of the previous section, we expand the state vector for the
powered landing phase in the following manner,

x = [
rDCA vDCA m φ θ ψ T

]T
(5.43)

with the corresponding dynamics that in vector-form remains the same as Eq. (5.26)
but where the control vector is now the following.

u = [
uφ uθ uψ uT

]T
(5.44)
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The virtual control vector ν ∈ R
ns , is in this case defined as

v = [
νrx νry νrz νvx νvy νvz νm νφ νθ νψ νT

]T
(5.45)

and the matrix C defined in Eq. (5.29) is augmented accordingly,

C =
[
I6×6 O6×5

O5×6 O5×5

]
(5.46)

such that also in this case virtual controls affect the translational motion only. The
convex terms are common to those defined during the aerodynamic descent, modified
only to take the different size of the state vector into account.

fc(x) =
⎡
⎣

vDCA

−2ω × vDCA − ω × (ω × rDCA)

O5×1

⎤
⎦ = Ac · x (5.47)

with

Ac �

⎡
⎢⎣

O[3×3] I[3×3] O[3×5]
−ω × (ω×) −2ω× O[3×5]

O[5×3] O[5×3] O[5×5]

⎤
⎥⎦ (5.48)

The non-convex terms are grouped into the fourth, fifth, sixth and seventh differ-
ential equations coming from Eq. (5.16).

fnc(x) =

⎡
⎢⎢⎢⎢⎣

O3×1

athrDC A + agrav

DCA + aaeroDCA

− Tvac
Ispg0

O4×1

⎤
⎥⎥⎥⎥⎦

(5.49)

As previously done, numerical linearization is applied to these terms only. Finally,
the control matrix B is

B =
[
O7×4

I4×4

]
(5.50)

The procedure is therefore exactly the same as the one highlighted in the previous
section. We apply to this augmented formulation Eqs. (5.34)–(5.39), (5.40), (5.41)
at each iteration. The only differences reside in the size of states and controls, and
in the corresponding non-convex contributions. Moreover, we have different con-
straints and cost function, described in the next subsections.
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B. Constraints
As aforementioned the constraints included in thiswork, and described byEqs. (5.20)
and (5.21) can be exactly implemented as Second-order conic constraints. For the
glide-slope constraint we impose

∥∥Agsr + bgs

∥∥ ≤ cgsr + dgs (5.51)

with

Ags

[
0 1 0
0 0 1

]
, bgs =

[
0
0

]
,

cgs = [
1 0 0

]
, dgs = 0

(5.52)

For the limitations of horizontal position and velocity at the end of the landing
phase, we can derive similar expressions:

‖Arr + br‖ ≤ crr + dr
‖Avv + bv‖ ≤ cvv + dv

(5.53)

where the corresponding matrices are defined as

Ar = Av =
[
0 1 0
0 0 1

]
, br = bv =

[
0
0

]
,

cr = cv = [
0 0 0

]
, dr = 1, dv = 0.1

(5.54)

C. Augmented Cost function
The augmented cost is formally the same as Eq. (5.42). However some practical
terms will differ due to the application peculiarities since the true cost J , defined
respectively by Eqs. (5.15) and (5.24) are clearly distinct. Finally, wm and wu are in
this case equal to 100 and 10, respectively. To summarize the landing convexified
problem we want to minimize at each iteration Eq. (5.42). The solution must satisfy
Eqs. (5.34), (5.20), and (5.21) while ensuring proper penalization of both the trust
region size through Eqs. (5.37) and (5.39), and of the virtual controls through Eqs.
(5.40) and (5.41). Note that since no 6-DoF dynamics is considered in this work no
explicit penalization of roll torque commands are included. However, the limitation
imposed on the roll rate is such that it will be possible for the attitude control system
to track it. In the next section we will transcribe the problem through the use of hp
generalized pseudospectral methods.

5.5 Sequential Pseudospectral Convex Programming

The transcription proposed here is conceptually common to both the aerodynamic
descent and the powered landing problems. Consequently, we will focus on the
aspects common to both first, emphasizing later the differences between the two spe-
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cific formulations, especially in terms of constraints, cost function, and initialization
strategy. The transcription we propose adopts an hp generalized pseudospectral tran-
scription based on the use of flipped Legendre-Gauss-Radau (fLGR) method. This
method is a valid alternative to the more traditional Euler and trapezoidal discretiza-
tion transcriptions, given its higher accuracy. Moreover, its main drawback, i.e., a
typically larger CPU time, can be mitigated by proper choice of h and p [20]. In the
remainder of this section we will identify the steps of transcription according to the
Sequential Pseudospectral Convex Programming (SPCP) method here proposed.

5.5.1 Discretization

Motivated by the good results obtained in our previous works [18, 20] we extend
the methodology to the problem formulated in Sect. 5.4. Specifically, we propose
to use n segments, and in each of them perform a local collocation using p + 1
nodes coming from the p roots of the corresponding fLGR polynomial, defined in
the domain (−1, 1], and initial non-collocated node at τ = −1. A visualization of
the domain is visible in Fig. 5.3.

Note that since the domain is broken into segments, some linking conditions
connecting them are needed. They will explicitly be defined in this section, and
form, together with the equations of motion and the boundary conditions the set of
linear equations underlying the transcription.

Another benefit is associatedwith the possibility to have an open final-time formu-
lation of the guidance problem. In fact, to come upwith a free final-time discretization
some researchers prefer to reformulate the problem by using a different independent
variable, known to be monotonically changing, and with known initial and final val-
ues [31]. A different approach was the use of a stretching term σ̂ in the equations
of motion [27]. This term can be in fact re-interpreted as very close to the typical
mapping between physical time and pseudospectral time kt , defined as

kt � tF − t0
2n

(5.55)

Fig. 5.3 Domain of the hp flipped Legendre-Gauss-Radau method
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with t0 and tF initial and final times of the physical problem to be solved, and n the
number of phases to be used in the hp framework we are proposing. This observation
helps in rewriting the transcription in presence of free final time as follows. We
assume to have the state vector x ∈ R

ns , the control vector u ∈ R
nc , the virtual control

vector ν ∈ R
nv , and a total of n(p + 1) discrete time steps, corresponding to the n

segments and the p + 1 discrete points in each of the segments. Computed the p + 1
nodes τi corresponding to a single segment and defined between -1 and 1 we can,
for every couple t0, and tF , identify the single i th discrete timestep associated with
the j th segment as

t ji = t0 + tF − t0
n

(
j − 1

2

)
+ tF − t0

2n
τi , j = 1, . . . , n − 1 (5.56)

Defined the discrete time domain, we can introduce the augmented discrete deci-
sion vector X ∈ R

nvar as

X = [
x10 u1

0 ν1
0 · · · xnp un

p νn
p η1

0 · · · ηn
p ζ 1

0 · · · ζ n
p μ1

0 · · · μn
p sη sζ tF

]T
(5.57)

The first [ns + nc + nv] [n(p + 1)] elements correspond to states, control and
virtual controls, respectively. The set of data associated with η1

0,. . . ,η
n
p represents the

upper bounds on virtual controls, while the variables identified as ζ 1
0 ,. . .,ζ

n
p constrain

the size of the pointwise trust regions. The variables μ1
0,. . .,μ

n
p are associated with

the cost function. We can see the presence of the slack variables sη and sζ , penalizing
virtual controls and trust regions, as they appear in Eq. (5.42). Finally, since the
problem has open final time the variable tF appears as last element of the augmented
vector, by assuming, without compromising any possibility of general application of
the proposed method, that t0 = 0. This assumption is always applicable by simply
shifting the time vector by the initial time of the aerodynamic descent or the powered
landing sequence.

5.5.2 Dynamics

Let us consider the dynamics of our system as convexified in Eq. (5.34). By adopting
the time mapping of Eq. (5.55) we can rewrite it as follows:

ẋ = kt [Acx + Akx + Bu + Cν + Gk] (5.58)

where the equation now describes the evolution of the states with respect to a new
independent variable τ , defined between –1 and 1, and chosen because it represents
the domain of definition of Legendre-Gauss-Radau polynomials [17, 19]. We can
use this expression to derive linear system of equations representing Eq. (5.58) in
discrete form.
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By keeping in mind that only Ak andGk change at each iteration we can perform
an expansion of the right-hand side of Eq. (5.58) with respect to the variables x, u,
ν, and tF . Let us define the following quantities.

Ã � kt [Ak + Ac]

B̃ � ktB

C̃ � ktC

Ẽ � 1
2n [fnc(xk) + Axk + Buk + Cνk]

G̃ � ktGk − tF,k

2n [fnc(xk) + Axk + Buk + Cνk]

(5.59)

It is straightforward to verify that the equations of motion can be expressed as

ẋ = Ãx + B̃u + C̃ν + ẼtF + G̃ (5.60)

This expression needs to be tailored for the specific domain of choice. In this work
we choose to apply the hp-methods as a series of n equally spaced segments, and
in each of them we can collocate the differential equations using p + 1 nodes. This
choice is motivated by the fact that we are interested to real-time-capable methods,
and therefore we do not focus on refinement methods which iteratively adapt the size
and the distribution of the meshes.

The final step is the inclusion of the pseudospectral differential operator. Note that
the derivative of the state in the discrete points xi , i = 1, . . . , n can be approximated
by a matrix D in the form

ẋ ∼= D · x (5.61)

Equation (5.61) tells us that the derivative in one of the discrete points of the
domain can be approximated by a linear combination of the values that the variable
x assumes over all the discretized points through the coefficients provided by the
columns of D.

We can exploit this property to finally build the linear matrix representing the
equations of motion as follow: definedDi,... as the i th row ofDwe have that for each
segment j ∈ [1, . . . , n] and node i ∈ [0, . . . , p]

Di,... · x j
0,...,p − Ãx j

i − B̃u j
i − C̃ν

j
i − ẼtF = G̃ (5.62)

which in matrix form can be assembled as

AEoMX = bEoM (5.63)
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5.5.3 Boundary Conditions

Wecan augment the previous linear systemofEq. (5.63) by including hard constraints
to comply with initial and final states definitions. The corresponding matrix will
simply by

AbcX = bbc (5.64)

corresponding to

Abc =
[

Ins Ons×(nt )(n)(p−2) Ons×ns Ons×(nvar−[(nt )(n)(p−2)+2(ns )])
Ons×ns Ons×(nt )(n)(p−2) Ins Ons×(nvar−[(nt )(n)(p−2)+2(ns )])

]
(5.65)

where Inx and Ony×nz are the identity matrix and the zero matrix of size nx and
ny × nz , respectively, while nt = ns + nc + nv . The vector bbc is intuitively defined
as

bbc =
[
x(t0)
x(tF )

]
(5.66)

In case some initial and / or final conditions are left free the corresponding rows
in Eqs. (5.65) and (5.66) can simply be deleted.

5.5.4 Linking Conditions

The discretization introduced in Fig. 5.3 requires some extra constraints known as
linking conditions or linkage conditions, needed to enforce continuity of the states
and controls defined on the edge of the segments. These conditions are represented
by equality constraints in the form

⎡
⎣
x
u
ν

⎤
⎦

j

p

=
⎡
⎣
x
u
ν

⎤
⎦

j+1

0

, j ∈ [1, n − 1] (5.67)

It is immediate to see that these conditions can be built by assigning identity
matrices of consistent dimension to the proper indices of a matrix Alc with the
corresponding vector blc � Ont×1.

The overall system of differential equations is therefore given by

AeqX = beq (5.68)

with

Aeq =
⎡
⎣
AEoM

Abc

Alc

⎤
⎦ , beq =

⎡
⎣
bEoM

bbc
blc

⎤
⎦ (5.69)



152 M. Sagliano et al.

5.5.5 Cost

For the cost function by recovering Eq. (5.42), and remembering the quadrature
expression associated with the hp fLGR method an the continuous expression we
can rewrite it as

Jaug = −wmm
n
p + wu

tF − t0
2n

wT
f LGRμ + wν · sν + wζ · sζ + wtF st (5.70)

where the weights w f LGR are dictated by the fLGR theory [17], and wm equal to 0
if we refer to the aerodynamic descent, or larger than 0 if referred to the powered
landing case. Finally, note that a penalization on the final time variation is included
through a corresponding slack variable st . This variable acts as upper bound on the
variation of the final time with respect to the previous one, and is also modeled as
conic constraint. Its construction is trivial and skipped to avoid excess of redundancy
in the equations.

Remark 3: Note that since we are dealing with open final time problems a formal
linearization of the second term in Eq. (5.70), bilinear in the variables μ

j
i and tF ,

is needed. For easiness of implementation this linearization is not carried out, and
approximated by tF,k−t0

2n wT
f LGRμ. This approximation is valid as long as the con-

dition (tF − tF,k)wT
f LGRμk 
 (tF − t0)wT

f LGRμ is satisfied. This aspect is omitted
here for brevity, but numerically verified during the simulations, and therefore the
approximation is valid.

The role of the variablesμ is to act as upper bound for the true elements appearing
in the cost function of Eq. (5.15). Given the selected cost function it is immediate to
observe that it can be cast in a second-order cone constraint as follows.

∥∥∥∥
uθ

uψ

∥∥∥∥
j

2,i

≤ μ
j
i ,

i ∈ [0, p]
j ∈ [1, n] (5.71)

The transcription is completed by applying point-wise the second-order conic
constraints representing the upper bound on virtual controls, i.e.,

∥∥∥ν
j
i

∥∥∥
2

≤ η
j
ν,i ,

i ∈ [0, p]
j ∈ [1, n] (5.72)

and on the trust region. ∥∥∥X̃ − X̃k

∥∥∥
j

2,i
≤ ζ

j
i (5.73)

‖ζ‖ j
2,i ≤ s j

ζ,i , sζ ∈ R
np (5.74)
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5.5.6 Constraints—Powered Landing

In addition to Eq. (5.71) (opportunely augmented to consider the different number
of controls) the constraints of Eqs. (5.20) and (5.21) are also modeled as second-
order conic constraints. Therefore, they can simply be applied to each discrete node
representing position and velocity.

∥∥∥Agsr
j
i + bgs

∥∥∥
2

≤ cgsr
j
i + dgs

∥∥∥Arr
j
i + br

∥∥∥
2

≤ crr
j
i + dr ,

∥∥∥Avv
j
i + bv

∥∥∥
2

≤ cvv
j
i + dv

i ∈ [0, p]
j ∈ [1, n] (5.75)

5.5.7 Initialization

For the aerodynamic descent the initial guess for the states is built by using linear
interpolation between the desired initial and final states, while the controls were kept
equal to 0. For the landing phase a more sophisticated strategy is adopted. A scheme
illustrating the SPCP algorithm is depicted in Fig. 5.4. Inspired by the idea of Sim-
plicio et al. [24] we adopt an educated guess, obtained by solving the problem with
the method described in [20]. Given the reference scenario the simplified problem is
solved with hard constraints for initial and final conditions, as well as for the time of
flight, assumed to be fixed. In this initialization solution neither aerodynamic effects,
nor control rates are considered, and the gravity is assumed to be constant. Then,
the obtained solution is converted into a format compatible with the SPCP transcrip-
tion illustrated in this section, and utilized as k th solution, with k = 0 to start the
sequential pseudospectral convex optimization procedure.

The solution obtained contains the thrust vector in Cartesian coordinates, which
are converted into the corresponding Euler angle representation by assuming that
the x-body axis coincides with the thrust vector. This is a valid assumption since we
are dealing with a 3-DOF model. The control rates are then obtained by numerically
differentiating the Euler angles and the thrust magnitude profile, completing the
information required to build the very first solution according to the format described
by Eqs. (5.43) and (5.44). It is then possible to start the sequential pseudospectral
convex optimization, and at the end of each iteration the algorithm checks whether
convergence has been reached. In negative case the current solution is used to build
the new subproblem and iterate the procedure. In the opposite case the procedure
is concluded. To validate our solution we perform a feedforward propagation of the
full nonlinear equations of motion driven by the computed controls, and compare
the obtained solution with the optimized one, which is the outcome of the proposed
algorithm.
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Fig. 5.4 Sequential
Pseudospectral Convex
Programming (SPCP)
scheme

Remark 4: Note that this further step is not considered to be part of the on-board
guidance strategy, but it is only meant as validation tool to measure the effectiveness
and the accuracy of the proposed algorithm.

5.5.8 Convergence Criterion

Once the algorithm is initialized the process of generating subsolutions is repeated
until convergence is reached. In literature many authors meaningfully use as criterion
the difference between subsolutions meant in vector or scalar form [28, 29]. To take
into account both the convergence of subsolutions and the cost function we use
as stopping criterion the difference between consecutive values of the augmented
functions, defined in Eq. (5.70). Although this choice plays no big differences in
practical terms, since very close subsolutions will also lead to similar cost functions,
it represents a way to account also for the variations of other parts of the algorithms,
such as virtual controls and trust region radii, which do not belong to the set of
physical variables of the problem. The stopping criterion can be therefore expressed
as

δ Jaug �
∣∣J k

aug − J k−1
aug

∣∣ ≤ ε (5.76)

with ε chosen equal to 5 · 10−5 for the aerodynamic phase and to 2 · 10−4 for the
powered landing segment. The choice is dictated by empirical experience showing
that given the shorter duration of the powered phase a slightly less stringent criterion
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is sufficient to reach very good accuracy while limiting the number of iterations, and
therefore speeding up the total execution time of the algorithm.

5.6 Numerical Results

This section illustrates results obtained with the proposed method for both types of
scenarios. First, we will describe the aerodynamic descent scenario, followed by the
powered landing results.

5.6.1 Aerodynamic Descent—Nominal

For the aerodynamic descent initial and final conditions are described in Table5.1.
Note that all the positions have been scaled with respect to the initial altitude, the
scaled gravity is equal to 1, and all the other variables have been scaled consistently
with these two assumptions. Results are shown in Figs. 5.5 through 5.11. By looking
at the states (Fig. 5.5) we see that the solution shows a smooth behavior while satisfy-
ing initial and final conditions. The same holds for the attitude (Fig. 5.6a), where the
specific upper and lower bounds for pitch and yaw are met, and the attitude rates, cor-
rectly bounded between –10 and 10◦ (Fig. 5.6b). The overall trajectory is depicted in
Fig. 5.7, where the body axes (in RGB convention) depict the corresponding attitude
while performing the aerodynamic descent. The associated aerodynamic behavior is
visible in Fig. 5.8a, showing the normalized aerodynamic forces in body axes. Note
that to further enhance the 6-DOF feasibility of the solution the aerodynamic forces
are computed by dynamically trimming the vehicle. To verify the correct behavior of
the solution the resulting aerodynamic torques with respect to the center of mass are
stored and observed. The normalized aerodynamic torque residuals are depicted in
Fig. 5.8b, and are close to the zero-machine. The trimming is realized by opportunely

Table 5.1 Aerodynamic descent—initial and final conditions

Initial state Value Final state Value

rA(t0) 1.0000 rA(t f ) 0.0714

rC (t0) −0.0038 rC (t f ) 0.0006

rD(t0) 0.0669 rD(t f ) 0.0158

vA(t0) −1.1056 vA(t f ) −0.4509

vC (t0) 0.0014 vC (t f ) 0.0026

vD(t0) −0.0254 vD(t f ) −0.0297

θ(t0) 0.0172 θ(t f ) −0.0391

ψ(t0) −0.0030 ψ(t f ) −0.0037
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Fig. 5.5 Aerodynamic guidance solution—translational states

deflecting the four fins, which ensure that the aero-torque disturbances are nullified
while satisfying the maximum allowed fin deflections (shown in normalized coordi-
nates in Fig. 5.8c).

Forwhat regards the accuracy of the solution a full propagation of the trajectory by
using the full set of nonlinear equations is performed, and depicted in Fig. 5.9a, with
the mismatch between the two profiles visible in Fig. 5.9b. The two solutions agree
very well, with a maximum scaled error in the order of 4 · 10−4 for the position and
2 · 10−3 for the velocity. In full scale these results correspond to meter-error for the
position, and less than 0.5m/s for the velocity. The convergence behavior is depicted
in Figs. 5.10a through 5.10f. The first thing to observe is the behavior of the cost
and the augmented cost, shown in Fig. 5.10a and b. At the beginning of the process
larger variations between solutions are experienced. From iteration 4 to the end the
algorithm converges to a specific solution, and therefore the upper bounds on trust
regions and virtual control fade away. As a consequence the two profiles converge to
very similar values. The reduction of virtual controls and trust regions can be seen in
Fig. 5.10c and d. We can see that starting from the second iteration the method does
not really rely on virtual controls, meaning that the actual controls are sufficient to
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Fig. 5.6 Aerodynamic guidance solution: a Attitude states, and b Attitude rates

Fig. 5.7 Aerodynamic
guidance
solution—trajectory: the
body axes are depicted in red
(X), green (Y), and blue (Z)
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Fig. 5.8 Aerodynamic guidance solution: a Aerodynamic forces, b Aerodynamic torques, c Fin
deflections

solve the convex subproblems. The trust regions upper bound becomes smaller than
10−3 starting from the 7th iteration, and no sensitive variations of the augmented cost
function and of the solution are observed. Finally, we can observe that the final time
variations between consecutive solutions rapidly decreases too (Fig. 5.10e). Note that
as further test the initialized final time is given as the converged final time + 10s
to observe whether the algorithm was able to come back to the optimal value. This
behavior is confirmed by looking at the first iteration, where a variation of about 9 s
is observed, followed by smaller variations along the successive iterations. The last
plot on the bottom right (Fig. 5.10f) shows the decisions of keeping or rejecting the
subsolution along the iterations. A subsolution is rejected in two cases: first, when the
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Fig. 5.9 Nominal solution
validation: a comparison of
states, and b difference
between optimized and
propagated states
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Fig. 5.11 Convergence behavior: evolution of translational states

SOCP solver returns an infeasibility status, or if themaximum number of iterations is
reached without finding a valid solution, with the iteration limit for the SOCP solver
set equal to 100. This issue did not occur in the results shown here, as confirmed by
Fig. 5.10f.

To give an intuitive idea of the convergence process we plot the several subsolu-
tions obtained over the iterations in Fig. 5.11, showing the translational states. The
process is initializedwith a trivial linear interpolation between initial and final desired
states (in blue). After three iterations the solution is already resembling the final one
(in red), that is only refined in the remaining iterations. This is a consequence of
having variable trust region upper boundaries, which allow larger variations at the
beginning if needed, and are dynamically reduced, making, iteration after iteration,
the linearized dynamics more and more able to capture the behavior of the nonlinear
differential equations underlying the problem.
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5.6.2 Aerodynamic Descent—Dispersed Cases

As further test we simulated 25 dispersed cases associated with different initial
conditions in terms of position and velocity for both the aerodynamic and the powered
landing phases. Note that these cases are purely demonstrative and of course not
representative of a full Monte-Carlo campaign. However, they confirm the capability
of the algorithm to generate valid solutions over a much larger set of conditions
than the one given by the nominal scenario. Specifically, since it is assumed that the
aerodynamic guidance algorithm is triggered at a specific altitude, errors in terms
of crossrange and downrange components have been considered for what regards
the position. These errors are equal to 200m, whereas all the three components
of the velocity are perturbed up to ±15 m/s. All the perturbations are uniformly
distributed. Figures5.12 and 5.13 show the resulting trajectories, together with the
translational and the rotational states. Moreover, the Runge-Kutta validation of the
obtained solutions are depicted in Fig. 5.14a and b. All the trajectories converged to
the prescribed interface conditions while satisfying the constraints. Moreover, from

Fig. 5.12 Aerodynamic
guidance
solution—dispersed
trajectories
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Fig. 5.13 Aerodynamic guidance solution: a Attitude states, and b Attitude rates

the validation of the solutions (Fig. 5.14a–b) we can see that all of them fully satisfy
the equations of motion, with a consistently small error between propagated and
optimized states.

5.6.3 Powered Landing—Nominal

The prescribed initial and final conditions for the powered landing scenario we are
dealing with are described in Table5.2. The weightswvc andwtr are equal to 500 and
10. We keep the same penalization of final-time variations as for the aerodynamic
descent. States, and controls are depicted in Figs. 5.15 and 5.16. Besides a smooth
solution also in this case with initial and final boundaries fully satisfied we can see
that in the last phase of landing the horizontal components of position and velocity
are correctly constrained too, and so is the glideslope constraint (here omitted for
brevity). Moreover, the attitude rates always lie in the prescribed boundaries, and the
vehicle shows a vertical attitude when landing.

The throttle profile,with its corresponding throttle rate andmass profiles are shown
in Fig. 5.17. All of them are within the prescribed limits. The attitude is visible also
in Fig. 5.18, while the corresponding aerodynamic forces and torques are depicted
in Fig. 5.19a and b. Note that the forces are computed also in this case by taking the
attitude controllability into account, such that the aerodynamic torque is constantly
minimized (Fig. 5.19c). Specifically, only 15% of the fin maximum deflections is
sufficient to remove the undesired aerodynamic torque that would from having fin
deflections equal to 0◦. Since the effectiveness of fins decreases with the dynamic
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Fig. 5.14 Dispersed
solutions validation: a
Comparison of states, and b
Difference between
optimized and propagated
states
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Table 5.2 Powered landing—initial and final conditions

Initial state Value Final state Value

rA(t0) 1.0000 rA(t f ) 0.0002

rC (t0) −0.0049 rC (t f ) 0.0000

rD(t0) 0.053 rD(t f ) 0.0000

vA(t0) −1.4778 vA(t f ) −0.0064

vC (t0) 0.0087 vC (t f ) 0.0000

vD(t0) −0.1511 vD(t f ) 0.0000

m(t0) 1.0000 m(tF ) –

φ(t0) 3.1415 φ(t f ) 3.1415

θ(t0) 0.0126 θ(t f ) 0.0000

ψ(t0) −0.0073 ψ(t f ) 0.0000

T (t0) 1.100 T (tF ) –
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Fig. 5.15 Landing guidance solution—translational states
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Fig. 5.16 Landing guidance solution: a Attitude states, and b Attitude rates
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Fig. 5.18 Landing guidance
solution—trajectory x-body
is in red, y-body in green,
z-body in blue
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pressure, at the pseudotime equal to approximately 0.65 the fins are disabled and
the TVC can continue to control the attitude until touchdown occurs. Finally, as
depicted at the end of the scheme of Fig. 5.4, a validation through Runge-Kutta 45 is
performed to verify that the obtained solution satisfies the full nonlinear equations
of motion. The results are visible in Fig. 5.20a and b. Note that the solution perfectly
matches the propagated one, with an error that in full scale is in the order of 0.02m
for the position components, and below 0.1m/s for the velocity components. We can
have a look at the convergence properties of the algorithm: (Fig. 5.21a–f). First, by
looking at Fig. 5.21a we can see that no big changes are observed in the original
cost function. This means that the mass consumption remains approximately the
same, whereas the algorithm focuses on the refinement of the trajectory. This is
confirmed by the augmented cost in Fig. 5.21b, where we can see that after iteration
2 no big variations occur anymore. The upper bounds on virtual controls (Fig. 5.21c)
is constantly equal to 10−10, meaning that the algorithm is always able to obtain
a solution without actively leveraging the use of virtual controls for this specific
scenario. Good convergence properties are visible also from the variation of the
upper bounds on trust regions (Fig. 5.21d), which at the end of the iterative process is
in the order of 2 · 10−4. The same behavior is visible for the variations of tF , shown
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Fig. 5.19 Landing guidance solution: aAerodynamic forces, bAerodynamic torques, c Fin deflec-
tions

in Fig. 5.21e. After iteration 2 the variations on the final time are always smaller than
0.1 s, and become negligible after iteration 4.

The convergence process in terms of acceptance/rejection is depicted in Fig. 5.21f.
All the solutions are accepted, confirming that the proposed approach shows good
feasibility. Finally, the convergence behavior can be also seen in Fig. 5.22, where the
colormapmoves from blue to red as the number of iterations goes from the first to the
last iteration. All the states quickly converge to the final solution. This figure shows
that the initialization strategy correctly captures most of the behavior, simplifying
the work of the SPCP algorithm. Note however, that whenever this is not the case, the
SPCP was nevertheless able to correct the violations, as previously shown in [21].
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Fig. 5.20 Nominal solution
validation: a Comparison of
states, and b Difference
between optimized and
propagated states
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Fig. 5.22 Convergence behavior—translational states

5.6.4 Powered Landing—Dispersed Cases

Also in this case we did a preliminary analysis of the algorithm in presence of dis-
persions on the initial conditions in terms of position and velocity, as well as for the
attitude. The errors on crossrange and downrange position are uniformly dispersed
up to± 50m,while for the three velocity components the error is up to±5m/s.More-
over, up to 2.5◦ error is added to the initial pitch and yaw angles. Figures 5.23 and
5.24 show the resulting trajectories, together with the translational and the rotational
states. Moreover, the Runge-Kutta validation of the obtained solutions are depicted
in Fig. 5.25a and b.

Also in this case all the trajectories fullfill the requirements (Fig. 5.23) and all the
states and control limitations are satisfied (Fig. 5.24). Finally also in this case from
the point of view of the accuracy of the solution we obtain a consistent ensemble of
trajectories that accurately capture the nonlinear behavior of the system (Fig. 5.25a),
and show a maximum error of approximately 7 · 10−4 in position, and 4 · 10−4 in
velocity.
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Fig. 5.23 Powered landing
guidance
solution—dispersed
trajectories
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5.7 Conclusions

In this chapter we proposed an approach able to deal with both the aerodynamic
descent and the powered landing phases of a reusable rocket. In the former case
the control means are represented by the attitude of the vehicle with respect to the
airspeed, which induces the aerodynamic forces that effectively drive the motion of
the rocket during the unpowered descent, while in the latter these contributions are
effects to be coupled with the thrust force, which is the main control means during
the landing phase.

The approach exploited the distinction between convex and non-convex terms to
come up with a convex sub-problem in which the need of numerical linearization is
reduced to the sole non-convex terms. The reformulation of the problem in terms of
rates of Euler angles allowed to express the system in affine form, with the corre-
sponding benefits in terms of convergence behavior. Moreover, a transcription based
on hp pseudospectral methods allowed on one side to improve the accuracy of the
obtained solution, and on the other side to naturally formulate the free-final time
version of the problem.
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Fig. 5.24 Powered landing guidance solution: a Attitude states, and b Attitude rates

Numerical results for nominal and dispersed condition confirm that the proposed
approach is a viable method to quickly solve both the aerodynamic and landing
guidance problems while providing at the same time a very accurate solution, with
errors in the meter-range for what regards position, and less than 0.2m/s in terms of
velocity. The method is therefore a candidate technology to cover the entire descent
guidance problem associated with the use of reusable rockets.
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Fig. 5.25 Dispersed
solutions validation: a
Comparison of states, and b
Difference between
optimized and propagated
states
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Chapter 6
Simultaneous Trajectory Optimization
for Adaptive Powered Descent

Zhenyu Wei, Lin Ma, Kexin Wang, and Zhijiang Shao

6.1 Introduction

The powered descent phase is the terminal phase of the planetary descent and land-
ing mission, where the required direction and magnitude of the thrust engine are
determined to steer the spacecraft to meet the pre-determined targeting condition at
the end, such as touchdown at the designated landing site with the required veloc-
ity [12]. Methods of powered descent guidance originated from the Apollo era and
have been further promoted by later Mars landing missions. Typically, accelera-
tion schemes, such as gravity turning and polynomial guidance algorithms [6, 19],
were adopted to design and calculate an analytical thrust profile for soft landing.
Such methods can hardly achieve precise landing, and its ability to perform in real
time for avoiding constraints violation is limited. Besides, fuel optimality is usu-
ally ignored in the acceleration scheme. To overcome these shortcomings, powered
descent methods with higher landing accuracy based on numerical optimization are
proposed [18], including indirect methods by solving a two-point boundary value
problem, direct methods based on solving nonlinear programming (NLP) or convex
optimization (CO) problems [2, 4, 7]. Powered descent methods based on numerical
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optimization essentially solve a trajectory optimization problem, which guarantees
the feasibility of physical constraints, as well as fuel optimality.

Future planetary exploration missions will require spacecrafts to land in high-
value scientific areas such as craters and boulder fields [5].When encountering unex-
pected events or subsystem failure, the spacecraft needs to deflect the pre-determined
landing trajectory to an alternative site [8]. The powered descent trajectory must be
reconstructed during flight, posing new challenges to the guidance algorithm [15].
Benefited from computer hardware improvement, onboard computational guidance
and control basedonnumerical optimizationhavebeengradually becoming an impor-
tant direction for powered descent methods [11]. This new trend enables a spacecraft
to autonomously change its landing site and generate powered descent trajectories
online.

This chapter explores the adaptive powered descent algorithms in two scenar-
ios. The first scenario discusses adaptive powered descent in planetary exploration
missions. Since the planetary exploration missions are usually carried out on the
planet with a thin atmosphere, a three degree-of-freedom (DOF) translational model
is formulated disregarding aerodynamic forces.With optimal sensitivitymethod, fuel
consumption of multiple candidate landing sites is accurately estimated, which facil-
itates a rapid decision of optimal landing site. In the second scenario, a model of six
DOF is established to depict dynamics of a reusable rocket because the dense earth
atmosphere causes significant aerodynamic torques. In order to realize emergency
landing under significant deviation from the nominal trajectory, a highway landing
trajectory optimization problem is established. Through successive convexification,
trajectory recovery can be implemented despite the large initial uncertainties. These
two trajectory optimization algorithms are validated through simulations.

The remainder of this chapter is organized as follows. The multi-point powered
descent algorithm for fuel optimality is presented in Sect. 6.2. The highway powered
descent algorithm is detailed in Sect. 6.3. Finally, Sect. 6.4 gives conclusions.

6.2 Multi-point Powered Descent Based on Optimal
Sensitivity

As a result of increased focus on the exploration of planets in the solar system, plan-
etary powered descent is gaining renewed interest. The trajectory must be planned
onboard because the state of the lander at the start of powered descent cannot be
adequately predicted beforehand due to atmospheric uncertainties and/or the limits
of deep space navigation [16, 17]. The multi-point powered descent algorithm aims
to make a real-time decision that recognizes among a list of potential landing sites
the one with a trajectory of least fuel consumption leading to it.
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6.2.1 Problem Formulation

Since powered descent phase of a planetary landing mission starts at a low altitude
relative to planet’s radius, the uniformgravity assumption is appropriate. Other forces
such as aerodynamic forces due to winds are neglected in optimal trajectory design
and they are treated as disturbances [4]. a lumpedmass rigid bodymodel of the lander
is used, where the translational dynamics are decoupled from rotational dynamics.
This is a common assumption used in practice mainly because bandwidth of the
attitude control authority is typically far higher than that of the translational one [1].

The translational dynamics of the lander are expressed in a surface fixed frame of
reference illustrated in Fig. 6.1 as follows:

ṙ(t) = v(t)
v̇(t) = g + T (t)/m(t)
ṁ(t) = −α ‖T (t)‖

(6.1)

where r = [
x y z

]T
is the position vector; v = [

vx vy vz
]T

is the velocity vector; g

is the constant gravitational acceleration vector of the planet; T = [
Tx Ty Tz

]T
is the

thrust vector; m is the lander mass; and α is a positive constant describing the fuel
consumption rate.

The magnitude of T is bounded as:

Tmin ≤ ‖T (t)‖ ≤ Tmax (6.2)

Onboard sensors for terrain-relative navigation generally require specific viewing
orientations, which imposes a constraint on the lander orientation [1]. Thismay imply
that the thrust direction should not deviate more than γ degrees from the positive x
direction. This type of constraint can easily be expressed as follows:

Fig. 6.1 Coordinate of powered descent process
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n̂TT (t) ≥ ‖T (t)‖ cos γ

n̂T = [
1 0 0

] (6.3)

where cos γ and n̂ describe the cone that the thrust vector should point into. Also,
it is required that the trajectory does not go below the surface during the maneuver,
namely:

x(t) ≥ 0 (6.4)

The mass of the fuel consumed cannot be more than the total mass of the fuel,
hence the constraint is given by:

m0 − m f uel ≤ m(t) ≤ m0 (6.5)

where m f uel is total mass of the fuel, and m0 is the initial mass of the lander.
The initial and final position and velocity, and initial mass are specified as follows:

m(0) = m0

r(0) = r0, r(t f ) = r f

v(0) = v0, v(t f ) = v f

(6.6)

Therefore, we obtain the problem of powered descent as follows:

max
T

m(t f )

s.t.Dynamics : (6.1)
PathConstraints : (6.2) − (6.5)
BoundaryConstraints : (6.6)

(6.7)

As shown in (6.7), the problem of single-point powered descent is established.
For the problem of multi-point powered descent, it is straightforward to calculate the
optimal trajectory point by point, then select the fuel-optimal landing site. However,
the point-by-point approach is quite time-consuming, especially in the case of many
candidate landing sites. Therefore, an effective and efficient multi-point powered
descent algorithm is necessary.

6.2.2 Optimal Sensitivity

The finite-element collocation approach is chosen to discretize the state and control
variables of a dynamic optimization problem as (6.7), leading to a large-scale NLP
problem.We prefer Radau collocation points because they allow constraints to be set
at the end of each element and to stabilize the system more efficiently if high index
differential-algebraic equations are present. Without loss of generality, the following
slacked NLP problem is obtained after discretization [3, 9]:



6 Simultaneous Trajectory Optimization for Adaptive Powered Descent 181

min
x

f (x; p)
s.t. c(x; p) = 0

x ≥ 0
(6.8)

where the variable vector x ∈ R
nx consists of the discretized state, control and slack

variables in formulation (6.7); The parameter vector p ∈ R
np refers to the vector of

perturbation parameters that corresponds to the position vector of candidate landing
site; and c(x; p) : Rnx+np → R

m are equality constraints.
The interior point method is used to solve the above NLP problem. The inequality

constraints are transformed into a barrier term and added to the objective function.
The following sequence of barrier subproblems is solved with μ → 0 [21]:

min
x

f (x; p) − μ
∑nx

i=1 ln (xi )

s.t. c(x; p) = 0
(6.9)

The KKT conditions are defined as:

∇x L(x,λ, v; p) = ∇x f (x; p) + ∇x c(x; p)λ − v = 0
c(x; p) = 0
x (i)v(i) = μ

(6.10)

where λ ∈ R
nλ and v ∈ R

nx are vectors of the Lagrangian multipliers of the equality
constraints and the bounds respectively; the superscript i denotes the i th component
of a vector.

Under proper assumptions, we obtain the following theorem:

Theorem 6.1 ([14]) Consider problem (6.8) with f (x; p) and c(x; p) at least
twice differentiable in x. Let x∗ be a local constrained minimizer of problem (6.8).
The linear independence constraint qualification, strict complementarity, and strict
second-order sufficient conditions hold at x∗. Then, for barrier problem (6.9) with
p = p0 and μ → 0, a unique, continuous differentiable vector function x(μ; p0)
exists; the minimizer of problem (6.9) exists for μ > 0 in a neighborhood of μ = 0;
limμ→0+ x(μ; p0) = x∗;

∥
∥x(μ; p0) − x∗∥∥ = O(μ).

Theorem 6.2 ([14])For barrier problem (6.9), assume that f (x; p) and c(x; p) are
k times differentiable in p and k+1 times differentiable in x, and that the assumption
of x∗ in Theorem 6.1 hold. Then, for the solution of problem (6.9) with a small
positive μ:

1. x(μ; p0) is an isolated minimizer and the associated barrier multipliers and dual
variables are unique.

2. For some p in a neighborhood of p0, a k times differentiable function exists as
follows:

s(μ; p)T = [
x(μ; p)T λ(μ; p)T v(μ; p)T ]

(6.11)

which corresponds to a locally unique minimum for problem (6.9) with the mul-
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tiplier vector λ and dual variable vector v.
3. Solution s(0; p0) ≡ limμ→0, p→ p0 s(μ; p) = s∗.

Theorem 6.1 indicates that nearby solutions of problem (6.9) provide useful infor-
mation for bounding properties for problem (6.8) for small positive values of μ.
Theorem 6.2 considers the barrier formulation and sensitivity of its solution with
respect to changes in values of p. Based on Theorems 6.1 and 6.2, the implicit func-
tion theorem can be applied to formulation (6.10) at p0. We define the quantities:

Ss(s(μ; p0)) =

⎡

⎢⎢
⎣

∇xx L(s(μ; p0)) ∇x c(x(μ; p0)) −Inx

∇x c(x(μ; p0))T 0 0

V (μ; p0) 0 X(μ; p0)

⎤

⎥⎥
⎦

Sp(s(μ; p0)) =

⎡

⎢⎢
⎣

∇xpL(s(μ; p0))
∇pc(x(μ; p0))

0

⎤

⎥⎥
⎦

Sμ(s(μ; p0)) =

⎡

⎢⎢
⎣

0

0

−Inx

⎤

⎥⎥
⎦

(6.12)

where X = diag{x}, V = diag{v}, and I is the identity matrix. Ss(s(μ; p0)) and
Sp(s(μ; p0)) are solved numerically. If the assumptions of Theorem 6.1 hold,
Ss(s(μ; p0)) is non-singular, and the sensitivity ds(μ; p0)T/d p can be calculated
from:

ds(μ; p0)T
d p

= −Ss(s(μ; p0))−1Sp(s(μ; p0)) (6.13)

For small value of μ and
∥∥ p − p0

∥∥, expand s(μ; p) at (μ; p0):

s(μ; p) = s(μ; p0) − Ss(s(μ; p0))−1Sp(s(μ; p0))( p − p0) + o( p − p0) (6.14)

We can also have:

s(0; p) = s(μ; p0) − Ss(s(μ; p0))−1[Sp(s(μ; p0))( p − p0) + Sμ(s(μ; p0))μ]
+o( p − p0) + o(μ)

(6.15)
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6.2.3 Multi-point Guidance Algorithm

The main idea of the multi-point powered descent algorithm is to utilize the fuel
optimal trajectory from the initial state of the lander to the centroids of the candidate
landing sites to estimate the fuel optimal trajectories from the same initial state of the
lander to each candidate landing site based on sensitivity analysis. In the sensitivity
analysis, the nominal parameter vector p0 is the position of the centroid, and each
perturbed parameter vector p is the position of one candidate landing site.

In terms of the optimal sensitivity theory above, the overall multi-point powered
descent algorithm is given as follows:

Step1: Partition all candidate landing sites into clusters based on the modified
K-means clustering method [13]. (Note that the following steps show the guidance
algorithm implemented in one cluster. The proposed algorithm should be imple-
mented for each cluster in practice.)

Step2: Obtain the fuel-optimal trajectory soptimal(0; p0) from the initial position
of the lander (x0, y0, z0) to the centroid p0.

Step3: Estimate trajectories sestimated(0; p) from the initial position of the lander
(x0, y0, z0) to the candidate landing sites pwhose centroid is p0 based on sensitivity
analysis as follows:

sestimated(0; p) = soptimal(0; p0) − Ss(s(0; p0))−1Sp(s(0; p0))( p − p0) (6.16)

Step4: Select the optimal landing site p∗ = (x f ∗ , y f ∗ , z f ∗) that consumes the least
fuel based on Step 3.

Step5: Calculate the fuel-optimal trajectory from the initial position of the lander
(x0, y0, z0) to the optimal landing site (x f ∗ , y f ∗ , z f ∗), using sestimated(0; p∗) as the
initial guess.

Step6: Output the optimal results. (For a couple of clusters, compare the best
landing sites from all the clusters before outputting the best one.)

Theorem 6.3 Given the accuracy of sensitivity analysis, the proposed multi-point
powered descent algorithm has minimum total estimation error with modified K-
means clustering method.

Proof Theoptimal trajectory from the initial state of the lander to the defined centroid
C j , j = 1, . . . , K is soptimal(0; p0), and the trajectories to each candidate landing
site can be estimated by (6.16). The total estimation error is written as follows:
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Error =
N∑

i=1

Errori

=
K∑

j=1

∑

i∈Cluster( j)
soptimal(0; pi ) − sestimated(0; pi )

=
K∑

j=1

∑
i∈Cluster( j) soptimal(0; pi ) − {sestimated(0; p j0)

−Ss(s(0; p j0))
−1Sp(s(0; p j0))( p − p j0)}

=
K∑

j=1

∑

i∈Cluster( j)
o
( ∥∥ pi − p j0

∥∥
)

(6.17)

To minimize the total estimation error, we have:

min Error = min
K∑

j=1

∑

i∈Cluster( j)
o(

∥∥ pi − p j0

∥∥) (6.18)

which is equivalent to

min
p j0

K∑

j=1

∑

i∈Cluster( j)
o(

∥∥ pi − p j0

∥∥) (6.19)

where the optimal p j0, j = 1, . . . , K are consistent with the definition of the cen-
troids of the modified K-means clustering method.

6.2.4 Simulation Results

In Scenario 1, the initial position of the lander in the figures is (2500, 150, 150)m,
and the initial velocity of the lander is (−10,−50, 10)m/s. One cluster is obtained
based on themodified K-means clusteringmethod, and the position of the centroid of
these 36 candidate landing sites is (0.5, 0, 0)m. In the following figures, A denotes
the initial position of the lander; D1 to D36 denote the candidate landing sites from
No. 1 to No. 36; C refers to the centroid of these candidate landing sites.

Figure 6.2 shows the results obtained by the proposedmulti-point powered descent
algorithm. First, the fuel-optimal trajectory from A to the centroid C is obtained as
shown in Fig. 6.2a. Then, the estimated trajectories expressed by the red lines in Fig.
6.2b and c from A to each candidate landing site are obtained based on the sensitivity
analysis. Fig. 6.2c is the vertical view of Fig. 6.2b. The fuel-optimal trajectory from
these estimated trajectories is selected from the estimation results. In this scenario,
the estimated trajectory from A to D1 is fuel-optimal, thus D1 is the best landing
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Fig. 6.2 Results by the proposed multi-point powered descent algorithm (Scenario 1)

site. Finally, the trajectory from A to D1 is optimized based on the initial value given
by the estimated trajectory and is shown in Fig. 6.2d.

Figure 6.3a shows the optimized trajectories from the initial position A to each
candidate landing site. The trajectories are optimized separately for destinations
ranging from D1 to D36. Then, the best trajectory that consumes the least fuel is
selected from the resulting 36 trajectories. Figure 6.3b shows the results of fuel
consumption of the optimized trajectories in Fig. 6.3a and the estimated trajectories
in Fig. 6.2b. It is obvious that the sensitivity resulted fuel consumption approximates
the results by actual optimization very well, and D1 is the truly the best landing site,
which verifies the validity of the proposed algorithm.

The performance of the proposed approach compared with that of the general
approach (point by point) for Scenario 1 is presented in Table 6.1 This table includes
the number of optimization runs (#nor), total CPU time taken in solving the problem
(#Total CPU), and CPU time for sensitivity calculation (#Sen CPU). Apparently, the
proposed approach is much better for real-time applications.

The sub-figures in Fig. 6.4 show the optimal state and control profiles from the
initial position of the lander to the best landing site D1. Figure 6.2d shows the
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Fig. 6.3 Comparison with actual optimization results (Scenario 1)

Table 6.1 Performance comparison of Scenario 1

Approach #nor #Total CPU, s #Sen CPU, s

General approach 36 17.4 0

Proposed approach 2 2.5 0.2

three-dimensional position of the lander with respect to time. The lander finally
lands at the specified landing site (0.5,−375, 375)m. Figure 6.4a gives the velocity
vector of the lander with respect to time, showing that the velocity vector eventually
equals zero when the lander lands on the specified position of the planetary surface.
Figure 6.4b shows the thrust magnitude profile with respect to time. The thrust
magnitude changes between the maximum and minimum. It can be seen that the
optimal thrust control consists of a period of minimum thrust after the mission starts,
then a period of maximum thrust until touchdown. As shown in Fig. 6.4c, the thrust
pointing satisfies the corresponding requirements.

In Scenario 2, the initial position of the lander is (2500,−500, 500)m, and the
initial velocity of the lander is (−10, 40,−40)m/s. Based on the modified K-means
clustering method, three clusters are obtained, and the positions of the centroids are
(0.5,−186.875, 440)m denoted by C1, (0.5,−1068.75,−725)m denoted by C2,
and (0.5, 1126.25, 630)m denoted by C3, respectively. In the following figures, A
denotes the initial position of the lander; D1 to D48 denote the candidate landing
sites from No. 1 to No. 48. The centroid of D1 to D24 is C1; the centroid of D25 to
D36 is C2; and the centroid of D37 to D48 is C3.

Figure 6.5 shows results obtained by the proposed multi-point algorithm. First,
the fuel-optimal trajectories from A to the centroids C1, C2, and C3 are respectively
obtained as shown in Fig. 6.5a. Then, the estimated trajectories expressed by the red
lines in Fig. 6.5b and c from A to each candidate landing site are obtained based on
the sensitivity analysis. Figure 6.5c is the vertical view of Fig. 6.5b. The trajectories
to sites from D1 to D24 are estimated by the optimal trajectory from A to C1; the
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Fig. 6.4 Optimal state and control profiles (Scenario1)

trajectories to sites from D25 to D36 are estimated by the optimal trajectory from
A to C2; and the trajectories to sites from D37 to D48 are estimated by the optimal
trajectory from A to C3. The fuel-optimal trajectory is selected from these estimated
trajectories. In this scenario, the estimated trajectory from A to D25 is fuel-optimal,
thus D25 is the best landing site. Finally, the trajectory from A to D25 is optimized
based on the initial guess given by the estimated trajectory and is shown in Fig. 6.5d.

Figure 6.6a shows the optimized trajectories from the initial position A to each
candidate landing site. The trajectories are optimized for destination D1 to D48 point
by point. Then, the best trajectory that consumes the least fuel is selected from the
resulting 48 trajectories. Figure 6.6b shows the results of fuel consumption of the
optimized trajectories in Fig. 6.6a and the estimated trajectories in Fig. 6.5b. Again,
fuel consumption resulted by the two algorithms are nearly the same, and D25 is fuel
optimal. Performance comparison of these two algorithms in scenario 2 is presented
in Table 6.2. In this case of multiple clusters, the proposed algorithm is still suitable
for online applications.
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Fig. 6.5 Results by the proposed multi-point powered descent algorithm (Scenario 2)

Fig. 6.6 Comparison with actual optimization results (Scenario 2)

Table 6.2 Performance comparison of Scenario 2

Approach #nor #Total CPU, s #Sen CPU, s

General approach 48 21.9 0

Proposed approach 4 4.5 0.3
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6.3 Highway Powered Descent Based on Successive
Convexification

In the whole flight, the powered landing phase is the last opportunity for a reusable
rocket to correct the trajectory deviation [10]. However, this is not even possiblewhen
difficulties, such as abrupt environment changes, a system failure, etc., appear at this
stage. In order to deal with such emergencies, we attempt to take advantage of the
highwaysnear the pre-specified landing zone, trying to landon somehighway instead.
The adaptive powered descent algorithm in this section is devised to reconstruct
trajectories for highway landing autonomously, to help landing in extreme conditions.

6.3.1 Problem Formulation

Due to the dense atmosphere, the aerodynamic forces are not negligible and have to
be incorporated in the dynamic formulation. Moreover, the rotational dynamics are
applied to describe attitude changes, preventing a rocket from tip-over.

We define the quaternion qB←I to describe the attitude of ground coordinate
relative to body coordinate:

qB←I =
[
cos (θ/2)
sin (θ/2)ê

]
(6.20)

where ê is the rotation axis of ground coordinate relative to body coordinate, θ is the
rotation angle.

The six degree-of-freedom model of a reusable rocket can be expressed as:

ṁ = − 1
Ispg0

‖T B‖
ṙ I = v I

v̇ I = 1
m (T I + D I ) + g

q̇B←I = 1
2 [ωB⊗] qB←I

JBω̇B = MB − [ωB×] JBωB

(6.21)

where m is the reusable rocket mass, Isp is the vacuum-specific-impulse, g is the
gravity vector; the position r I , velocity v I , thrust force T I and drag force D I are
all expressed in terms of the ground coordinate; the angular velocity ωB , rocket’s
moment of inertia JB , torque MB are expressed in terms of the body coordinate. The
transformation between coordinates is realized by direction cosine matrix C B←I and
C I←B , which are detailed in [22]. For any vector ξ ∈ R

3, we define matrixes
[
ξ⊗]

and
[
ξ×]

as in [20].
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Assume the drag force D I is proportional to the square of the velocity v I , and its
direction is opposite to that of v I . Then, D I is expressed as:

D I = 0.5CDSre f ρ ‖v I‖ v I (6.22)

where CD is the drag coefficient, Sre f is the aerodynamic reference area, ρ is the
atmosphere density.

Assume the aerodynamic center remains at the same position, the torque MB is
expressed as:

MB = [rP×] DB + [rT×] T B (6.23)

where rP is the position vector of drag force, rT is the position vector of thrust force.
The fuel of the reusable rocket is limited:

mdry ≤ m(t) (6.24)

The tilt angle of the reusable rocket is expressed as the angle between the x-axes
of body coordinate and that of the ground coordinate. During the landing phase, the
tilt angle is limited as:

n̂T3C I←Bn̂3 = 1 − 2(q2
1 + q2

2 ) ≥ cos θmax (6.25)

To ensure landing safety, the maximum angular rate is limited as:

‖ωB‖ ≤ ωmax (6.26)

As illustrated in Fig. 6.7, the trajectory is constrained in an area restricted by two
inclined planes to prevent subsurface flight. The glide angle relative to the horizon
plane is constrained:

rI,z(t) − r f,z ≥ sin θgs

√
(di )

2 + (rI,z(t) − r f,z)
2

di = ai rI,x (t)+bi rI,y(t)+ci√
(ai )

2+(bi )
2

(6.27)

The magnitude of the thrust vector is bounded in the interval [Tmin, Tmax], and the
gimble angle of the engine is limited in [0, δmax]:

Tmin ≤ ‖T B(t)‖ ≤ Tmax (6.28)

cos δmax ‖T B(t)‖ ≤ TB,z(t) (6.29)

The boundary states of the reusable rocket are constrained as:
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Fig. 6.7 Illustration of highway landing

{
m(0) = mwet , r I (0) = r i , v I (0) = vi

qB←I (0) = qB←I,i ,ωB(0) = ωi
(6.30)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

airI,x (t f ) + birI,y(t f ) + ci = 0

xmin ≤ rI,x (t f ) ≤ xmax, ymin ≤ rI,y(t f ) ≤ ymax

rI,z(t f ) = r f,z, v I (t f ) = v f

qB←I (t f ) = qB←I, f ,ωB(t f ) = ω f

(6.31)

where airI,x (t f ) + birI,y(t f ) + ci denotes the i th highway in the ground coordinate,
which is available for the emergency landing of the reusable rocket. To describe the
length of the highway, the x-axis interval [xmin, xmax] and y-axis interval [ymin, ymax]
is defined.

Therefore, we obtain the problem of highway landing as follows:

max
T B ,t f

t f

s.t.Dynamics : (6.21)
PathConstraints : (6.24) − (6.29)
BoundaryConstraints : (6.30) − (6.31)

(6.32)

The above problem is a non-convex optimization problem minimizing the flight
time. The non-convexity lies in the nonlinear dynamics and the lower bound of
the thrust magnitude. Once transformed into the convex optimization problem, this
problem can be quickly solved by the interior-point method to obtain a trajectory
that lands the reusable rocket on the highway.
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6.3.2 Successive Convexification

We define the state variable and the control variable as:

x = [
m rTI vT

I qT
B←I ωT

B

]T
(6.33)

u = [
TB,x TB,y TB,z

]T
(6.34)

Normalized trajectory time is utilized to convert the problem into a fixed-final-
time one:

ẋ(τ ) � d

dτ
x(τ ) = σ f (x(τ ), u(τ )) (6.35)

where f (x(τ ), u(τ )) denotes the differential equation of kinematics and dynamics,
τ ∈ [0, 1] is the normalized time, σ = dt/dτ denotes the time dilation coefficient.

Assume that a reference trajectory comprised of x̂(τ ), û(τ ), σ̂ is given, then we
can approximate the nonlinear dynamics with first-order Tayler series:

x′(τ ) = A(τ )x(τ ) + B(τ )u(τ ) + C(τ ) + D(τ )

A(τ ) = σ̂ · ∂ f (x(τ ),u(τ ))

∂x

∣∣∣
x̂(τ ),û(τ )

B(τ ) = σ̂ · ∂ f (x(τ ),u(τ ))

∂u

∣∣∣
x̂(τ ),û(τ )

C(τ ) = −A(τ )x̂(τ ) − B(τ )û(τ )

D(τ ) = σ̂ f (x̂(τ ), û(τ ))

(6.36)

Similarly, the lower bound of the thrust magnitude can be approximated as:

Tmin ≤ ûT
(τ )

∥∥û(τ )
∥∥u(τ ),

∥∥û(τ )
∥∥ ≤ Tmax (6.37)

Then the linearized problem is casted into a finite-dimensional convex optimiza-
tion problem using fourth-order Runge–Kutta discretization. Without loss of gener-
ality, this can be described by the following second-order cone programming (SOCP)
problem:

min
x

f Tx

s.t. ‖Ai x + bi‖ ≤ cTi x + d i
Fx = g

(6.38)

The above SOCP problem approximates the original problem (6.32) near the ref-
erence trajectory. According to successive convexification method [20], a sequence
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of SOCP subproblems can be solved to approach the optimal solution of (6.32). The
procedure is as follows:

Step1: Initialize x0k , u
0
k and σ 0

k using (6.39). Set iteration number j = 0.

x0k = K−1−k
K−1 xi + k

K−1 x f

u0
k = (

K−1−k
K−1 mwet + k

K−1mdry
)
g0

σ 0 = tguess

(6.39)

Step2: Set x j
k , u

j
k andσ

j
k as the reference trajectory, transform the original problem

(6.32) using linearization and Runge-Kutta discretization.
Step3: Set iteration number j= j+ 1, combine the trust-region and virtual control

methods to solve the discretized problem (6.38). Update x j
k , u

j
k and σ

j
k .

Step4: Check the termination condition using (6.40). If the condition is satisfied,
continue. Otherwise, go to step2.

(∥∥V j
∥∥
1 ≤ vtol and

∥∥� j
∥∥
2 ≤ �tol and �σ ≤ �σ,tol

)
or ( j > Nmax) (6.40)

Step5: Output x j
k , u

j
k and σ

j
k as the solution of problem (6.32).

6.3.3 Highway Guidance Algorithm

The terminal status of a reusable rocket is limited in several aspects: (1) it must land
on the pad or the highway, any landing position error that exceeds the safety tolerance
may damage the rocket or the landing area; (2) it must impact the ground with small
velocity to avoid damage in its structure; (3) it must touch the ground near vertically,
in that large attitude angle may lead to tip-over. Therefore, we choose the landing
position error �r f , terminal velocity v f , and terminal attitude angle θ f as landing
performance indexes:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�r f =
√

(r f,x − rp,x )
2 + (r f,y − rp,y)

2

v f =
√

v2
f,x + v2

f,y + v2
f,z

θ f = arccos(1 − 2(q2
1 + q2

2 ))

(6.41)

To get the landing performance index, linear interpolation is employed to get a
continuous form of the control variable ũ, then the trajectory is calculated under the
open-loop control of ũ. At last, we can get perform indexes using (6.41).

The proposed trajectory reconstruction algorithm considers both traditional pad
landing and highway landing. When large deviation from the designed trajectory
is detected, it calculates a pad landing trajectory at first. If the trajectory satisfies
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landing performance tolerance, it proceeds to perform pad landing. Otherwise, it
chooses an available highway to land on. The detailed procedure is as follows:

Step1: Calculate the pad landing trajectory;
Step2: Evaluate the pad landing performance. If the evaluation indexes satisfy

(6.42), go to Step 8; Otherwise, continue.

{
padcase : �r f ≤ rp,max and v f ≤ v f,max and θ f ≤ θ f,max

highwaycase : �r f ≤ rh,max and v f ≤ v f,max and θ f ≤ θ f,max
(6.42)

Step3: Get the number of available highways Nhighway . Set k = 1.
Step4: Calculate the landing trajectory of kth highway.
Step5: Evaluate the landing performance of kth highway. If the indexes satisfy

(6.42), go to Step 8; Otherwise, continue.
Step6: Calculate the comprehensive index Ek as follows. If k < Nhighway , k = k

+1, go to Step4; Otherwise, continue.

Ei = τ1g
(
�r f

) + τ2g
(
v f

) + τ3g
(
θ f

)

g (x) = 1
1+ek(1−x/xe )

(6.43)

where τ1, τ2 and τ3 are weight coefficients. g (x) is the normalization function.
Step7: Choose the highway with the smallest Ei .
Step8: Output the trajectory result.

6.3.4 Simulation Results

The effectiveness of highway landing under large trajectory deviations is demon-
strated first.We assume that there exists only one highway ranging from (−5000,0,0)
to (5000,0,0) along the x-axis direction, and the landing pad lies in (0,0,0). The initial
position of the reusable rocket deviates from (−656,54,4154) to (−3280,270,4154).

The nominal trajectory is denoted as trajectory1. With the given large deviation,
the trajectories of the pad landing and the highway lading are denoted as trajectory2
and trajectory3, respectively.

The 3-D trajectory results under open-loop control are depicted in Fig. 6.8. Both
trajectory1 and trajectory2 attempt to land the rocket on the pad, but trajectory2
violates the velocity and the attitude limit which may lead to tilt-over. Trajectory3
succeeds in landing the reusable rocket on position (−2679.54,0,0) of the highway.
The flight time costs of the three trajectories are 25.25 s, 52.89 s, and 25.26 s. It
can be seen from Fig. 6.9 that trajectory1 and trajectory3 share similar thrust level
curve, while trajectory2 spends more thrust to land the reusable rocket. Therefore,
in this case highway landing provides a better solution than pad landing under large
trajectory deviation.
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Fig. 6.8 3-D trajectory results

To validate optimality of the landing performance of trajectory3, among all the
potential trajectories leading to different ends on the highway, we evenly choose 121
points locating from (−5000,0,0) to (5000,0,0) on the highway to compute landing
trajectory. As shown in Fig. 6.10, the performance index of trajectory3 is marked
in red, and the index of other trajectories are marked in green. It is observed that
the landing position error of trajectory3 is within the highway landing tolerance,
which guarantees an accurate landing. Also, the deviation value of trajectory3 is
smaller than 86.8% (105/121) of other trajectories. The terminal velocity and the
terminal attitude of trajectory3 outperform 96.7% (117/121) and 95.9% (116/121) of
other trajectories, respectively. To summarize, the solution trajectory of the highway
landing optimization problem has a better landing performance thanmost of the other
trajectories.

The robustness of the trajectory reconstruction algorithm is verified by imple-
menting 500-runMonteCarlo simulations.We assume that there exist three highways
surrounding the landing pad. The terminal altitude of the rocket is set 30m above
the ground, which tolerates the distance deviation along the altitude. The initial state
parameters used are listed in Table 6.3.
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Table 6.3 Monte Carlo simulation parameters

State variable Initial value Range

r i (−656, 54, 4154)m (2000, 2000, 0)m

vi (−63,−5,−310)m/s (10, 10, 10)m/s

θ B←I,i (0,−5, 0)◦ (5, 5, 5)◦

Fig. 6.11 3-D trajectory results

Figure 6.11 shows trajectory optimization results of the Monte Carlo simulations.
The trajectories of pad landing, highway landing, and failure are marked in blue, red
and black color, respectively. As the figure reveals, when the initial state deviation is
small, pad landing is probably executed. If the state deviation exceeds the tolerable
interval, highway landing is performed. Also, Fig. 6.11 shows that the reusable rocket
tends to choose the nearest highway to land. Only in several extreme conditions, the
trajectory reconstruction algorithm fails to find a feasible trajectory. Compare the
proposed algorithm with the standard one, the success rate rises from 65% (326/500)
to 99.4% (497/500). In conclusion, the trajectory reconstruction algorithm reduces
dependence of generating a practical landing trajectory on small initial state per-
turbations, and improves the robustness of trajectory recovery by adding highway
landing choices and solving the optimization problem in a sequential manner.

Figure 6.12 depicts fuel consumption comparison. Generally, highway landing
trajectories use less fuel than pad landing trajectories, which can save more fuel for
the guidance and control system to implement real-time adjustments.

The landing performance results are illustrated in Fig. 6.13. The threshold of pad
landing is indicated by the dash-dotted line, and the threshold of highway landing
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is denoted by the solid line. It is noted that 99.4% (497/500) of trajectories meet
the performance requirements in landing position error, 99.8% (499/500) in terminal
velocity, and 100% (500/500) in terminal attitude. In the failed cases, the maximum
error in the landing position error exceeds 10.3% (0.71m), and the maximum error
in terminal velocity exceeds 3.2% (0.096 m/s), of the threshold. Hence, the position
error is the main factor affecting success.

6.4 Conclusions

This chapter develops algorithms and strategies to improve adaptive and autonomous
decision making in powered decent of spacecrafts.

Firstly, a multi-point powered descent algorithm for planetary soft landing is pre-
sented. Here the best landing site is identified from many candidate landing sites
efficiently by optimal sensitivity analysis. The proposed guidance algorithm estab-
lishes a relation between landing site selection and fast trajectory generation based
on optimal sensitivity. The theoretical analysis shows that the proposed algorithm
has minimum total estimation error. Numerical results indicate that the algorithm is
capable of online applications.

Another powered descent algorithm is proposed for landing in large deviation
from the nominal trajectory. Here highway landing trajectory optimization problem
is proposed to handle the significant trajectory deviation and is solved by successive
convexification technique. A trajectory reconstruction algorithm is devised to make
decision between pad and highway landing in terms of the degree of trajectory devi-
ation. The results of the Monte Carlo simulations show that the algorithm improves
trajectory optimization under large uncertainties in the initial states.
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Chapter 7
Aerodynamic Parameter Estimation
for Launch Vehicles

Jian Jia, Weifeng Chen, and Zixuan Wang

7.1 Introduction

7.1.1 What is Aerodynamic Parameter Estimation

Aerodynamic force plays an important role in the flight of space launch vehicles.
Therefore, obtaining accurate aerodynamic characteristics is the basis and prerequi-
site for establishing an aerodynamic model and designing a vehicle with excellent
characteristics.

Aerodynamic parameter identification is to establish the aerodynamic mathemat-
ical model reflecting the flight state of the vehicle and identify the coefficients based
on the input and the measured output. Normally, the approaches for obtaining aero-
dynamic characteristics are theoretical calculation, wind tunnel test and the flight
experiment. The method of theoretical calculation is based on the development of
computer technology and aerodynamics, which is important for the initial design
stage. The wind tunnel test is the basic method of aerodynamics research in recent
years, which can establish the experimental database of aerodynamic model and pro-
vide data support for the establishment and development of aerodynamic model in
the real application. The flight test is the closest way to the real flight mode, which
can get the first-hand flight data and provide technical support for the aerodynamic
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model. However, these methods have certain defects. The theoretical calculation is
hampered by limited theoretical knowledge and computing power of machine. The
approximation error between the mathematical model and the real model cannot be
eliminated. The accuracy of the established aerodynamic model is poor. The wind
tunnel test uses the scaled-down model of real vehicles. The experiment results may
be influenced by the tunnel size, structure and so on. Hence, the generated flight data
may differ from the real flight data. The flight experiment is the closest to the real
flight state. However, the cost of the launch experiment is quite high, and the aerody-
namic parameter can only be indirectly estimated based on the motion measurement
of the vehicle.

The process of aerodynamic parameter identification is a systematic process,
including four aspects: [1]

(1) Experimental design. Through the experiment to obtain a sufficient amount
of information and a sufficient number of experimental data.

(2) Aerodynamic model determination. A suitable mathematical model is con-
structed according to certain experience and guidelines.

(3) Aerodynamic parameter identification process. Determine a set of model
parameter values based on the experimental data and the established model. Then,
the numerical results calculated by the model can best fit the test data.

(4) Model check. Through the operation to check whether the established model
conforms to the flight dynamics model of the vehicle.

There are many factors that affect the accuracy of aerodynamic parameter iden-
tification, such as sensor accuracy, wind speed influence and control system design.
Also, there are many difficulties in the estimation algorithm design, in addition to
the parameter estimation criterion. The most widely used methods for aerodynamic
parameter identification are the least squares method, the Kalman filter, and the
maximum likelihood estimation method.

7.1.2 Approaches for Aerodynamic Parameters Estimation

In system identification, least squares method is one of the most basic estimation
methods that can be used for static systems as well as dynamic systems. In practical
application, measurement data are often given in time order. In order to reduce the
computation cost and the memory requirement, recursive least squares is usually
used. The basic recursive least squares method has the following advantages:

(1) Unknown parameters can be easily found and the sum of the squares of the
errors between the predicted and the actual measurements can be minimized.

(2) It gives the best parameter fit in a statistical sense when the measurement noise
follows the Gaussian distribution and each measurement is independent.

However, the basic recursive least squares method has some drawbacks and lim-
itations in dealing with the complicated system:

(1) It requires the calculation of inverse of matrix, which may not exist.
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(2) If the number of samples is relatively large, the cost for computing the inverse
matrix is large.

(3) It cannot be directly used for nonlinear system.
There are many works for identifying aerodynamic parameters by using least

squares method. Zanette et al. [2] proposed a new calculation tool named RealSysId,
which used the recursive orthogonal least square method for aerodynamic parame-
ter identification. The recursive orthogonalization process obtained the matrices Q
and R through the Givens rotation method. In this process, it was not necessary to
store all the datamatrices, which reduced the calculation amount of the algorithm and
improved the real-time performance of system identification. Yang et al. [3] proposed
a least-squares algorithm to identify the aerodynamic parameters of the projectile.
The pathological problems existing in the traditional least squares method were
effectively solved by dividing the whole launching process into three dynamic pro-
cesses and establishing the aerodynamic model separately. Tang et al. [4] proposed a
numerically robust least squares algorithm based on vector orthogonal polynomials.
This method used matrix scores to describe the model. Expanding the numerator and
denominator polynomialmatrices on the basis of vector orthogonality, a very suitable
numerical substitution was found. This method overcame the numerical problem of
the least squares estimator. Guibert et al. [5] proposed an aerodynamic parameter
identification method using constrained least squares. It was used in identifying the
lift coefficients of the aircraft based on a new segmented polynomial model. The
method improved computational accuracy compared to similar segmented models.

Kalman filtering is a recursive filteringmethod derived from the principle of linear
unbiased minimum variance estimation. Chowdhary et al. [6] conducted an analysis
and research on the unscented Kalman filter method used for aerodynamic parameter
identification. This method could handle nonlinear systems and reduce approxima-
tion error of linearization. At the same time, it could speed up system convergence
and improve the reliability of system estimation. When the system had considerable
complexity, this method was better than the extended Kalman filter method in per-
formance. Although it could be a good alternative to the extended Kalman filtering
method, it would significantly increase the amount of calculations in the system.
The method should be further explored and improved. Li et al. [7] used the aerody-
namic parameter identification method of unscented Kalman filtering to verify that
nonlinear models could be approximated by linear models. The state of the system
was expanded by adding the estimated parameters. The application of this method
proved that if the accuracy loss was ignored, the linear model could be used for the
control design of the aircraft, and the control performance was well. This method
could effectively improve the convergence speed and robustness of the system. Com-
pared with the method proposed by Chowdhary et al., the method proposed by Li
et al. used an augmented state unscented Kalman filter method, it was an improve-
ment on the former method. This method proved that not only the nonlinear model
could be used for system identification, but also the simplified linear model could
be, and they had similar identification results. It could simplify the system modeling
process, reduce costs, and shorten the design cycle. An adaptive unscented Kalman
filtering method for aerodynamic parameters identification was proposed by Majeed



204 J. Jia et al.

et al. [8]. It utilized two parallel unscented Kalman filters (UKF). The master UKF
estimated the states and parameters using the noise covariance obtained by the slave
UKF, while the slave UKF estimated the noise covariance using the innovations gen-
erated by the master UKF. The system could identify the systemwith unknown noise
and determine the vehicle parameters in the uncertain environment where the noise
characteristics change rapidly. However, the computational cost for this kind of two-
level approach may be large and it may not be suitable for online application. Ding et
al. [9] proposed aBayesian adaptive unscentedKalman filter for aerodynamic param-
eter identification. This method combined Bayesian inference method and unscented
Kalman filter method to jointly estimate the covariance coefficient of unknown noise.
In the process of using the unscented Kalman filter, the Gauss-Newton method was
used to maximize the posterior likelihood function of the unknown parameter esti-
mation. This method had good filtering characteristics, high estimation accuracy and
calculation efficiency. Compared with the adaptive unscented Kalman filter method
proposed by Majeed et al., the Bayesian adaptive unscented Kalman filter method
proposed by Ding et al. could reduce the calculation cost of the system and improve
the calculation efficiency of the system. This method had better real-time perfor-
mance and a wider range of applications. Zhang et al. [10] proposed a real-time
estimation algorithm for unsteady aerodynamics. The Kalman filter was used in the
algorithm based on the constant acceleration model to identify the unsteady terms
in the aerodynamic parameter identification model. The non-Gaussian noise was
dealt with by introducing the maximum correlation entropy criterion. The fast time-
varying characteristics of the system could be effectively tracked and the accuracy
of aerodynamic parameter estimation could be improved in this real-time estimation
method. Although the Kalman filter method has been widely used in aerodynamic
parameter identification, there are several disadvantages. The first is that the state
model and noise statistical properties of the system must be known precisely, which
is difficult in practice.When inaccurate or incorrect systemmodels or noise statistical
properties are used, the filtering can make the state estimation error large. Second,
the computation cost of Jacobi matrices is heavy for high nonlinear system. Finally,
the convergence of Kalman filter for nonlinear system should be improved.

In addition to the least squares and Kalman filter, there are many other kind of
approaches for aerodynamic parameters estimation. In order to study the effect of
icing on the tail of the aircraft on the flight status, Xu et al. [11] used the maxi-
mum likelihood estimation method. According to the flight data of the aircraft, the
aerodynamic parameters of the normal model and the two interference models are
identified. The identification results proved that the maximum likelihood estima-
tion method was effective and also the lift and drag characteristics would be greatly
affected by the icing on the tail of the aircraft. It provided a reference for the model
improvement of the aircraft. Kumar et al. [12] estimated the aerodynamic parameters
of the vehicle by analyzing flight data using traditional methods and neural network-
based methods. The state of the system model should be estimated before system
identification by the traditional estimation methods, while the neural network-based
method had the advantage that a priori mathematical model was not necessary. Both
methods had the similar estimation accuracy. Wang et al. [13] proposed an RBF
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neural network that automatically added hidden nodes to identify the aerodynamic
parameters of the reentry vehicle. The initial weights were optimized during neural
network training, the identification accuracy was improved and the training time was
shortened. At the same time, satisfactory identification results could be obtained by
using this method to identify the parameters in the severely nonlinear state equation.
Morelli [14] proposed a method for real-time estimation of aerodynamic parameters
using flight data. More accurate modeling results could be provided without measur-
ing the airflow angle of the aircraft. The airflow angle was reconstructed in the time
domain model, after removing the constant deviation and drift from the time domain
data, and then Fourier transform was applied. Real-time parameter estimation was
performed in the frequency domain. In this identification method, the flight cost of
the aircraft was effectively reduced, and the stability and safety of the aircraft were
improved. An aerodynamic parameter identification method using traditional linear
theory of nonlinear programming was proposed by Burchett [15]. After the linear
theory solution was reformulated, the aerodynamic parameters and initial condi-
tions were easier to be distinguished. The aerodynamic parameters and angular rate
derivatives were obtained in a closed form. The derivatives were used to improve
the gradient-based parameter estimation. Simulation results showed that the estima-
tion accuracy of the system parameters could be effectively improved. Bagherzadeh
et al. [16] proposed a global nonlinear aerodynamic parameter identification method.
The amplitude and frequency models were decomposed and analyzed through an
empirical mode decomposition algorithm. The non-linear behavior of the system
could be effectively predicted and analyzed. The stability of the system also could
be improved. In order to eliminate the error caused by the linearization of the model,
an output error method proposed by Tu et al. [17] was used to identify the aerody-
namic parameters of the nonlinear model. The nonlinear model with measurement
noise was simulated and analyzed, and the influence of model error on the accuracy
of the identification result was reduced. Dou et al. [18] proposed a method with a
combination of maximum expectation (EM) and extended Kalman filtering (EKF)
methods for aerodynamic parameter identification of the return segment of a reusable
vehicle. The EKF was used to identify the system, which could effectively filter out
the noise and estimate the unknown aerodynamic parameters, and the EM was used
to estimate the a priori statistical distribution ofmeasurement noise and process noise
in the EKF process, which could reduce the influence of measurement and process
noise on the system.

In this work, the aerodynamic parameter estimation for launch vehicles is consid-
ered based on simultaneous approach and maximum likelihood principle. Also, the
prediction accuracy of the model with estimated values is focused on, not accuracy
of the estimation for the aerodynamic parameters themselves.
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7.2 Statistic Criterion Based Aerodynamic Parameter
Estimation

The rocket is assumed to be a symmetric cylindrical shape without considering the
side slip angle. In the velocity coordinate, the motion of the rocket can be described
as follows, [19]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx
dt = Re

Re+h v cos θ

dh
dt = v sin θ

dv
dt = Pe cosα

m − ρv2SmCD

2m − g sin θ

dθ
dt = Pe sin α

mv
+ ρv2SmCL

2mv
− g cos θ

v
+ v cos θ

Re+h

(7.1)

where v is the speed, Pe is the axial thrust, Sm is the rocket reference area, θ is the
flight path angle, Re is the radius of the earth, h is the flight altitude, m is the mass
of the rocket, x is the distance of the rocket. The attack angle α is a control variable.
The considered time span is [0, t f ]. The atmosphere density ρ is calculated based on
Yang’s model [20]. The drag coefficient CD and lift coefficient CL are considered as
time dependent parameters. Simultaneous approach [21] is applied for aerodynamic
parameter estimation and the motion model of rocket should be discretized. Formu-
lation (7.1) can be converted into algebraic equations by approximating the state and
control variables using a family of polynomials on finite elements [ti−1, ti ], which
satisfied

t0 < t1 < · · · < tN = t f (7.2)

where N is the number of finite elements. Lagrange interpolation polynomials are
used as [21]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ≈ x (K ) =
K∑

j=0
l j (τ ) xi j , h ≈ h(K ) =

K∑

j=0
l j (τ ) hi j

v ≈ v(K ) =
K∑

j=0
l j (τ ) vi j , θ ≈ θ(K ) =

K∑

j=0
l j (τ ) θi j

α ≈ α(K ) =
K∑

j=1
l̄ j (τ ) αi j

l j (τ ) =
K∑

k=0,�= j

(τ−τk )

(τ j−τk )
, l̄ j (τ ) =

K∑

k=1,�= j

(τ−τk )

(τ j−τk )

(7.3)

where K is the number of collocation points. The drag coefficient CD and lift coef-
ficient CL are approximated by piecewise linear function
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CD ≈ C (m−1)
D +

(
C (m)

D −C (m−1)
D

)

(

ti Dm
−ti Dm−1

)

(
t − ti Dm−1

)
,m = 1, . . . , ND

CL ≈ C (m−1)
L +

(
C (m)

L −C (m−1)
L

)

(

ti Lm
−ti Lm−1

)

(
t − ti Lm−1

)
,m = 1, . . . , NL

(7.4)

ND and NL are the number of segments forCD andCL . i Dm and i Lm are elements from
1...N . It is assumed that the measured outputs are distance x , height h and velocity
v. Based on Eqs. (7.1)–(7.4), the formulation for aerodynamic parameter estimation
can be established. For simplifying the following discussion, the resulting nonlinear
programming for aerodynamic parameter estimation is represented as follows,

min J = 1
2 (y − y(meas))TC−1

y (y − y(meas))

s.t.

{
c(γ ,p) = 0

y = h(γ )

(7.5)

where γ ∈ Rng represents the vector of distance x , height h, velocity v, flight path
angle θ at all the discretization points. c : Rng→ Rng represents the discretization
of (7.1) based on Eqs. (7.2)–(7.4) and h : Rng→ Rny represents the relationship
between system output and state variables. y ∈ Rnyrepresents the vector of distance
x , height h, velocity v at all the sampling points. y(meas)∈ Rny represents the mea-
surements vector corresponding to y. Cy is a diagonal matrix, and each diagonal
element is the variance of the measurement noise corresponding to y. The Jacobian
of c with respect to γ is a square matrix. For all physically meaningful parameters
p= [CD

(1),CD
(2), . . . ,CD

(ND),CL
(1),CL

(2), . . . ,CL
(NL)]T , the Jacobian is usually

assumed to be non-singular, and it satisfies the linear independence constraint qual-
ification (LICQ). The reduced Hessian of the Lagrange function for (7.5), denoted
by Hr which is calculated as [22]

Z =
⎡

⎣
I

−
[ ∇γ cT 0

∇γhT −I

]−1 [ ∇γ cT

∇γhT

]

⎤

⎦ ,Hr =
⎛

⎝ZT

⎡

⎣
0 0 0
0 0 0
0 0 C−1

y

⎤

⎦Z

⎞

⎠ (7.6)

In this work, reduced Hessian based transformed parameter strategy [22] is used
for eliminating the correlation among the aerodynamic parameters. The reduced
Hessian Hr is decomposed as

Hr = V

⎡

⎢
⎢
⎢
⎣

λ1

λ2

. . .

λND+NL

⎤

⎥
⎥
⎥
⎦
VT (7.7)
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where V is the orthogonal matrix and the λ1, λ2, . . . , λND+NL with descending
order are eigenvalues. The aerodynamic parameters p can be transformed as

q = VTp (7.8)

where q is the vector of transformed parameters. Different from the mean squared
error criterion [23], the number of estimated transformed parameters is deter-
mined based on the modified E-optimal design criterion [24] and q is divided into
[q1T ,q2T ]T , where only q1 are estimated. Usually, the unestimated parameters q2
are fixed at the nominal values q2(tr ial) and the following problem is solved,

min J = 1
2 (y − y(meas))TC−1

y (y − y(meas))

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

c(γ ,p) = 0
y = h(γ )

q = [qT
1 ,qT

2 ]T = VTp
q2 = q(tr ial)

2

(7.9)

However, unreasonable nominal values for the fixed parameters significantly
affect the prediction of the model. Statistic criterion based approach is used for deter-
mining the nominal values for unestimated parameters and the statistic criterion is
designed as [22]

η = |skewness1 − 0| + |kurtosis1 − 3|
+|skewness1 − skewness2| + |kurtosis1 − kurtosis2|

skewness1 =
1
ny

ny∑

i=1
(εi−0)3

σ 3 , skewness2 = z3
z1.52

kurtosis1 =
1
ny

ny∑

i=1
(εi−0)4

σ 4 , kurtosis2 = z4
z22

εi = yi (α(α
(tr ial)
2 )) − y(m)

i , ε̄ = 1
ny

ny∑

i=1
εi

z2 = 1
ny

ny∑

i=1
(εi − ε̄)2, z3 = 1

ny

ny∑

i=1
(εi − ε̄)3, z4 = 1

ny

ny∑

i=1
(εi − ε̄)4

(7.10)

where the subscript i in (7.10) represents the i-th component of the vector y, ny is
the dimension of y and the measurement noise follows Gauss probability distribution
N (0, σ 2). The statistic criterion based approach [22] combined with the modified
E-optimal design criterion for estimating the aerodynamic parameters are described
as

Step 1: Let p(tr ial) = p(0) and initialize n_iter.
Step 2: Calculate the reducedHessianmatrix atp(tr ial) and theorthogonalmatrixV.
Step 3: Calculate the number of estimated parameters np based on the modified

E-optimal design criterion and the transformed parameter vector q is partitioned into
q1 and q2 according to np.
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Step 4: Let i ter = 0 and η(opt) = I n f ini t y.
Step 5: Obtain p(tr ial) by sampling based on the given range and the distribution

of p and then q(tr ial) = [q(tr ial)T
1 ,q(tr ial)T

2 ]T is equal to VTp(tr ial).
Step 6: Fix q2 at q2(tr ial), and estimate the selected parameters q1 by solving the

NLP problem (7.9).
Step 7: Calculate the criterion η based on Eq. (7.10). If η(opt) > η, go to Step 8,

otherwise go to Step 9.
Step 8: Let η(opt) = η, q(opt)

2 = q(tr ial)
2 , i ter = 0.

Step 9: Let i ter = i ter + 1.
Step 10: If i ter == n_iter, print the solution q corresponding to η(opt) and stop,

otherwise return to Step 5.

7.3 Numerical Results

Only the ascending stage of rocket launching is considered and the total flying time
is 66 s. The measurement sampling time is 10 ms and the standard deviations of the
measurement error for x , h and v are 1m, 1m and 1m/s respectively. For simplicity,
the true values for drag coefficient CD and lift coefficient CL are assumed to be 0.5
and 0.1 respectively. Although the aerodynamic parameters are set to be constant
here, they can be handled as time dependent. ND is set to 6, i.e. the drag coefficient is
approximated by 6-segment linear function. NL is set to 1 andC

(0)
L = C (1)

L is required.
Hence, there are 8 parameters should be estimated. The initial guesses for drag
coefficient and lift coefficient are CD

(0) = 0.1, CD
(1) = 0.6, CD

(2) = 0.1, CD
(3) =

0.6, CD
(4) = 0.1, CD

(5) = 0.6, CD
(6) = 0.1, CL

(0) = 0.12. The threshold for the
modified E-optimal design criterion is set to 3000. The procedure for determining
CD andCL is terminated if the criterion η has not been updated n_iter (=2000) times
from the last update. The lower and upper bound for CD and CL is set to 1.0×10−4

and 1.0 respectively.
Based on the modified E-optimal design criterion, np = 5 is obtained. Namely,

there are 5 estimated parameters and 3 parameters are fixed. The results correspond-
ing to the initial guess p(0) (with fixed q(0)

2 ) are shown in the Table 7.1 with index
0. Since there are random sampling involved in the algorithm, 10 experiments are
performed. The estimated values forCD andCL corresponding to the 10 experiments
are shown in the Table 7.1 with index from 1 to 10.

The average values for CD
(0) ∼ CD

(6) and C (0)
L in ten runs of experiments

are 0.0184218, 0.625591, 0.463646, 0.493976, 0.508575, 0.474668, 0.549004 and
0.393578 respectively. Compared with the true values, the relative errors of the aver-
age estimated values for C (0)

D , C (1)
D and C (0)

L are over 20%, while others are less than
10%.

There are total 6600 samplings for each state variable. The average errors of the
state variables x , h and v corresponding to each group of estimated values are shown
in the Table 7.2.
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Table 7.1 The estimation results corresponding to the initial guess p(0) and ten runs of experiments

Index C (0)
D C (1)

D C (2)
D C (3)

D C (4)
D C (5)

D C (6)
D C (0)

L

0 0.215860 0.963712 0.187435 0.664765 0.410800 0.576117 0.317641 0.12

1 0.00973538 0.704978 0.390345 0.550248 0.470303 0.519544 0.440065 0.354477

2 9.99902×10−5 0.606472 0.482575 0.478713 0.518989 0.461943 0.579400 0.500331

3 0.0472689 0.693603 0.395671 0.547289 0.471071 0.517612 0.441830 0.387841

4 9.99904×10−5 0.589686 0.495180 0.463465 0.518278 0.443390 0.587525 0.767355

5 9.99900×10−5 0.577351 0.500931 0.460219 0.514317 0.440913 0.576756 0.848617

6 9.99901×10−5 0.577637 0.507894 0.466159 0.534681 0.458859 0.613621 0.177960

7 0.0165830 0.718111 0.381058 0.557412 0.470089 0.525892 0.438070 0.0953417

8 9.99925×10−5 0.607618 0.484226 0.476169 0.522774 0.459112 0.591079 0.471854

9 9.99929×10−5 0.583925 0.503101 0.467718 0.532258 0.458087 0.609689 0.289643

10 0.0001 0.596529 0.495474 0.472371 0.532993 0.461328 0.612009 0.0423575

Table 7.2 The average errors of the state variables x , h and v corresponding to each group of
estimated values

Index Average error for
x(m)

Average error for
h(m)

Average error for
v(m/s)

η(opt)

0 0.0309 0.497 0.152 1.179876

1 0.00968 0.155 0.0474 0.045993

2 0.0135 0.144 0.0607 0.041314

3 0.00926 0.148 0.0451 0.046015

4 0.0163 0.165 0.0739 0.039483

5 0.0154 0.155 0.0698 0.039509

6 0.0171 0.171 0.0781 0.043525

7 0.0107 0.172 0.0525 0.046095

8 0.0152 0.158 0.0678 0.040707

9 0.0169 0.170 0.0767 0.039435

10 0.0169 0.172 0.0764 0.040215

FromTable 7.2, we can see that any group (from index 1 to 10) of estimated values
obtained by the algorithm ismuch better than those of the results corresponding to the
initial guessp(0) (with fixedq(0)

2 ). Themean values for “average error for x”, “average
error for h” and “average error for v” in ten runs of experiments are 0.014094, 0.161
and 0.06484, which are better than the results corresponding to the initial guess p(0)

(0.0309, 0.497, 0.152).
The 9th group of estimated values correspond to the least statistic criterion η(opt).

Although it is not the best group of estimated values for CD and CL , the prediction
accuracy of themodel based on the aerodynamic parameters from the initial guessp(0)

(with fixed q(0)
2 ) and the 9th group in Table 7.1 are demonstrated with perturbations

on the initial state of x , h and v (the true initial states are 0, 0 and 0 respectively).
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The randomly generated initial states (following Gauss distribution N (0, 1)) and the
corresponding results with the initial guess p(0) (with fixed q(0)

2 ) and the 9th group
in Table 7.1 are shown in the Table 7.3.

From Table 7.3, we can see that the performance of the aerodynamic parameters
from the 9th group in Table 7.1 is still superior to the initial guess p(0) (with fixed
q(0)
2 ) even if the initial states are perturbed.

7.4 Conclusions

It is difficult to estimate all the aerodynamic parameters of launch vehicles based on
the measurements of the distance, height and velocity. The traditional approach is to
fix the unestimated variables on the nominal values before estimation, however the
selection of the nominal values have significant impact on the prediction accuracy
of the model. In this work, the modified E-optimal design criterion and the statistic
criterion based approach is used for estimating the aerodynamic parameters. The
numerical results show that the prediction accuracy can be remarkably improved
even when the initial states are perturbed.
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Conclusions

Zhengyu Song1

In the end, we would like to briefly discuss some future challenges and opportunities.

• Endo-atmospheric closed-loop guidance
There have been no well-solved and generalized methods or algorithms for closed-
loop guidance (CLG) when flying in the atmosphere, where the tracking guidance
control has dominated the applications from past to present. The reasons for this
phenomenon are contributed to two classical problems: the constraints for structural
load tolerance and the falling area limitations of a rocket’s jettisons.

Aerodynamic loads will do harm to the structural integrity, which has been recog-
nized since the beginning of the rocket development. However, after so many years
of extensive studies, load relief is still an active topic. Three kinds of methods have
been applied. First, the wind biasing trajectory design is to plan the flight path offline
that meets the angle of attack constraint, while the tracking guidance control is con-
ducted inflight. However, considering the accuracy and uncertainties of the wind
field data, usually a strategy with under compensations is prioritized to avoid over
compensations. Second, the load relief control regards the force and torque generated
by the wind as interferences, but this treatment will have an impact on flight stabil-
ity and tracking control accuracy. Thus the abovementioned two methods cannot
completely relieve the wind loads. Load relief guidance can regulate the flight path
in rea-time with angle-of-attack feedback, and the onboard wind profile is modeled
either as a low-order polynomial curve fit or as a look-up table. However, this kind
of instantaneous control is difficult to predict the effects of the wind compensations
on the orbit entry accuracy, and no closed-loop updating are reflected in the current
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and follow-up guidance commands, which means the deviations from the nominal
trajectory induced by the load relief could only be corrected after flying out of the
atmosphere.

When the falling area of the debris is concerned, the complexity of the planning
problem is further increased. The falling process of debris is uncontrolled and difficult
to be represented by a dynamic or parameterized model, so the falling point cannot
be estimated responsively and the constraint cannot be incorporated into the CLG’s
feedback mechanism by parameter adjustments, resulting in the violation of the
landing area constraint thereafter. However, a large number of launch activities have
shown that the falling point is mainly affected by the initial velocity and position of
the separated body, and the impacts of the aerodynamics can be treated as errors.
Thus a new approach may be feasible if a model with the statistical characteristics
of the falling point could be established to describe the maximum error.

• Exo-atmospheric autonomous guidance
CLG methods outside the atmosphere have also been widely discussed, which are
all based on the premise that the target orbit is known, that is, the guidance methods
do not care about whether the target orbit is beyond a launcher’s performance. Those
seemly not so “intuitive” terminal constraints of the orbital elements are transformed
into the velocity and position constraints of the current optimal entry point, represent-
ing a classical two-point boundary value problem.With no aerodynamic disturbances
and the relaxation of debris falling area constraints, an analytical exo-atmospheric
guidance law is possible.

If the prescribed target orbit is beyond a launcher’s performance due to the
non-fatal faults such as thrust dropping, the terminal boundary conditions become
unknown and need to be optimized simultaneously with the flight path. It is difficult
to ensure a convergent and optimal solution even if this problem is solved offline.
At this time, finding a solution is more important than finding an optimal one, so
the strategies to the typical failures could be pre-set and uploaded to the onboard
computer before liftoff, and the responses inflight are made based on the prescribed
targets. However, the autonomous guidance methods (AGMs) are more adaptable to
the thrust variations than in-advance offline planning, but at present only a few tech-
nical breakthroughs have been made, which exhibit a culture that doing something
is better than nothing to do to wait helplessly as the failure occurs.

There is an assumption for the discussions of the AGMs in this book, i.e., all
remaining propellant could be utilized, but this is not the situation if the thrust drop-
ping is caused by the propellant leakage, ablation, or reduction of the pump efficiency.
The latter two fault modes will lead to engine explosion, so timely shutdown is a
preferable measure. The leakage would results in the variations of the mass-flow-
rate and the remaining propellant not be fully usable. Moreover, the engine specific
impulse, mass-flow-rate, and mixing ratio of the propellant would all be affected
under failure conditions and have different influences on the AGMs. Thus, a clear
understanding of the failure modes of the engines is definitely required to conduct
mission reconstructions.
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• End-to-end trajectory optimization
At present, the sequential optimization, not end-to-end (E2E) planning, is applied for
the ascent flight or recovery. Strictly speaking, it is the perfect state of E2E if taking
the payloads as the final stage of the rocket for a joint optimization. The sequential
optimization needs to consider the handover conditions between each flight phase,
which are rarely regulated adaptively even a CLG is adopted within this phase. This
leads to the suboptimal solution from the point of view of the entire flight profile.

The same is true of the rocket recovery. The powered landing guidance meth-
ods are mostly studied, whose premise is that the initial condition of the powered
descent is within the feasible region, or in other words, the handover conditions
between the aerodynamic decelerating phase and the powered descent phase should
be well controlled. However, the control means during the aerodynamic decelerating
are relatively weak (generally relying on RCS and grid wings) and the handover
conditions are hard to be accurately controlled. Thus, another requirement is arisen
that the feasible region of the starting point of back-propelling should be greatly
extended to tolerate large deviations, which demands a deep throttling capability to
maintain a low thrust-to-weight ratio.

E2E optimization only considers the initial and terminal conditions, while the
handover conditions can be regulated autonomously as needed. This is certainly an
appealing vision, but online planning is time-consuming, computationally intensive,
and convergent not ensured. Considering that the powered vertical recovery is at the
expense of the payload carrying capacity, the driving force for E2E optimization
from takeoff, stage separation, to landing, is still urgent.

Numerical computing may be the best choice for E2E optimization when an ana-
lytical solution is impossible. With the performance improving of solvers, hardware
and software products, the numerical computing can also acquire satisfied results if
a good initial guess is provided, although how to obtain this initial value is not only
a scientific problem but also an art. The analytical solution of a simplified problem
by relaxing some constraints is the uppermost initial guess.

Despite growing enthusiasm for the artificial intelligent (AI) technologies, they
have not been able to play impressive roles in spaceflight except for fault diagnosis,
pattern recognition and other classification applications. After sufficient training, AI
presents “reflex” features to the outer world, which are difficult to be interpreted, to
explain the reasoning mechanism, or to predict the impact on follow-up operations.
Thesemake theAI technologies face a trust issuewhen applied in influential projects.
However, AI technologies can be regarded as a dependable way to generate an initial
guess. Even if the solution provided by the AI technologies is a feasible one, it seems
more credible if this solution is re-processed as the initial value.

The studies introduced in this book lay the foundation to promote autonomy for
space vehicles. For any innovative solutions, if they do not show obvious advantages
over the existing approaches, or the need to them has not been clearly established, or
the assessments needed to match their risk tolerance have not been conducted, there
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is a considerable and understandable reservation in committing oneself to these com-
plicated schemes where millions of dollar vehicles are concerned. Thus, a rideshare
demonstration flight is welcome to assess the appropriateness and readiness of these
studies and build confidence.
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