
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

5-2018

Large Scale Constrained Trajectory Optimization Using Indirect Large Scale Constrained Trajectory Optimization Using Indirect

Methods Methods

Thomas Antony
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Antony, Thomas, "Large Scale Constrained Trajectory Optimization Using Indirect Methods" (2018). Open
Access Dissertations. 1708.
https://docs.lib.purdue.edu/open_access_dissertations/1708

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1708&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1708?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1708&utm_medium=PDF&utm_campaign=PDFCoverPages

LARGE SCALE CONSTRAINED TRAJECTORY OPTIMIZATION

USING INDIRECT METHODS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Thomas Antony

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Michael J. Grant, Chair

School of Aeronautics and Astronautics

Dr. Bedrich Benes

Department of Computer Graphics Technology

Dr. William A. Crossley

School of Aeronautics and Astronautics

Dr. James M. Longuski

School of Aeronautics and Astronautics

Approved by:

Dr. Weinong Chen

Associate Head for Graduate Education,

School of Aeronautics and Astronautics

iii

To my parents, Antony and Susheela and my sister Asha, for all their love and

support,

To Beth, for always being by my side

iv

ACKNOWLEDGMENTS

This work would not be possible without the support and encouragement of many

great people during my time at Purdue. First and foremost, I would like to thank

my advisor, Prof. Michael Grant. I consider myself very lucky to have had the

opportunity to work with you and learn from you. I really appreciate your openness

to new ideas as well as all of your ideas that got me started in the beginning. I

enjoyed all the discussions we had and valued your insights on my work. I would not

be the engineer I am today without your constant guidance and support.

I would also like to acknowledge the Air Force Research Laboratory for funding a

significant portion of this research and for inviting me to be a visiting researcher at the

Mathematical Modeling and Optimization Institute back in Summer 2015. I would

also like to thank Colin Hurd and Mark Barglof, for supporting this work through

Smart-Ag LLC and giving me the opportunity to be a part of your great team.

I am also immensely lucky to have had great lab-mates at the Rapid Design of

Systems Laboratory, who created a positive and stimulating work environment. I

would particularly like to thank Harish Saranathan, Justin Mansell, Kshitij Mall and

Michael Sparapany. I enjoyed working with all of you and learned a lot from all the

great discussions we had at the office. I would also like to thank Shreyas Subramanian,

Joseph Williams, and Sean Nolan.

Finally, I would like to thank my family for their love and constant encouragement.

I would also like to thank Beth Kashon for always being there for me especially when

I most needed it. The work and accomplishments presented in this document would

not be possible without all of your support. Thank you.

�

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

SYMBOLS . xii

ABBREVIATIONS . xiv

ABSTRACT . xvi

1 MOTIVATION AND BACKGROUND . 1
1.1 Motivation . 1
1.2 Trajectory Optimization Overview . 4

1.2.1 Introduction . 4
1.2.2 Direct Methods . 6
1.2.3 Indirect Methods . 10

1.3 Continuation . 16
1.4 Overview of Numerical Methods for Boundary Value Problems 19

1.4.1 Introduction . 19
1.4.2 Single Shooting Method . 21
1.4.3 Multiple Shooting Method . 22
1.4.4 Collocation . 24

1.5 Trajectory Optimization Frameworks 26
1.6 Outline . 27
1.7 Contributions of Thesis . 28

2 INTEGRATED CONTROL REGULARIZATION METHOD (ICRM) 31
2.1 Overview . 31
2.2 Regularization of Path Inequality and Control Constraints 32
2.3 Differential Algebraic Equations . 35
2.4 Numerically Integrated Optimal Control Law 37
2.5 Candidate Saturation Functions . 39
2.6 Constraint Normalization . 40
2.7 Regularization Parameter, , and the Push-Off Factor 41
2.8 Validation . 43

2.8.1 Constrained Brachistochrone Problem 43
2.8.2 One-Dimensional Free-Flight Problem with Control Constraint . 53
2.8.3 Maximum Terminal Energy Hypersonic Trajectory with Heat

Rate Constraint . 60

�

vi

Page

2.8.4 Maximum Terminal Energy Hypersonic Trajectory with Heat
Rate and Angle-of-Attack Constraints 70

2.9 Application Problem . 74
2.9.1 Problem Statement . 74
2.9.2 Nominal Solution . 76
2.9.3 No-Fly Zone Position . 79
2.9.4 Terminal Impact Angle Constraints 80

2.10 Summary . 84

3 QUASILINEAR CHEBYSHEV-PICARD ITERATION (QCPI) 87
3.1 Background . 87

3.1.1 Prior Work . 87
3.1.2 Picard Iteration . 91
3.1.3 Chebyshev Polynomials . 92
3.1.4 Chebyshev-Picard Methods . 93
3.1.5 A Generalized MCPI-BVP Algorithm 97

3.2 QCPI Algorithm Implementation . 101
3.3 Acceleration using Numba Just-In-Time (JIT) Compiler 106
3.4 Validation . 107

3.4.1 Classical Brachistochrone Problem 107
3.4.2 Constrained Brachistochrone Problem 109
3.4.3 Unconstrained Maximum Terminal Energy Hypersonic Trajectory110

3.5 Benchmark Problem and Performance Comparison 112
3.5.1 Problem Definition . 112
3.5.2 Test Setup . 112
3.5.3 Solution . 114
3.5.4 Performance Benchmarks . 114

3.6 Limitations . 118
3.6.1 Numerical Instability due to Fixed Mesh Size 118
3.6.2 Compilation Delays from Numba 119

3.7 Summary . 120

4 MULTI-VEHICLE CONSTRAINED TRAJECTORY OPTIMIZATION . . 122
4.1 Problem Statement . 122
4.2 Nominal Solution . 125
4.3 Analysis . 126

4.3.1 Changing the Location of the Keep-Out Zone 126
4.3.2 Changing the Impact Heading of Vehicle-3 128
4.3.3 Changing the Impact Heading of Vehicle-5 131
4.3.4 Improving Accuracy by Reducing i 131

4.4 Summary . 134

5 BELUGA — AN INDRECT TRAJECTORY OPTIMIZATION FRAME-
WORK . 136

vii

Page

5.1 Introduction . 136
5.2 Problem Definition . 137
5.3 Dynamic Scaling . 141
5.4 Necessary Conditions . 142
5.5 Numerical Solvers . 142
5.6 Continuation Strategies . 143

5.6.1 Initial Guess Generation . 143
5.6.2 Manual Continuation Strategy 144
5.6.3 Bisection Continuation Strategy 145
5.6.4 Advanced Continuation Strategies 146

5.7 Visualization . 147
5.8 Summary . 147

6 SUMMARY AND FUTURE WORK . 149
6.1 Summary of Contributions . 149

6.1.1 Integrated Control Regularization Method (ICRM) 149
6.1.2 Quasilinear Chebyshev-Picard Iteration (QCPI) 150
6.1.3 Large Scale Multi-Vehicle Trajectory Optimization 152
6.1.4 Open Source Indirect Trajectory Optimization Framework . . 152

6.2 Future Work . 153
6.2.1 Automated Computation of ICRM Push-Off Factor 153
6.2.2 Fully Numerical Indirect Optimal Control 154
6.2.3 Improved Numerical Stability for DAEs 155
6.2.4 Adaptive Grid & Mesh Refinement for QCPI 155
6.2.5 Parallel Implementation of QCPI 156
6.2.6 On-board Trajectory Optimization and Model Predictive Control156
6.2.7 Expansion of beluga . 157

REFERENCES . 159

A MCPI Matrices . 172

B beluga Software Information . 174
B.1 Obtaining & Installing beluga . 174
B.2 Sample Input File . 174
B.3 Sample Plotting Script . 176

C Publications . 179

VITA . 181

viii

LIST OF TABLES

Table Page

1.1 Comparison of Direct and Indirect Methods 6

2.1 Boundary Conditions. 60

2.2 Environment Parameters. 60

2.3 Nominal Boundary Conditions . 76

2.4 Path Constraint Parameters – One Active Constraint 77

2.5 Path Constraint Parameters – Two Active Constraints 79

3.1 Benchmarking Hardware & Software Specifications 113

3.2 QCPI Benchmarks – Runtime vs. Number of Vehicles 116

4.1 Multi-Vehicle Trajectory Optimization – Problem Parameters 122

4.2 Multi-Vehicle Trajectory Optimization – Boundary Conditions 123

�

�

�

ix

LIST OF FIGURES

Figure Page

1.1 Side View of Trajectory during Continuation Process [79] 18

1.2 Full Extension of Trajectory to Final Target [79] 18

1.3 A Multi-Point Boundary Value Problem. 23

2.1 One-sided Saturation Functions . 39

2.2 Two-sided Saturation Functions . 40

2.3 Constrained Brachistochrone - MPBVP Continuation - Trajectory 49

2.4 Constrained Brachistochrone - MPBVP Continuation - Control History . . 49

2.5 Constrained Brachistochrone Solution - Trajectory 50

2.6 Constrained Brachistochrone Solution - Control History 51

2.7 Constrained Brachistochrone Solution - Costates 52

2.8 Constrained Brachistochrone - Costate Comparison with GPOPS 53

2.9 One-Dimensional Free Flight – Initial Continuation 57

2.10 One-Dimensional Free Flight – Evolution of Regularized Solution 58

2.11 One-Dimensional Free Flight - Trajectory 59

2.12 One-Dimensional Free Flight - Control History 59

.2.13 ˙Heat Rate Constraint – MPBVP Continuation in Qmax 66

2.14 Heat Rate Constraint – ICRM Continuation in γ(0) and θ(T) 67

2.15 Heat Rate Constraint – ICRM Continuation in Q̇
max from 2500 W/cm2 (red)

to 1200 W/cm2 (blue) with = 10−4 . 68

2.16 Heat Rate Constraint – ICRM Continuation in from 10−4 (red) to 10−6 (blue)69

2.17 Heat Rate Constraint – MPBVP vs ICRM 69

2.18 Control History for Heat Rate Constrained Trajectory 70

2.19 Heat Rate & AoA Constraint – Evolution in Q̇
max from 10,000 W/cm2 to

1200 W/cm2 . 71

2.20 Heat Rate & AoA Constraint – Evolution in 1 from 10−4 (red) to 10−6 (blue)72

�

�

x

Figure Page

2.21 Heat Rate & AoA Constraint – Evolution in 2 from 10−4 (red) to 10−6 (blue)72

2.22 Heat Rate & AoA Constraint – ICRM vs GPOPS 73

2.23 Two-Vehicle Co-operative Engagement – One Active Constraint 78

2.24 Two-Vehicle Co-operative Engagement – Two Active Constraints 79

2.25 Two-Vehicle Co-operative Engagement – Zone-2 - Trajectories 80

2.26 Two-Vehicle Co-operative Engagement – Moving Zone-2 – Velocity and
Control History . 81

2.27 Two-Vehicle Co-operative Engagement – Evolution of Trajectories w.r.t
ψ2(T) . 82

2.28 Two-Vehicle Co-operative Engagement – Evolution of 3D Trajectory of
Vehicle-2 with Change in ψ2(T) . 83

2.29 Two-Vehicle Co-operative Engagement – Cross-coupling of ψ1(0), v2 and
ψ2(T) . 84

3.1 Benchmarks – bvp4c vs. bvpgpu [79] . 90

3.2 Chebyshev Polynomials up to k = 5 . 92

3.3 QCPI Algorithm Implementation – Flowchart 105

3.4 QCPI Validation - Classical Brachistochrone Problem 108

3.5 QCPI Validation - Classical Brachistochrone - Optimality Conditions . . 108

3.6 QCPI Validation - Constrained Brachistochrone Problem with = 10−4 . 109

3.7 QCPI Validation - Unconstrained Hypersonic Trajectory Problem - Con-
tinuation in ρ0 . 111

3.8 QCPI Validation - Unconstrained Hypersonic Trajectory Problem 112

3.9 QCPI Benchmark Problem – Optimal Solution 114

3.10 QCPI Benchmark - Comparison with Shooting Solvers 117

3.11 CGL Nodes for Chebyshev Polynomial Series of Order, N = 20 118

3.12 Benchmark - Compilation Time for QCPI and Shooting Methods 120

4.1 Multi-Vehicle Trajectory Optimization - Scenario Overview 123

4.2 Multi Vehicle Problem – Construction of Nominal Solution 125

4.3 Multi Vehicle Problem – Moving Path Constraint – Solution 127

�

�

xi

Figure Page

4.4 Multi Vehicle Problem – Moving Path Constraint – Velocity and Control
History . 127

4.5 Multi Vehicle Problem – Moving Path Constraint – 3D Trajectory Profiles 128

4.6 Multi Vehicle Problem – Vehicle-3 Impact Heading – Evolution of Trajec-
tories . 130

4.7 Multi Vehicle Problem – Vehicle-3 Impact Heading – Velocity Profile and
Final Trajectory . 130

4.8 Multi Vehicle Problem – Vehicle-5 Impact Heading – Evolution of Trajec-
tories . 131

4.9 Multi Vehicle Problem – Vehicle-5 Impact Heading – Final Trajectory for
ψ5(T) = 125 deg . 132

4.10 Multi Vehicle Problem – Trajectory for = 10−6 133

4.11 Multi Vehicle Problem – Number of QCPI Nodes Required for Different
iValues of . 134

5.1 Adaptive Continuation in Design Space with Infeasible Areas [Source:
Mansell [80]] . 146

xii

SYMBOLS

Aref Reference area, m2

CD Coefficient of drag

C Coefficient of liftL

H Hamiltonian

hs Scale height, m

h Altitude, m

J Cost function or Jacobian matrix

L Path cost

m Mass, kg

N Order of Chebyshev polynomial series

n Number of vehicles in multi-vehicle problem

q Dynamic pressure, N/m2

˙ 2Q Stagnation point heat-rate, W/m

˙ 2Qmax Peak heat-rate at stagnation point, W/m

RE Radius of the Earth, m

r Radial position, m

rn Nose radius, m

S Path constraint function

tf , T Time of flight, s

V Velocity, m/s

u Control vector

x State vector

 Angle of attack, rad

β Chebyshev coefficients of solution

γ Flight path angle, rad

�

xiii

θ Longitude, rad

Regularization parameter

λ Costate vector

μ Standard gravitational parameter, m3/s2

μ Lagrange multiplier for adjoining path constraints

ν0, νf Lagrange multipliers for initial and terminal point constraints,

respectively

π Lagrange multipliers for interior point constraints and tangency/-

corner conditions

Ψ Boundary conditions vector

ρ Density of the atmosphere, kg/m3

ρ0 Atmospheric density at sea-level, kg/m3

xiv

ABBREVIATIONS

3DOF Three Degrees of Freedom

API Application Programming Interface

BVP Boundary Value Problem

CGL Chebyshev Gauss Lobatto

CPU Central Processing Unit

DAE Differential-Algebraic Equation

GPU Graphics Processing Unit

ICRM Integrated Control Regularization Method

IVP Initial Value Problem

JIT Just-In-Time

KKT Karush-Kuhn-Tucker

L/D Lift-to-Drag ratio

LLVM Low-Level Virtual Machine

MCPI Modified Chebyshev-Picard Iteration

MDO Multidisciplinary Design Optimization

MPBVP Multi-Point Boundary Value Problem

MPC Model Predictive Control

MQA Modified Quasi-linearization Algorithm

NLP Nonlinear Programming Problem

OCP Optimal Control Problem

ODE Ordinary Differential Equation

OTIS Optimal Trajectories by Implicit Simulation

PMP Pontryagin’s Minimum Principle

POST Program to Optimize Simulated Trajectories

PSO Particle Swarm Optimizer

xv

QCPI

SNOPT

SQP

STM

TPBVP

Quasi-linear Chebyshev-Picard Iteration

Sparse Nonlinear Optimizer

Sequential Quadratic Programming

State Transition Matrix

Two-Point Boundary value Problem

xvi

ABSTRACT

Antony, Thomas PhD, Purdue University, May 2018. Large Scale Constrained Tra-
jectory Optimization using Indirect Methods . Major Professor: Michael J. Grant.

State-of-the-art direct and indirect methods face significant challenges when solv-

ing large scale constrained trajectory optimization problems. Two main challenges

when using indirect methods to solve such problems are difficulties in handling path

inequality constraints, and the exponential increase in computation time as the num-

ber of states and constraints in problem increases. The latter challenge affects both

direct and indirect methods.

A methodology called the Integrated Control Regularization Method (ICRM) is

developed for incorporating path constraints into optimal control problems when

using indirect methods. ICRM removes the need for multiple constrained and un-

constrained arcs and converts constrained optimal control problems into two-point

boundary value problems. Furthermore, it also addresses the issue of transcenden-

tal control law equations by re-formulating the problem so that it can be solved by

existing numerical solvers for two-point boundary value problems (TPBVP). The

capabilities of ICRM are demonstrated by using it to solve some representative con-

strained trajectory optimization problems as well as a five vehicle problem with path

constraints. Regularizing path constraints using ICRM represents a first step to-

wards obtaining high quality solutions for highly constrained trajectory optimization

problems which would generally be considered practically impossible to solve using

indirect or direct methods.

The Quasilinear Chebyshev Picard Iteration (QCPI) method builds on prior work

and uses Chebyshev Polynomial series and the Picard Iteration combined with the

Modified Quasi-linearization Algorithm. The method is developed specifically to uti-

xvii

lize parallel computational resources for solving large TPBVPs. The capabilities of

the numerical method are validated by solving some representative nonlinear optimal

control problems. The performance of QCPI is benchmarked against single shooting

and parallel shooting methods using a multi-vehicle optimal control problem. The

results demonstrate that QCPI is capable of leveraging parallel computing architec-

tures and can greatly benefit from implementation on highly parallel architectures

such as GPUs.

The capabilities of ICRM and QCPI are explored further using a five-vehicle

constrained optimal control problem. The scenario models a co-operative, simul-

taneous engagement of two targets by five vehicles. The problem involves 3DOF

dynamic models, control constraints for each vehicle and a no-fly zone path con-

straint. Trade studies are conducted by varying different parameters in the problem

to demonstrate smooth transition between constrained and unconstrained arcs. Such

transitions would be highly impractical to study using existing indirect methods. The

study serves as a demonstration of the capabilities of ICRM and QCPI for solving

large-scale trajectory optimization methods.

An open source, indirect trajectory optimization framework is developed with the

goal of being a viable contender to state-of-the-art direct solvers such as GPOPS

and DIDO. The framework, named beluga, leverages ICRM and QCPI along with

traditional indirect optimal control theory. In its current form, as illustrated by the

various examples in this dissertation, it has made significant advances in automating

the use of indirect methods for trajectory optimization. Following on the path of

popular and widely used scientific software projects such as SciPy [1] and Numpy [2],

beluga is released under the permissive MIT license [3]. Being an open source project

allows the community to contribute freely to the framework, further expanding its

capabilities and allow faster integration of new advances to the state-of-the-art.

1

1. MOTIVATION AND BACKGROUND

1.1 Motivation

Trajectory optimization plays a key role in conceptual design and control of com-

plex dynamical systems. Knowledge of how a system behaves under different inputs

can be used to design not just the ideal control inputs for a given scenario, but the

systems themselves. Depending on the dynamics of the system being designed for,

trajectory optimization can be a time-consuming and computationally intensive pro-

cess. There are two main classes of methods that are used for solving trajectory

optimization problems, namely, direct and indirect methods. Direct methods tran-

scribe these problems into large parameter optimization problems to be solved using a

non-linear programming method such as Sequential Quadratic Programming (SQP).

This in contrast to indirect methods that use optimal control theory based on calcu-

lus of variations to convert the optimization problem into a nonlinear boundary value

problem. These methods are described in detail in Sections 1.2.2 and 1.2.3.

Modern research in trajectory optimization and mission design has mostly trended

towards pseudo-spectral and other direct methods [4–8]. They have many advantages

over indirect methods including ease of use, larger region of convergence, and usu-

ally not requiring an accurate initial guess. Their disadvantages include being highly

computationally intensive and not guaranteeing optimality. Indirect methods pro-

duce solutions that satisfy the necessary conditions of optimality, guaranteeing a lo-

cal minimum. However, indirect methods are often cited as being too impractical [9]

or difficult to apply to real-world problems owing to mainly three challenges [10].

These challenges, and strategies to overcome them, are examined in more detail in

Section 1.2.3. One of these three main challenges involves the incorporation of path

inequality constraints when using indirect methods. When using Pontryagin’s Min-

2

imum Principle [11, 12] to incorporate path constraints, the trajectory is split into

multiple constrained and unconstrained arcs, the sequence of which, has to be known

a-priori before the problem can be numerically solved. Recent work has made con-

siderable progress [13–15] in overcoming this issue, as discussed in more detail in

Sections 1.3, 2.8.1 and 2.8.3. Even with these advances, the incorporation of path

inequality constraints remains non-trivial, particularly when there are multiple con-

straints that may be active and inactive at different points along the trajectory. One

of the goals of this dissertation is to overcome this challenge and create a systematic

method for incorporating multiple constraints into optimal control problems when

using indirect methods.

In engineering design and in control problems dealing with systems with highly

nonlinear dynamics, fast numerical methods capable of solving them are extremely

valuable. For example, in the design of hypersonic entry vehicles, a vehicle shape

is usually chosen prior to trajectory design. Once the trajectory has been designed

for the given vehicle, an iterative, time-consuming multidisciplinary design optimiza-

tion (MDO) process is performed to alter the vehicle dimensions and the trajectory

until it converges to a design that can accomplish the desired mission. In Ref. 16,

these iterative steps are combined to enable simultaneous design of the vehicle shape

and its trajectory for a specific mission. In order to achieve this, a new trajectory

optimization methodology is constructed which uses analytic aerodynamic equations

along with indirect methods and continuation. This method is shown to out-pace a

multi-objective particle swarm optimizer by 10×-30× and also converge to more op-

timal results. However, the overall procedure was still very computationally intensive

and the author suggests the use of more efficient numerical solvers for faster run-time

performance.

Model predictive control (MPC), also known as finite-horizon or receding horizon

control, is another field that can utilize faster numerical methods for trajectory op-

timization. In MPC, the optimal trajectory of a dynamic system for a finite interval

of time is predicted, and the resulting control is used to actuate the system [17].

3

MPC has been successfully demonstrated for autonomous/semi-autonomous driv-

ing [18–20]. MPC is very useful because the control it commands is generated based

on the nonlinear model of the system and obeys any state and input constraints.

However, in MPC systems that are currently deployed, the dynamic models tend to

be relatively simple. This is because as the model gets more complex both in terms of

number of states and nonlinearity, the optimization problem becomes more difficult

to solve and real-time performance becomes more difficult to achieve. For example,

Ref. 21 uses a simple bicycle kinematic model for designing controls of an autonomous

vehicle. Even in case of the Zero Propellant Maneuver [22] on the International Space

Station, which made history as the first in-flight use of a pseudospectral direct solver,

the trajectories were solved on ground-based systems and uploaded to the station.

In advanced aerospace applications, the current state-of-the-art methods are still

not capable of real-time optimization. Particularly in the case of hypersonic sys-

tems [23], the dynamic models tend to be highly nonlinear which makes the problem

more difficult. While some model predictive controller implementations using direct

methods for hypersonic vehicles exist [24–26], they generally use some kind of lin-

earization or simplification of the model to enable real-time computation. One of the

goals of this dissertation is to advance the state-of-the-art in numerical methods to

be closer to a real-time optimal solution capability for these kinds of problems using

indirect methods. State-of-the-art direct and indirect methods are far from being

capable of real-time trajectory optimization for real-world systems especially when

run on flight hardware.

One of the key requirements for creating a fast numerical solver is to leverage

modern computing architectures which are trending towards highly parallel systems

in place of large monolithic processors [27–29]. Numerical methods designed with

characteristics capable of exploiting these parallel processors will be faster than those

which only utilize a single processor [30–32]. One of the goals of this dissertation is

to design a numerical method for solving boundary value problems that can exploit

�

4

these architectures, thereby enabling indirect methods to rapidly solve more complex,

highly constrained trajectory optimization problems.

The two advancements described above will form key components of a larger

generalized rapid trajectory optimization framework that can form a viable alternative

to popular direct method solvers such as GPOPS [6] and DIDO [7]. All of the optimal

control problems shown in this dissertation are solved using this framework.

1.2 Trajectory Optimization Overview

1.2.1 Introduction

Trajectory optimization of real-world systems is generally considered to be a diffi-

cult and computationally intensive task. It involves the calculation of the time-history

of the control variable(s) associated with a system that optimizes a given performance

index while satisfying problem-specific constraints at the initial point, terminal point,

and interior points as well as path constraints. Hypersonic trajectory optimization

refers to specific case of trajectories of vehicles flying at hypersonic velocities through

an atmosphere. This is generally more complicated than solving pure spaceflight

trajectories which, in some cases, may have closed-form analytical solutions [33].

A trajectory optimization or optimal control problem is generally expressed in

the form given in Eq. (1.1). J is the cost functional or performance index to be

optimized. This includes φ, the terminal cost, and
t

t

0

f L(x, u, t) dt, the path cost

integrated over the entire trajectory. There are also initial and terminal constraints,

Ψ and Φ respectively, that are to be satisfied simultaneously. The problem may also

include path inequality constraints such as S as well as control limits such as C that

have to be satisfied for the solution to be feasible. C− and C+ are the upper and

lower limits of the constraint respectively.

�

5

tf

Min J = φ(x(tf), tf) + L(x,u, t) dt (1.1)
t0

Subject to :

ẋ = f(x,u, t) (1.2)

Ψ(x(t0), t0) = 0 (1.3)

Φ(x(tf), tf) = 0 (1.4)

S(x, t) ≤ 0 (1.5)

C− ≤ C(u, t) ≤ C+ (1.6)

t0 = 0

As mentioned in the previous section, there are mainly two classes of methods used

to solve such problems [10, 34]. Direct methods discretize the problem space into a

large number of nodes, and transform the problem into a large parameter optimization

problem, which is then solved using an optimization algorithm. Indirect methods use

optimal control theory to convert the optimization problem into a boundary value

problem, which is then solved using a numerical solver [12]. The use of indirect

methods poses additional challenges such as the introduction of mathematical entities

called “costates” which complicates the numerical solution process as described later

in Section 1.2.3. A comparison of the advantages and disadvantages of direct and

indirect methods is listed in Table. 1.1 [35]. Direct methods tend to be robust to initial

guess and are applicable to a wide range of problems while indirect methods have

features that make it suitable for use in applications that require rapid convergence

to optimal solutions.

6

Table 1.1. Comparison of Direct and Indirect Methods

Advantages Disadvantages

Direct methods Large region of convergence

Easy to setup and use

Computationally intensive

Optimality not guaranteed

Indirect methods Necessary conditions satisfied

Fast convergence

Small region of convergence

Co-states introduced

1.2.2 Direct Methods

Introduction

Direct methods were developed as an alternative to the classical indirect methods

for solving optimal control problems, and they became more feasible with the advent

of more powerful computers. Instead of using optimal control theory to derive the

necessary conditions of optimality, the continuous control history is discretized into

a finite number of nodes [36,37]. A general numerical optimization algorithm is then

used to adjust these nodes until an optimal solution is found. One of the simplest

ways to implement this is to simulate the entire trajectory for the given control history

during every iteration. However, this can be very computationally intensive and is

impractical for most real world scenarios.

More advanced direct methods discretize the control and state more intelligently

to allow for the use of various quadrature schemes for implicit integration. The use

of quadrature rules result in the discretized optimization problem being converted

into a sparse nonlinear programming problem that can be efficiently solved using

a solver such as SNOPT [38]. Depending on the type of discretization used, there

are different types of direct methods that have been developed including Collocation

[39–41], Differential Inclusion [42] and Pseudospectral methods [43, 44].

7

In some cases, such as in Ref. 45 and 46, optimal control theory is used to derive the

necessary conditions for a hypersonic trajectory problem. However, the trajectory is

solved for a simplified problem involving constant altitude flight with either a constant

velocity or a predefined deceleration profile. This solution is then used to validate

the results from a direct solver. In other examples, such as in Ref. 47, the solution

from a direct solver is validated by checking a subset of the necessary conditions of

optimality. When using direct methods, constraints are adjoined to the underlying

parameter optimization problem using Lagrange multipliers. The covector mapping

theorem [48–50] allows the computation of the necessary conditions of optimality from

these Lagrange multipliers in certain direct solvers such as DIDO. All these cases point

to the direct optimization being the preferred method in the design community for

solving non-trivial optimization problems while certain indirect methods may be used

for validating them.

Direct Shooting and Global Methods

Direct shooting is one of the simplest implementations of a direct method. The

control history is discretized into a finite number of nodes, and the numerical opti-

mizer searches the design space of these discrete control values to optimize the cost

function. During each evaluation of the cost function, the dynamics of the system are

repeatedly propagated using some numerical integration scheme. In direct shooting

methods, the dynamic equations are propagated from different starting conditions,

and a state transition matrix is used to perform updates. Ref. 51 implements a di-

rect multiple shooting method that is completely derivative-free and is able to solve

optimal control problems that include free end-time, free parameters as well as dis-

continuous multi-phase trajectories.

Global optimization methods such as genetic algorithms [52,53] and particle swarm

optimizers (PSO) [54,55] are suited for integration based optimization as well. These

methods do not require an accurate initial guess and can explore the design space in

8

an automated manner without performing a full-factorial search. Their disadvantage

is that the optimizers completely ignore the physics of the problems and there is no

guarantee that the solution is locally or globally optimal. When using these global

methods, path constraints may be implemented using penalty functions which may

require further tuning by the designer before they are appropriately balanced with

the objective function. Global optimizers can also be used as a starting point to

generate coarse initial guesses to be used by more precise direct or indirect methods.

Ref. 56 describes a hybrid method that uses a particle swarm optimizer to generate

the initial guess for a pseudospectral direct solver.

Collocation and Differential Inclusion

Collocation methods discretize the entire solution space including states and con-

trols, and use some implicit integration scheme for more efficient propagation of the

dynamic system. Early implementations of collocation were developed by Hargraves

and Paris [57–59] that used piecewise Chebyshev polynomials to represent the states

and controls. Penalty functions were used to convert problems with path constraints

into unconstrained parameter optimization problems and solved using a full second-

order modified Newton algorithm. Ref. 39 describes a later work by the same authors,

where the state and control histories are represented by piecewise cubic polynomials.

An implicit integration scheme based on Hermite interpolation was used to convert

the optimal control problem into a nonlinear programming problem. The advantage

of this method was that it was easier to extend to general problems involving path

constraints, control inequalities, and discontinuous states. One characteristic of the

quadrature scheme used in these methods is that it can be shown that the converged

solution is equivalent to the solution of an explicit fourth-order Runge-Kutta integra-

tion scheme [42].

While collocation can handle path constraints by including it directly in the non-

linear programming problem, it comes at the cost of higher dimensionality of design

9

space as the number of nodes increases. One way to overcome this for certain classes

of problems is to use differential inclusion [60]. Differential inclusion is the process

of solving for the controls in terms of states and thereby eliminating them from the

problem [61]. This can help considerably decrease the dimensionality of the problem

while retaining the advantages of collocation. However, this is only possible for a

subset of trajectory optimization problems in which the controls can be solved as

a function of states. Ref. 42 compares the number of NLP parameters required to

obtain the same accuracy with and without using differential inclusion. The author

shows the differential inclusion method requires the use of quadrature rules with very

low accuracy while collocation methods in general may use implicit integration rules

of very high accuracy and are hence not limited in this manner.

Pseudospectral Methods

Direct methods have been used to solve optimal control problems in a wide range

of applications [22, 62–65]. However, one of their drawbacks compared to indirect

methods has always been the lack of a guarantee of optimality. Direct methods

essentially discretize the problem first and then apply the optimality conditions to

the discrete problem (Karush-Kuhn-Tucker or KKT conditions). In contrast, when

using indirect methods the necessary conditions of optimality are first derived for the

continuous problem and then the resulting boundary value problem is solved, typically

using a numerical method, to obtain the solution. Relating the KKT multipliers in

direct methods to the costates from indirect methods could help verify the optimality

of the solution. This was proven difficult until the development of pseudospectral

methods owing to discrepancies between the KKT multipliers and costates in certain

problems even when the trajectories and control histories matched. This made it

difficult to show that direct methods were in fact arriving at the same solution. It

was discovered that by using specially constructed discretization, the KKT multipliers

from pseudospectral methods can be mapped to the corresponding costates from

10

indirect methods using the Covector Mapping Theorem [49,66,67]. This can be used

to validate the results of pseudospectral methods using the necessary conditions of

optimality from indirect methods. Some of the most widely used design software such

as GPOPS [6] and DIDO [7] are based on pseudospectral algorithms.

1.2.3 Indirect Methods

Calculus of Variations

Calculus of variations is a branch of mathematics that has applications ranging

from optics to quantum mechanics to aerospace engineering, and is the progenitor

of modern optimal control theory. While early descriptions of relevant problems can

be traced back as far as 300 A.D. [68], the most famous problem associated with

calculus of variations is the Brachistochrone problem, posed by Johann Bernoulli in

Acta Eruditorum in 1696 [69]. The word “brachistochrone” originates from the Greek

words for “shortest” and “time”. Bernoulli’s original problem statement was,

Given two points A and B in a vertical plane, what is the curve traced

out by a point acted on only by gravity, which starts at A and reaches B

in the shortest time?

This seemingly simple problem attracted the attention of such great minds as New-

ton, Lagrange, and Leibniz and eventually resulted in the rise of a field of mathemat-

ics known as calculus of variations. Lagrange approached the problem by considering

sub-optimal trajectories close to the optimal path. Euler and Lagrange independently

developed the differential equation that is now known as the Euler-Lagrange Equa-

tion [70]. By following Lagrange’s technique, a more generalized set of necessary

conditions of optimality can be formulated, using the Euler-Lagrange theorem [71].

This theorem can be applied to solve optimal control problems in which the path and

optimal control profile that optimizes a cost functional is computed. It forms the

foundation of indirect trajectory optimization. The classical Brachistochrone prob-

11

lem and its variants are used in multiple parts of this dissertation for the validation

of optimal control algorithms.

Necessary Conditions of Optimality

Indirect methods optimize the cost functional J from Eq. (1.1) by formulating a

two-point or multi-point boundary value problem (BVP) that represents the necessary

conditions of optimality. If these boundary conditions are satisfied, the solution will

be locally optimal in the design space. In order to derive the necessary conditions, the

dynamic equations of the system are augmented with a set of mathematical variables

called costates. The BVP representing the necessary conditions of optimality is then

formulated by applying the Euler-Lagrange equation [71].

The Hamiltonian is defined as shown in Eq. (1.7), where λ is the costate vector

with its corresponding dynamic equations defined in Eq. (1.8). The optimal control

law, u(t), is obtained as a function of the states and costates by solving Eq. (1.9). The

initial and terminal boundary conditions on the costates are specified in Eqs. (1.10)

and (1.11), where ν0 and νf are sets of undetermined parameters which are used

to adjoin the state boundary conditions to the cost functional. If the total-time of

the trajectory is not specified, it is determined by the free-final time condition in

Eq. (1.12). The necessary conditions of optimality are defined by Eqs. (1.8–1.12),

and they form a well-defined Two-Point Boundary Value Problem (TPBVP) that

can be solved using the shooting method and other numerical solvers as described in

Section 1.4.

H = L(x, u, t) + λT (t)f(x, u, t) (1.7)

https://1.8�1.12

� �
� �

12

∂H
λ̇ = − (1.8)

∂x
∂H

= 0 (1.9)
∂u

λ(t0) = − ν0
T ∂Ψ

(1.10)
∂x(t0)

∂φ ∂Φ
λ(tf) = + νf

T (1.11)
∂x(tf) ∂x(tf)

∂φ ∂Φ
H + + νf

T = 0 (1.12)
∂t ∂t t=tf

Path Constraints & Interior Point Constraints

The presence of path constraints and interior point constraints further complicates

the boundary conditions by introducing corner conditions in certain costates and

effectively splitting the trajectory into multiple arcs. This may also introduce corners

in the control profile at the junction points of these arcs, where the derivative of the

control is discontinuous. Path constraints are usually of the form shown in Eq. (1.13).

In order to obtain the control law for the constrained arc, time derivatives of the path

constraints are taken until the control variable appears explicitly. Assuming that this

happens with the qth derivative, the Hamiltonian is augmented as shown in Eq. (1.14),

and the control law for the constraint boundary is obtained by solving S(q) = 0.

S(x, t) ≤ 0 (1.13)

H = L + λT f + μT S(q) (1.14)

The addition of path constraints also modifies the dynamic equations of the

costates along the constrained arcs as shown in Eq. (1.15), where the multipliers

μ are calculated by solving Eq. (1.16).

˙ − μT S(q)λ = −
∂H

= −Lx − λT fx (1.15)
∂x x

∂H
= Lu + λT fu + μT S(q) = 0 (1.16)

∂u u

13

The states are continuous at the entry (t1) and exit (t2) of the constrained arc as

shown in Eq. (1.17). Corner conditions on costates are chosen such that the costates

are continuous at the exit of the constrained arc as shown in Eq. (1.18). The tangency

conditions described in Eq. (1.19) and corner conditions in Eq. (1.20) and Eq. (1.21)

apply at the entry point of the constrained arc.

x(t1
+) = x(t1

−)
(1.17)

x(t2
+) = x(t2

−)

λ(t2
+) = λ(t2

−)
(1.18)

H(t2
+) = H(t2

−)

⎤⎡

N (x, t) =

 ⎣

S(x, t)

S(1)(x, t)

S(2)(x, t)

·
·
·

S(q−1)(x, t)

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.19)

λ(t1
+) = λ(t1

−) + ΠT Nx (1.20)

H(t1
+) = H(t1

−) + ΠT Nt (1.21)

Interior point constraints are very similar to the tangency conditions in a path

constraint, described in Eq. (1.19). It can be considered to be a case where the

constrained arc is infinitesimally small. The states remain continuous across the

“junction”, but the costates and the Hamiltonian may have jump conditions imposed

on them. An interior point constraint is defined as shown in Eq. (1.22) at some

interior time, t1. Introducing interior point constraints into the problem results in

14

the continuity and corner conditions in Eq. (1.23), where Π is a vector of unknown

parameters.

N (x(t1), t1) = 0 (1.22)

x(t1
−) = x(t1

+)

λ(t1
−) = λ(t1

+) + ΠT Nx (1.23)

H(t1
−) = H(t1

+) + ΠT Nt

The Multi-Point Boundary Value Problem (MPBVP) resulting from applying the

necessary conditions of optimality discussed above, can be solved using the multiple

shooting method. The biggest challenge to use this approach for solving constrained

problems is that the sequence of constrained and unconstrained arcs must be known

a-priori in order to set up the multi-point boundary value problem. This is usually

impractical for real-world problems, especially when there are multiple path inequal-

ity constraints which may be active or inactive at multiple points along the trajectory.

One of the goals of this dissertation is to formulate an alternative method to incorpo-

rate path constraints into optimal control problems without requiring knowledge of

the arc-sequence while still retaining the ability to use existing numerical BVP solver

algorithms.

Recent Advances in Rapid Design using Indirect Methods

Indirect methods are often cited as impractical for use in complex problems owing

to three main reasons [10].

• Use of indirect methods require knowledge of optimal control theory and deriva-

tion of necessary conditions of optimality

• It is difficult to ascertain the correct sequence of unconstrained and constrained

arcs a-priori when the problem includes path inequality constraints in state

and/or control variables.

15

• Providing a good initial guess to start the numerical solution process is very

challenging.

Recent developments in this field has however helped overcome some of these

challenges to a certain extent. The formulation of the necessary conditions mostly

involves taking derivatives and some analytical root-solving in the case of deriving

the optimal control law [12]. While these may be difficult, error-prone, and possibly

impractical to do by hand [9], the advent of modern symbolic math engines has made

it so these operations can be completely automated. Symbolic math engines such as

SymPy [72], Mathematica [73] and the MATLAB Symbolic Math Toolbox [74] allow

the automatic derivation of the necessary conditions of optimality without requiring

any knowledge of optimal control theory on the part of the designer. The MATLAB

symbolic toolbox and Mathematica have been used successfully to derive the necessary

conditions for real-world nonlinear systems [14,75] including some involving elaborate

analytical hypersonic aerodynamic equations [16]. Ref. 15 demonstrates how this

method can be extended to incorporate higher fidelity aerodynamic and atmospheric

models into optimal control problems while still using indirect methods. In contrast,

direct methods, especially pseudospectral and collocation methods, are able to handle

path inequality constraints in optimization problems as part of the NLP formulation

as described in Section 1.2.2.

References 13 and 14 illustrate a homotopy continuation method for introducing

path constraint arcs one at a time which allows the use of indirect methods without

knowing the sequence of arcs a-priori. While this method can certainly be used to

solve some non-trivial aerospace problems as demonstrated in the works cited above,

the handling of path constraints using indirect methods remains a challenging task.

The continuation methodology only works in those cases where the constrained arcs

can be introduced one at a time into an unconstrained trajectory. The method be-

comes more difficult to use if the constraints are active at the beginning or end of the

trajectory or if multiple constraints are active in the same region of the trajectory.

Optimal control theory requires the trajectory to be split into phases at any point that

16

a constraint becomes active or inactive. This results in what is called a multi-point

boundary value problem (MPBVP), which has boundary conditions at multiple inte-

rior points along a trajectory. These MPBVPs can be challenging to solve numerically

as they grow larger. The homotopy approach therefore fails to scale as the number of

constraints increases, or if one or more constraints are active multiple times. This is

one of the key motivations for seeking a new way of formulating path constraints in

indirect methods. One of the goals of this research is to formulate a general method to

simplify the handling of path constraints when using indirect methods. This is further

examined in Chapter 2 which describes a new, systematic method for incorporating

path constraints in optimal control problems – the Integrated Control Regularization

Method (ICRM).

The requirement for an accurate initial guess is still a challenge when using indi-

rect methods, especially for sensitive problems. The use of a homotopy continuation

method can resolve this issue to a certain extent. This process is detailed in Sec-

tion 1.3.

1.3 Continuation

One of the major drawbacks of indirect methods mentioned in Section 1.2.3 was

the requirement for an accurate initial guess for solutions to reliably converge. In

Ref. 76, a coarse approximation from a particle swarm optimizer is used to generate

initial guess for costates to be used in an indirect solver. One strategy for generating

an initial guess is by starting with analytic solutions of a related, but simpler problem.

Continuation builds on this idea and bypasses the need for an accurate initial guess

by first solving a trivial problem and then gradually changing it until it becomes the

desired problem. The solution from the prior step is used as the initial guess for each

subsequent step. This method relies on the inherent connectedness among families of

optimal solutions. It is even useful for enhancing direct methods when solving certain

difficult problems as noted in Ref. 77.

17

In Ref. 14, the maximum terminal energy trajectory for a hypersonic mission

was calculated using indirect methods and continuation. The problem consisted of

a hypothetical high-lift hypersonic vehicle with angle-of-attack and bank angle as

the controls. The hypothetical mission had post-boost/impact geometry constraints

as well a peak heat-rate path constraint. In order to seed the continuation process,

it was necessary to supply it with a relatively simple trajectory as an initial guess.

Since the objective was to maximize the velocity at impact, a simple trajectory that

could be solved easily was one that flies nearly straight down from the assumed

post-boost staging condition. The optimal trajectory for reaching a target almost

directly underneath the staging location, with maximum velocity, would be a near-

ballistic trajectory that minimizes the drag coefficient of the vehicle. Hence, the Allen

and Eggers trajectory solution [78] for ballistic trajectories was used to construct a

high quality initial guess to this optimization problem. The costates for this initial

trajectory were constructed by reverse integration from the terminal point.

This initial guess trajectory, being very close to the optimum, rapidly converges

to a solution. Starting with this solution, the targeted location is moved until it

matches the desired terminal conditions as shown in Figs. 1.1 and 1.2. At the end

of this process, a maximum terminal velocity trajectory connecting the post-boost

staging location and the targeted impact location is obtained.

A similar approach can also be used to introduce path constraints one at a time

into an unconstrained solution. A new constrained arc is introduced at the point of

maximum constraint violation and then the constraint limit is changed using con-

tinuation until the desired value is reached. This is a viable strategy for use with

problems containing one or two constraints and is described in Refs. 13, 14, and 15.

This strategy is also used later in Sections 2.8.1 and 2.8.3.

In all of the test cases in the later sections of this dissertation, a continuation

strategy is used when solving complex optimal control problems. In most of these

scenarios, the initial guess is created by propagating the dynamic equations of the

system for a short period of time (typically 0.1 seconds), using a constant initial guess

Weapon initially fired
downward (easy to optimize)

Green: Trajectory
Pink: C.o c. 1 ?.\ -<

Green: Trajectory
h ~

18

Figure 1.1. Side View of Trajectory during Continuation Process [79]

Figure 1.2. Full Extension of Trajectory to Final Target [79]

19

for the costates. The boundary conditions are then changed gradually in a series of

steps until the desired solution is obtained. Ref. 80 shows a more advanced method of

performing continuation by using a graph-search methodology. Such methods allow

for further automation of continuation requiring even lesser intervention from the

designer.

1.4 Overview of Numerical Methods for Boundary Value Problems

1.4.1 Introduction

Most real-world trajectory optimization problems involve nonlinear dynamic equa-

tions for which closed-form analytical solutions cannot be found. Both direct and indi-

rect methods face challenges when the number of states and constraints in a problem

increase beyond a certain limit. Direct pseudospectral methods rely on nonlinear

programming solvers such as SNOPT [38]. Trajectory problems with a large number

of states and constraints are very difficult to solve using direct methods because the

underlying parameter optimization methods often experience a significant increase in

computation time as the problem grows larger. When using direct methods, it is of-

ten required that certain workarounds be used to decrease the dimensionality of large

scale optimization problems to a manageable level. One example of this can be seen

in Ref. 81 where the covariance matrix is propagated separately during the evaluation

of the cost function in order to make the problem computationally feasible.

In case of the indirect methods, the ability to rapidly and reliably solve nonlinear

boundary value problems is very important. Though there is a large body of work in

the literature about numerical methods for solving boundary value problems, there

still exist challenges and a need for improvement of current methods. Some of these

issues are:

• Significantly reducing the computational intensity of the algorithms

20

• Designing the algorithms to leverage emerging parallel computing architectures
especially when solving large dimensional problems

Even if multiple path constraints can be addressed in indirect methods (Chap-

ter 2), the ability to efficiently solve these large nonlinear boundary value problems

in a reasonable amount of time is still very important. While a two-point boundary

value problem is certainly easier to solve than a multi-point boundary value problem,

they still pose a significant challenge once they become sufficiently large. Leveraging

highly parallel computing resources such as Graphics Processing Units (GPUs) and

multi-core processors could be crucial in rapidly solving these large boundary value

problems.

The computational speeds of monolithic CPU processors have plateaued in the last

decade. The technology is trending towards highly parallel architectures [82]. Hence

it would be prudent for new computational methods to be designed to take advantage

of highly parallel computational architectures such as GPUs and multi-core CPUs.

The computational architecture of a GPU is significantly different from a conventional

CPU processor. Adapting an algorithm to run on a GPU or on multiple CPUs requires

careful design of operations and data structures to fully leverage the architecture.

There are many factors to consider, the key among which, is the inherent parallelism

of an algorithm. Parallel processors are best used for algorithms that involve large

numbers of independent compute-intensive operations, without requiring much cross-

communication. As such, the design of an inherently parallel numerical method for

solving boundary value problems is detailed in Chapter 3.

The two main classes of numerical methods for solving boundary value problems

are shooting methods and collocation methods.

�

21

1.4.2 Single Shooting Method

If X is the augmented state vector consisting of both the states and costates as

shown in Eq. (1.24a), a TPBVP resulting from a trajectory optimization problem

takes the form described by Eqs. 1.24b–1.24c. ⎡ ⎤
x ⎣ ⎦X = (1.24a)
λ

b(X0,Xf) = 0 (1.24b)

Ẋ(t) = f(X, t) (1.24c)

where X0 and Xf are the values of X at the times t0 and tf respectively.

The single shooting method root-solves for the values of X0 and Xf that satisfy

these conditions. In order to do so, an initial guess for X0 is used to propagate the

dynamic equations of the system (Ẋ). Along with the dynamic equations we also

propagate equations describing the sensitivity of the system which form the state

transition matrix (STM), Φ. Φ(tf) and Xf are obtained by propagating Eqs. (1.24c)

and (1.25) and are used to evaluate the residual error () in the boundary conditions,

i.e., the value of b(X0,Xf).

∂f
Φ̇ = F · Φ, F = , Φ(t0) = IN (1.25)

∂X

This residual is used to compute a correction (ΔX0) which is then used to update

the initial guess, as shown in Eqs. (1.26a–1.26e). If the initial guess is sufficiently

close to the solution, a series of such updates will drive the residual error to zero

leading to a converged solution.

�

�

�� �
�

�

22

b(X0, Xf) = (1.26a)

b(X0 +ΔX0, Xf) = 0 (1.26b)

=⇒ b(X0 +ΔX0, Xf) − b(X0, Xf) = − (1.26c)

Using a first-order expansion of the above expression,

db
b(X0, Xf) + ΔX0 − b(X0, Xf) = −

dX0
(1.26d)

∂b ∂b ∂Xf
=⇒ + ΔX0 = − (1.26e)

∂X0 ∂Xf ∂X0

The correction vector ΔX0 is obtained by solving the linear system in Eq. (1.27).

(M + NΦ) ΔX0 = − (1.27)

where M and N are the Jacobian matrices, obtained by taking partial derivatives

of the boundary conditions b with respect to X0 and Xf respectively, and Φ is the

sensitivity matrix of the system. This is called the single shooting method.

1.4.3 Multiple Shooting Method

When a trajectory optimization problem contains path inequality or interior point

constraints, the trajectory is split into multiple arcs, with the possibility of discon-

tinuities at the junctions. These boundary value problems are called multi-point

boundary value problems (MPBVP). The problem may also contain scalar parame-

ters such as the Lagrange multipliers, ν0, νf , and π, that have to be solved along

with the state and costate trajectories. In such cases, the correction vector is com-

puted using an extension of the single shooting method, called the multiple shooting

method. The general form of a MPBVP is as follows:

� �

... - '!!!!I!' - --·--·-'!!!!I'

23

s11

Arc 1

s2

Arc 2
sssf1

s3

Arcs 3 to (n-

…
sf2f2

1)

sn

Arc n

sf(n-1) sfn

t0 t1 t2 ts-1 tn Time

Figure 1.3. A Multi-Point Boundary Value Problem.

b(s1, sf1, s2, sf2 . . . sn, sfn,p) = 0

ṡ =

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t, s) if t0 ≤ t ≤ t1

f2(t, s) if t1 ≤ t ≤ t2

. . .

fn(t, s) if tn−1 ≤ t ≤ tn

where s1, s2, . . ., sn are the values at the left endpoints of the arcs, sf1, sf2, . . . , sfn

are the values at the right endpoints of the arcs as shown in Fig. 1.3, and p is the set

of scalar parameters.

To solve this problem, we first compute a Jacobian matrix J , which is of the form:

J = · · · M + N (1.28)M1 + N1Φ1 M2 + N2Φ2 n nΦn Jp

�

�

24

∂b ∂b ∂b
M1 = ,M2 = , · · · Mn = ,

∂s1 ∂s2 ∂sn

∂b ∂b ∂b
N1 = , N2 = · · · Nn = , (1.29)

∂sf1 ∂sf2 ∂sfn

∂b
Jp =

∂p

The sensitivity matrices for each arc is computed separately as Φ1,Φ2, . . . Φn. The

correction vector Δs will consist of corrections to s1, s2, . . . , sn and p, and it is

computed by solving the following linear system.

JΔs = − (1.30)

Prior work has shown that it is possible to accelerate the multiple shooting method

by leveraging GPUs [30] or multi-core processors [32]. However, the fundamentally

sequential nature of the shooting method limits the degree to which it can be paral-

lelized. This motivates the need for the development of better numerical algorithms

which are implicitly parallel in nature and can hence better leverage parallel proces-

sors.

1.4.4 Collocation

Collocation methods that use piecewise polynomials, similar to the ones used for

direct optimization, can also used for solving boundary value problems [83–86]. One

of the most widely used versions of collocation is implemented in MATLABś bvp4c

and bvp5c solvers, based on work by Shampine [87–89].

The collocation method implemented in bvp4c was originally designed to solve

two-point boundary value problems of the form:

y = f(x,y,p), a ≤ x ≤ b (1.31a)

b(y(a),y(b),p) = 0 (1.31b)

�

�

�

�

25

where x is the independent variable, y the vector of dynamic states, and p a vector

of unknown parameters. The method was later expanded to also solve multi-point

boundary value problems.

The approximate solution S(x) is expressed as a continuous function consisting of

piecewise polynomials defined on a discrete mesh. It satisfies the boundary conditions,

b(S(a), S(b), p) = 0, and satisfies the differential equations of the system at both ends

and mid point of each sub-interval. These conditions are defined mathematically as:

S (xn) = f(xn, S(xn)) (1.32a)

S ((xn + xn+1) /2) = f(((xn + xn+1) /2, S((xn + xn+1) /2)) (1.32b)

S (xn+1) = f(xn+1, S(xn+1)) (1.32c)

Eqs. (1.32) define a set of nonlinear algebraic equations that can be solved to

obtain the coefficients of S(x). The residual error in the differential equations is then

defined as

r(x) = S (x) − f (x, S(x), p) (1.33)

and the residual error in boundary conditions as b (S(a), S(b), p). The size of

the residual error is used to control the mesh size depending on the error tolerance

specified by the user. Ref. 90 describes an adaptive mesh selection strategy that

be used to control the true error, e(x) = S(x) − y(x), allowing the use for tighter

tolerances on coarser grids. This strategy is used by MATLAB’s bvp5c solver for

mesh refinement.

Unlike shooting methods, when using collocation the solution is approximated over

the whole interval [a, b]. The nonlinear algebraic equations are solved iteratively after

linearization. In certain problems, this results in more numerical stability for solving

sensitive problems. However, bvp4c and associated methods still suffer the same

drawbacks as direct collocation when solving large-dimensional problems with highly

nonlinear dynamics. The collocation method as it currently exists is not inherently

26

parallel and therefore is not able to effectively leverage parallel processors. Some prior

work has shown that a GPU implementation of multiple shooting offers a speed-up

of 2x-4x over bvp4c for relatively small optimization problems [30].

Another class of boundary value solvers exist that are very similar to collocation

methods in terms of how they discretize the solution space. These are the Chebyshev-

Picard Iteration algorithms [31,91,92] further described in Chapter 3. These methods

approximate the solution using Chebyshev polynomials and use the Picard-Lindelöf

Theorem [93] to perform solution updates that do not require partial derivative infor-

mation. The numerical operations in these algorithms mainly consist of matrix-vector

operations which are highly parallelizable. The new parallel numerical method devel-

oped in Chapter 3 is based on this class of methods.

1.5 Trajectory Optimization Frameworks

Many trajectory optimization tools exist that use direct methods such as GPOPS

[6], DIDO [7], the Optimal Trajectories by Implicit Simulation Tool (OTIS) [94], and

the Program to Optimize Simulated Trajectories (POST) [95]. DIDO uses a Legendre-

Gauss-Lobatto mesh for discretization while GPOPS uses a Legendre-Gauss mesh.

Both methods are implemented in MATLAB [96] and have been used to solve a wide

range of trajectory optimization problems. DIDO has been used to solve trajectory

and maneuver problems for both aircraft [97] and spacecraft [63, 98, 99], reusable

launch vehicles [62], and many other real-world problems [64]. It also made history

from a mathematical perspective as it was the first ever use in-flight of Pseudospectral

optimal control theory when the Zero Propellant Maneuver (ZPM) experiment was

successfully deployed on the International Space Station (ISS) in 2006 [22]. However,

it is to be noted that the trajectory for the ZPM was computed on the ground

and uploaded to the ISS where it was tracked using traditional controllers. The

pseudospectral method was not adopted for real-time computation on flight hardware.

Similarly, GPOPS has been applied to a wide variety of optimal control problems [100–

27

102] as well. There are also open-source tools such as PSOPT [103] which implements

pseudospectral methods, sparse nonlinear programming, automatic differentiation,

and incorporates automatic scaling and mesh refinement facilities.

There are no similar generalized trajectory optimization frameworks that are

based on indirect methods, primarily due the challenges in using indirect methods.

In Ref. 104, a prototype indirect trajectory optimization framework was developed

in MATLAB that used MATLAB’s Symbolic Computing Toolbox for deriving the

necessary conditions of optimality and bvp4c as the numerical BVP solver. This

framework was further expanded in Ref. 30 to include a GPU-accelerated multiple

shooting solver. These works form the starting point for the development of a gener-

alized rapid trajectory optimization framework that leverages indirect methods. The

fourth contribution in this dissertation is the development of an open source, expand-

able trajectory optimization framework with the goal of making indirect methods as

accessible and easy-to-use as direct methods. This is discussed further in Chapter 5.

1.6 Outline

Chapter 2 explains the development of the Integrated Control Regularization

Method (ICRM) for incorporating path constraints in optimal control problems when

using indirect methods. This method is based on the regularization of path inequality

constraints using saturation functions to convert them into equality constraints. The

results of this method are validated using known optimal control problems by compar-

ing them against the results obtained using either the Euler-Lagrange equations [12]

or GPOPS [6]. ICRM is then used to perform some trade studies and analysis of a

two-vehicle co-operative engagement scenario.

Chapter 3 details a new numerical method for solving two-point boundary value

problems, called the Quasilinear Chebyshev Picard Iteration (QCPI). The algorithm

is inherently parallel and is hence capable of leveraging parallel computing resources

such as multi-core CPUs. The algorithm is implemented in the Python [105] pro-

28

gramming language and accelerated using the Numba [106] Just-In-Time compiler to

automatically parallelize the code and enable it to utilize multiple-core processors.

The results are validated using some known optimal control problems. The perfor-

mance of the solver is also benchmarked against the multiple shooting algorithm for

a multi-vehicle trajectory optimization problem.

Chapter 4 uses the methods developed in the previous chapters to solve a repre-

sentative large problem consisting of multiple vehicles and constraints. The scenario

is based on the relatively simple kinematic model used in Ref. [107] and showcases

some of the complex interactions and cross-coupling effects that appear in optimal

trajectories of multiple vehicles. This chapter also demonstrates the capabilities of

QCPI in solving large-dimensional nonlinear boundary value problems.

Chapter 5 describes the design and usage of an open source rapid trajectory op-

timization framework which uses indirect methods. The framework includes multiple

numerical solvers and optimal control strategies and also has the potential for expan-

sion by providing a flexible API. Initially implemented with a single shooting based

solver and conventional optimal control theory, the framework is further expanded to

include support for ICRM and QCPI detailed in the preceding chapters. All of the

examples described in this dissertation are implemented using this framework.

Chapter 6 summarizes the contributions of this dissertation and details future

work for improving QCPI, ICRM, and possible additions to the indirect trajectory

optimization framework.

1.7 Contributions of Thesis

The goal of this dissertation is to advance the state-of-the-art in rapid trajectory

optimization methods for the purpose of addressing large-scale optimal control prob-

lems using indirect methods. This section lists out the specific contributions made in

this work.

29

A new method of handling path constraints in indirect methods using

saturation functions and posing the BVP as a semi-explicit DAE is devel-

oped. The addition of path constraints to optimal control problems is considered a

challenging task when using indirect methods. When deriving the necessary condi-

tions of optimality, path constraints cause the trajectory to be split into a sequence

of constrained and unconstrained. The order of these arcs have to be known a-priori

for numerical solution of these multi-point boundary value problems. While using a

continuation method to introduce constrained arcs one at a time is possible, it does

not scale if the constraint is active multiple times or if there are multiple constraints.

The Integrated Control Regularization Method (ICRM) allows the addition of one or

more path constraints to an optimal control problem while maintaining the solution

as a single arc. The method is designed so that the resulting BVP can be solved

using existing numerical BVP solvers. The capabilities of ICRM are demonstrated

by using it to analyze a constrained, two-vehicle optimal control problem.

A new numerical method for solving two-point boundary value prob-

lems is developed that is inherently parallel and is capable of leverag-

ing parallel computing architectures. The new method, called the Quasilinear

Chebyshev Picard Iteration (QCPI), uses Chebyshev polynomials for global approx-

imation of the solution and can be applied to a wide range of nonlinear two-point

boundary value problems. This is an expansion of the Modified Chebyshev Picard

Iteration [31] algorithm which was only capable of addressing a limited class of BVPs.

By using the Picard Iteration and the Modified Quasi-linearization Algorithm [108],

the explicit computation of the sensitivity matrix is avoided. Only the partial deriva-

tives of the boundary condition functions are computed while that of the dynamic

equations are not required. The algorithm consists mostly of matrix-vector multipli-

cation operations which can be parallelized very effectively. The performance of the

algorithm is benchmarked against existing numerical methods using a multi-vehicle

trajectory optimization problem.

30

The two methods developed in this dissertation is applied to a large constrained

multi-vehicle problem. Trade studies are performed to analyze the effects of chang-

ing various problem parameters and constraints to illustrate the cross-coupled dynam-

ics and non-intuitive trajectory changes that occur in such problems.

A generalized open source, rapid trajectory optimization framework

using indirect methods is the third contribution of this dissertation. The

optimization framework is capable of automatically deriving the necessary conditions

of optimality without requiring any knowledge of optimal control theory on the part

of the designer. The framework is also designed with a rich API that allows expansion

with new optimal control algorithms and numerical methods and even allows imple-

mentation of direct methods, if required. The various features and design elements

of this framework are discussed in detail.

31

2. INTEGRATED CONTROL REGULARIZATION

METHOD (ICRM)

2.1 Overview

Handling of path-inequality constraints via optimal control theory is, in general,

non-trivial. This is mitigated to a certain extent by using continuation and introduc-

ing constraints into the unconstrained problem one at a time [13]. Ref. 109 shows a

method of regularizing bang-bang control problems with singular arcs into a two-point

boundary value problem. Ref. 110 expands this concept further to apply to general

optimal control problems with bounded control variables. However, this method

based on trigonometry is not able to address path inequality constraints containing

state variables. A more generalized method is presented in Ref. 111 by which state

and control inequality constraints can be systematically incorporated into an optimal

control problem while using indirect methods. Unlike in conventional optimal control

theory, this method retains the trajectory as a single arc in the presence of multiple

path constraints. This original formulation of regularized path constraints resulted

in a semi-explicit differential algebraic equation formulation of the boundary value

problem. This DAE-BVP required the use of a custom numerical solver due to extra

algebraic equations adjoined to the BVP that do not have closed form solutions. In

Ref. 111 a numerical solver based on collocation was developed in order to address

this problem. This solver, as it is based on collocation, may not be suitable for

parallelization and likely suffers from scalability issues as the problem size grows.

To overcome these challenges, a new way of formulating optimal control problems

is proposed. In this method, the optimal control law is obtained, not by analytically

solving algebraic equations in the traditional manner, but by adjoining the algebraic

equations to the BVP to form an extended BVP with extra differential equations rep-

�

32

resenting the controls. This allows the control variables to be numerically integrated

rather than directly obtained from closed form control laws. This is also called index-

reduction of differential algebraic equations [112,113] and it comes with its own set of

challenges such as some numerical difficulties as described in Section 2.3. However,

as illustrated in the later parts of this chapter, the method is still capable of solving

non-trivial constrained optimal control problems including some hypersonic trajec-

tory problems. While differentiating an existing control equation and numerically

integrating it may seem counter-intuitive, it greatly simplifies the process of solving

complicated optimal control problems as described in later sections.

The use of saturation functions to regularize path constraints and numerically

integrating the control greatly changes and simplifies the general approach to solving

large-scale trajectory optimization problems with path constraints. This method is

termed the Integrated Control Regularization Method (ICRM).

2.2 Regularization of Path Inequality and Control Constraints

In the original work, it was shown that path constraints can be regularized by

representing them as smooth saturation functions. While this method is closely re-

lated to how a path constraint can be implemented using a penalty function, Ref. 111

shows that by using saturation functions it is possible to ensure that the constraints

are never violated during the numerical solution process. This intrinsic property of

the saturation function method guarantees that the numerical solver is never work-

ing with an infeasible solution. As an example, consider a general optimal control

problem with a path constraint as follows:

T

Min J = φ(x(T), T) + L(t,x,u) dt
0

(2.1)ẋ = f(t,x,u), Φ(x(0),x(T)) = 0

Si(x) ∈ [Si
−, Si

+], i = 1 . . . p

�

�� �

�

�

� �

33

where Si(x) represents the path constraints in the problem. The constraint is

replaced by a suitable saturation function, ψ:

Si(x) = ψ(ξi,1), i = 1 . . . p (2.2)

Eq. (2.2) is successively differentiated w.r.t time, and new coordinates, ξ̇
i,j = ξi,j+1,

are introduced, until a control variable appears. For example, if Si(x) is of order 2:

(1)
Si (x) = ψ ξ̇

i,1 := h1, ξ̇
i,1 = ξi,2

(2.3)
S
(2)
(x) = ψ ξi,

2
2 + ψ ξ̇

i,2 := h2, ξ̇
i,2 = ueii

Finally, an equality constraint, Si
(q)
(x)−hq = 0 is also added to the problem along

2with an added term
0
T
�ueidt to the path cost, where uei is a new control variable,

ξi,j are new state variables, and q is the order of the constraint.

The resulting extended optimal control problem (OCP) which incorporates the

path constraints is stated as:

T

Min J = Φ(x(T), T) + L(t, x, u) + �u 2
eidt (2.4a)

0

ẋ = f(t, x, u) (2.4b)

ξ̇
i,1 = ξi,2 (2.4c)

ξ̇
i,2 = uei (2.4d)

h2(t) − Si
(2)
(x(t)) = 0 (2.4e)

Φ(x(0), x(T)) = 0 (2.4f)

Si (0, x(0)) − ψ(ξ(0)) = 0 (2.4g)

Si
(1)
(0, x(0)) − h1(0) = 0 (2.4h)

Applying optimal control theory to the extended OCP in Eq. (2.4), the Hamilto-

nian is defined as:

2 (2)
H = λT f + L + �uei + ηi,1ξi, ˙ 1 + ηi,2ξi, ˙ 2 + μi,1 h2 − Si (x) (2.5)

34

where λ is the vector of costates corresponding to the states x, ηi,1 and ηi,2 are

the costates corresponding to ξi,1 and ξi,2, and μi,1 is the Lagrange multiplier used

to adjoin the equality constraint to the Hamiltonian. The extended boundary value

problem is then formulated, consisting of the differential equations in Eq. (2.6), the

boundary conditions in Eq. (2.7), and the algebraic conditions in Eq. (2.8). Combined,

these three sets of equations constitute a differential algebraic equation boundary

value problem (DAE-BVP).

ẋ = f(t, x, u) (2.6a)

ξ̇
i,1 = ξi,2 (2.6b)

ξ̇
i,2 = uei (2.6c)

∂H
λ̇ = − (2.6d)

∂x
∂H

η̇i,1 = − (2.6e)
∂ξi,1

∂H
η̇i,2 = − (2.6f)

∂ξi,2

Φ(x(0),x(T)) = 0 (2.7a)

∂Φ
λ(T) = (2.7b)

∂x

ηi,1(T) = 0 (2.7c)

ηi,2(T) = 0 (2.7d)

Si (x(0)) − ψ(ξ(0)) = 0 (2.7e)

Si
(1)
(x(0)) − h1 = 0 (2.7f)

∂H ∂H ∂H
= 0, = 0, = 0 (2.8)

∂u ∂uei ∂μi,2

The process described above is repeated and extra states, controls, and Lagrange

multipliers are added for each constraint Si(x). It is to be noted that the process of

�

�

�

�

35

taking derivatives of the constraint until the control appears (Eq. (2.3)) closely mirrors

the procedure in optimal control theory as detailed in Section 1.2.3. However, instead

of inserting a new arc with boundary conditions for every instance of a constraint,

the BVP is extended with extra states and controls.

In conventional optimal control theory, especially for unconstrained problems, the

algebraic control equations are usually invertible and can be solved for the control

variables, u, thereby eliminating them from the problem. There are cases where

this is not possible in which case a computationally intensive numerical root-solving

method may be attempted [15]. The resulting ODE-BVP is then solved using numer-

ical methods such as shooting or collocation. In the case of ICRM, the presence of

saturation functions renders some of these algebraic equations transcendental making

a closed-form solution impossible. In Ref. 111, a special numerical solver based on

collocation was designed to solve these kinds of DAE-BVPs. In this dissertation, a

method for converting these DAE-BVPs into ODE-BVPs is pursued in order to be

able to solve these problems using existing numerical methods. This is especially

important for scaling as it will then be possible to leverage existing parallel numerical

solvers for this purpose.

2.3 Differential Algebraic Equations

Differential algebraic equations are equations of the following form:

f(x , x, t) = 0 (2.9)

If ∂F/∂x is non-singular, the DAE can be converted into an explicit ODE function

that can be solved using ODE solvers. In this case, Eq (2.9) is defined as having an

index of zero and can be called an implicit ODE. If ∂F/∂x is singular, F can be

differentiated w.r.t t until it is possible to find a solution for x as a function of x and

t. The number of derivatives required to obtain such a solution is called the index of

36

the DAE. Solving DAEs of high index is a non-trivial task and has been extensively

examined in the literature [114–119].

In optimal control problems, a special form of DAEs are encountered:

ẋ = f(x,u, t) (2.10a)

0 = g(x,u, t) (2.10b)

n1 n2where x ∈ R and u ∈ R and are called the differential variable and the

algebraic variable of the DAE respectively. This is called the semi-explicit form

of DAEs [120]. Semi-explicit DAEs show up in many engineering models with ap-

plications ranging from process engineering and mechanical engineering to electrical

engineering. f may denote the differential equations for the dynamics of the system

while g may denote system invariants such as conservation of energy, charge, etc. In

the case of optimal control problems, f will consist of the dynamic equations for the

states and costates while g represents the control laws and equality constraints.

References 121, 122, and 123 discuss numerical methods for solving semi-explicit

DAEs. In some cases, g can be analytically inverted in order to eliminate u from

the system (DAE of index 0). However, when there are custom numerical functions

involved in the problem definition or if g(x,u, t) = 0 contains transcendental equa-

tions, a closed form solution is no longer possible. This means that the DAE then

has an index greater than zero. In fact, this usually happens when ICRM is applied

to an optimal control problem with path constraints.

The index of the DAE in Eq. (2.10) can be reduced by one by differentiating it

w.r.t t [120]. This is a method that is often used for solving problems of this form.

gx(x,u, t)ẋ+ gu(x,u, t)u̇+ gt = 0 (2.11)

If gu is non-singular, it is possible to obtain a closed form solution for u̇ , and the

DAE system is converted into an explicit ODE system. The caveat here is that this

system requires consistent initial values for u for the numerical solution process to be

--

37

stable. Ref. 117 details a method for maintaining the consistency of the solution while

using a Backward Differentiation Formula (BDF) method to solve the DAE. Ref. 112

examines the numerical difficulties that may be encountered when this strategy is

used for solving DAEs. Some of the main challenges cited in Ref. 112 are when the

problem is of nearly higher index, i.e, when g is sometimes singular and when there

are fast-changing transients in g. Some strategies for overcoming these challenges

for certain types of DAEs are detailed in Refs 117, 124–126. These strategies involve

using known system invariants as a way to stabilize the numerical method and may

not be applicable as a universal answer to these issues.

From the point of view of the numerical solution, it is desirable for the DAE to

have an index which is as small as possible. As we have seen, a reduction of the index

can be achieved by differentiating the constraints. As such, in this dissertation we

use index-reduction by differentiation as described by Gear [120] to convert the DAEs

into explicit ODEs which can be solved using existing numerical solvers. As shown

in the later sections in this chapter, even with the possible numerical difficulties, this

method is capable of solving complex optimal control problems.

2.4 Numerically Integrated Optimal Control Law

As described in the previous sections, when using indirect methods, an optimal

control problem is first converted into a DAE-BVP. This boundary value problem has

differential and algebraic conditions of the form in Eq. (2.12) where the control law

equations, ∂H = 0 form the g function.
∂u

ẋ = f(x,u, t) (2.12a)

0 = g(x,u, t) (2.12b)

0 = b(x(0),x(T)) (2.12c)

38

A closed-form solution for the control variables, u, is then obtained, if possible,

by solving this equation, thereby eliminating them from the overall problem to obtain

a BVP of the form shown in Eq. (2.13). However, the control law equation may have

multiple solutions, requiring further effort to determine which option is the optimal

one. In such a scenario, Pontryagin’s Minimum Principle [11] can be used to select

the solution that minimizes the Hamiltonian.

dx
= f(t, x), b(x(0), x(T)) = 0 (2.13)

dt

The application of saturation functions for regularization of path constraints results

in a control law consisting of transcendental equations that generally have no closed

form solution. The index-reduction strategy described in Eq. (2.11) is then used to

formulate a new BVP in which dynamic equations are derived for the control variables.

This process is detailed in Eq. (2.14).

0 = ∂xg(t, x, u)ẋ+ ∂ug(t, x, u)u̇+ ∂tg(t, x, u)
(2.14)

=⇒ ∂ug(t, x, u)u̇ = −∂xg(t, x, u)ẋ − ∂tg(t, x, u)

The original algebraic constraint in Eq. (2.12b) is then added as a boundary

condition at either the initial or terminal point to obtain a well-formed two-point

boundary value problem in Eq. (2.15). It is very important when using this method

that the initial values chosen for the control variables are consistent and satisfy the

original control law. Starting with inconsistent values for the control variables can

result in significant numerical instabilities when solving the BVP.

dx
dt
= f(t, x, u) (2.15a)

∂ug(t, x, u) u̇ = −∂xg(t, x, u) ẋ − ∂tg(t, x, u) (2.15b)

g(t0, x(t0), u(t0)) = 0 (2.15c)

b(x(0), x(T)) = 0 (2.15d)

39

It is assumed that Oug(t, x, u) is always non-singular for the entirety of the optimal

trajectory. ICRM in its current form can only be applied for problems in which this

condition holds. If Oug(t, x, u) is singular, the DAE is of a higher index and requires

more sophisticated numerical methods for obtaining a solution.

2.5 Candidate Saturation Functions

There are many functions that can be used as saturation functions for path con­

straint regularization. Some of the common examples are the sigmoid, arc-tangent,

and hyperbolic tangent functions. Ref. 111 suggests the following saturation functions

as candidates for path constraint regularization depending on the type of constraint.

For one-sided constraints with an upper bound (S (x) ::; s+) or a lower bound

(S(x) ~ s-), Eqs. (2.16) or (2.17) respectively may be used as saturation functions.

These one-sided saturation functions are illustrated in Figure 2.1.

1/J(~) = s+ - exp(-~) (2.16)

1/J(~) = s- + exp(~) (2.17)

c-' ------' --1.

6 - One-sided SatFcn - Upper
---- Upper limit

4 - - One-sided SatFcn - Lower f-+--+---+-1

---- Lower limit
2

-2

-4

-2 -1 0
X

1 2

Figure 2.1. One-sided Saturation Functions

For two-sided constraint, such as s- ::; S(x) ::; s+ , the following function based

on the sigmoid function is suggested by the authors of Ref. 111.

40

s+-s- 4
(2.18)1/J(~) = s+ - l + exp(m~)' m = s+ - s-

Eq. (2.18) is formulated so that the resulting function has a slope of one at~= 0.

The two-sided saturation function is illustrated in Figure 2.2. From further analysis,

it was found that these saturation functions are well behaved only if the constraint

functions are normalized to have limits of ±1 as discussed in the next section.

1.00

0.75 +-+---+----+---~ ----+-I

0.50 ➔--+-----+----+--/--+-

0.25 ➔--+-----+----+--✓---+----+-I

0.00

-0.25

-0.50
- Two-sided 5atFcn

-0.75 ---- Lower limit
-1.oo _ _________

1
_________ _;: --- u~limit

-2 -1 0 1 2
X

Figure 2.2. Two-sided Saturation Functions

2.6 Constraint Normalization

The nature of the saturation functions used requires that the constraint functions

be normalized to have limits of ±1 before they can be regularized. If the constraints

are not normalized, the saturation functions have to be modified on a case-by-case

basis to change their rate of "switching" to achieve consistent results during regular­

ization.

For one-sided constraints and two-sided constraints with symmetric limits , nor­

malization can be easily accomplished by dividing the constraint expression by the

constraint limit as shown in Eqs. (2.19). Two-sided constraints with asymmetric lim­

its will have to be split into separate one-sided constraints and normalized before

regularization can be applied.

�

�

�
�

�

�

�

�

41

S(x)
S(x) ≤ S+ ⇒ ≤ 1 (2.19a)

S+

S(x) ≥ S− ⇒
S

S
(
−

x) ≥ 1 (2.19b)

S(x)−S ≤ S(x) ≤ S ⇒ −1 ≤ ≤ 1 (2.19c)
S

2.7 Regularization Parameter, , and the Push-Off Factor

As discussed before in Section 2.2, the regularization parameter, , is used to

append an extra term to the path-cost for each path constraint added to the prob-

lem. This term, �u2
e dt, converts the original problem into a multi-objective optimal

control problem. forms the weighting factor in the objective functional for the mag-

nitude of the extra control variable, ue, added during constraint regularization. De-

pending on the order of the constraint, this control variable either directly influences

the value of the saturation function representing the constraint or affects a derivative

of the saturation function. For larger values of , reduction of ue will have a higher

weightage in the path-cost, and therefore the optimal solution will have a smaller

value for ue. This causes peak-value of the saturation function to be pushed further

from its asymptotes, and therefore the effective constraint limit becomes smaller than

its desired value. This creates a push-off factor between the optimal trajectory and

the constraint. The relationship between the magnitude of this push-off factor and

is highly problem dependent based on the relative magnitudes of the path constraint

and the original cost functional. It is to be noted that this “push-off factor” is not a

tunable parameter, but rather, an outcome of using ICRM.

As is made smaller, the optimal solution generates larger values for the aug-

mented control, ue, which results in the saturation function getting closer to its

asymptotic limits. If is reduced to zero, ue tends to infinity which corresponds

to the multi-arc solution from conventional optimal control theory. While decreasing

�

�

�

�

�

�

�

�

�

�

�

�

42

ue allows the solution to very closely approach the constraint, this comes with the

additional challenge of vanishing gradients as the saturation function approaches its

limit. This also makes the problem numerically sensitive at the points where the con-

straint is active leading to difficulties when solving the BVP. The addition of extra

nodes at these locations may significantly increase the computation time even in the

case of BVP solvers capable of handling such numerically sensitive regions.

In many of the examples that follow in this dissertation, a constrained optimal

control problem is initially solved with a relatively large value of , followed by a

reduction in using a continuation methodology. The push-off factor causes the

constraints to be more restrictive initially and decreasing results in a “relaxation”

of these constraints. For example, in the case of a control constraint, a larger value

of restricts the effective control authority available resulting in sub-optimal results.

Decreasing releases this artificial restriction allowing the solution to more closely

approach the desired constraints.

When a problem has multiple constraints, changing the value of for one con-

straint may affect the push-off factors for the other constraints simultaneously. This

is because the relative magnitudes of the terms of the cost functional changes when

one is modified, thereby changing the optimal value of ue for every constraint. An

example of this phenomenon can be seen in Section 2.8.4.

Choosing a feasible value for for each constraint is required in order to use ICRM.

If the chosen value of is too large, the effective “cushion” around the constraint limit

might make the problem infeasible. Conversely, if the initial value of is too small,

the problem may become too numerically sensitive and difficult to solve. The value

of is currently chosen by trial and error because its effect on the solution is highly

problem-specific. A possible strategy for automatic selection of is discussed in

Section 6.2.1.

43

2.8 Validation

Some representative constrained trajectory optimization problems were solved us-

ing ICRM, and the results were validated by solving the same using conventional

optimal control theory or using GPOPS. The necessary conditions of optimality for a

modified version of the Brachistochrone problem with a path constraint are derived

for both ICRM as well as conventional optimal control theory to demonstrate the

simplification of the process. The control histories and trajectories are compared to

validate that the ICRM solution is very close to the optimal solution. The same is

done for some other representative problems, namely the one-dimensional free-flight

problem with a control constraint and a hypersonic trajectory problem with a heat-

rate and control constraint.

2.8.1 Constrained Brachistochrone Problem

The first validation problem is a modified version of the classical Brachistochrone

problem with a linear path constraint. The constraint is positioned such that the

optimal trajectory is restricted from going as far down the y direction as it does in

the unconstrained case. The optimal constrained trajectory follows the constraint

where required and then goes back to a time-optimal path. The results are validated

by solving the same problem using conventional optimal control theory formulating

it as a multi-point boundary value problem and comparing the solutions.

44

Problem Statement:

Min T (2.20a)

Subject to :

ẋ = v cos θ (2.20b)

ẏ = v sin θ (2.20c)

v̇ = g sin θ (2.20d)

x(0) = y(0) = 0, x(T) = −y(T) = 10 (2.20e)

g = −9.81 (2.20f)

x+ y ≥ −1.0 (2.20g)

where θ is the control.

Necessary Conditions of Optimality - MPBVP

Applying conventional optimal control theory (Section 1.2.3), the constrained op-

timal control problem is posed as a multi-point boundary value problem (MPBVP).

The necessary conditions of optimality have to be derived for two cases – when the

constraint is inactive (x+y > −1.0) and when the constraint is active (x+y = −1.0).
When the constraint is inactive, the Hamiltonian is defined as:

H = λxv cos θ + λyv sin θ + λvg sin θ + 1.0 (2.21)

� � � ��

� �

45

where λx, λy and λv are costates. The dynamic equations for the costates are defined

as

λ̇
x = −

∂H
= 0 (2.22a)

∂x
∂H

λ̇
y = − = 0 (2.22b)

∂x
∂H

λ̇
v = −

∂x
= −λx cos θ − λy sin θ (2.22c)

(2.22d)

The control law is found by solving the following equation:

∂H
= gλv cos θ − λxv sin θ + λyv cos θ = 0 (2.23a)

∂θ
1

2λ2 2 + λ2 2=⇒ θ = −2 atan λxv ± g + 2gλvλyv + λ2 v v (2.23b)
gλv + λyv v x y

Since there are two control options, the optimal value is found by evaluating the

Hamiltonian and choosing the one which gives the minimum value (Pontryagin’s

Minimum Principle). The only added boundary conditions are λv(T) = 0, since v(T)

is unconstrained and H(T) = 0 since the T is unconstrained.

When the constraint is active, the Hamiltonian is different, and, consequently, the

costates have different dynamics and the control law is different. In order to derive

these conditions, first, the path constraint is differentiated w.r.t time until the control

variable θ appears.

d x + y − 1.0) dx dy
= + = v cos θ + v sin θ (2.24)

dt dt dt

In the case of Eq. (2.20g), the control appears when the expression is differentiated

once, making it a path constraint of order 1. The Hamiltonian is augmented with this

differentiated constraint using a Lagrange multiplier, μ1, to obtain the Hamiltonian

for the constrained arc, Hc.

Hc = λxv cos θ + λyv sin θ + λvg sin θ + 1.0 + μ1 (v cos θ + v sin θ) (2.25)

46

The costate equations for the constrained arc are obtained as:

λ̇x = 0 (2.26a)

λ̇y = 0 (2.26b)

λ̇
v = −λx cos θ − λy sin θ − μ1 (sin θ + cos θ) (2.26c)

(2.26d)

The constrained control law includes expressions for both θ and the Lagrange

multiplier, μ1. The constrained control law is found to have two solutions as well.

The optimal value of θ is found to be equivalent to the slope of the constraint function.

π π
θ = ± (2.27a)

4 2
1

μ1 = − (gλv + v (λx + λy)) (2.27b)
2v

The entry and exit conditions for the constrained arc referenced in Eqs (1.17)-

(1.21) are calculated as shown below. t1 refers to the junction at the end of the

constrained arc. π0 is a Lagrange multiplier used to adjoin the costate corner con-

ditions as discussed in the previous chapter in Eq. (1.23). It becomes an extra free

parameter that is to be solved for along with the BVP.

− + − + − + x(t) = x(t), y(t) = y(t), v(t) = v(t) (2.28a)1 1 1 1 1 1

x(t+1) + y(t+1) + 1.0 = 0 (2.28b)

− + − + − +λx(t1) = λx(t1) + π0, λy(t1) = λy(t1) + π0, λv(t1) = λv(t1) (2.28c)

H(t−
1) = Hc(t

+
1) (2.28d)

− + − + − + x(t) = x(t), y(t) = y(t), v(t) = v(t) (2.28e)2 2 2 2 2 2

− + − + − +λx(t2) = λx(t2), λy(t2) = λy(t2), λv(t2) = λv(t2) (2.28f)

Hc(t
−
2) = H(t+2) (2.28g)

�

�

47

This Multi-Point Boundary Value Problem (MPBVP) is solved using the multi-

ple shooting method. The result is compared to that obtained using ICRM in the

upcoming sections. It is to be noted that in this particular problem, the constraint is

only active once, leading to a single constrained arc bookended by two unconstrained

arcs. However, in more general problems, the constraint may be active more than

once, leading to the conditions such as the ones in Eq. (2.28) being repeated at every

entry/exit junction to each constrained arc and making the MPBVP larger and more

difficult to solve.

Necessary Conditions of Optimality - ICRM

By applying ICRM, the path constraint was incorporated into the problem without

the complexities mentioned in Section 1.2.3. Following the steps in Section 2.2, the

optimal control problem is augmented with an extra state, ξ1 and one extra control,

ue1. The dynamics of this new state is defined as:

ξ̇
1 = ue1 (2.29)

Using the one-sided saturated function from Eq. (2.17) and the smoothing factor

1 the Hamiltonian is defined as follows

H = 1u 2
e1 + gλv sin θ + λxv cos θ + λξ1 ue1 + λyv sin θ

+ μ1 (− exp (ξ1) ue1 + v sin θ + v cos θ) + 1 (2.30)

From this augmented Hamiltonian, the costate dynamics are derived as:

λ̇
x = 0 (2.31a)

λ̇
y = 0 (2.31b)

λ̇
v = −λx cos θ − λy sin θ − μ1 (− sin θ − cos θ) (2.31c)

λ˙ ξ1 = μ1ue1 exp ξ1 (2.31d)

The differential equations for the control variables are derived as shown in Sec-

tion 2.4. The actual equations are not listed here for brevity. The boundary conditions

��
�

����

48

for the system including the new state, costates, and the control variable ‘states’ are

defined as:

x(0) = y(0) = 0 (2.32a)

λξ1 (0) = 0 (2.32b)

x(T) = −y(T) = 10 (2.32c)

λv(T) = 0 (2.32d)

exp ξ1 + 1.0 + x(T) + y(T) = 0 (2.32e)

H(T) = 0 (2.32f)

gλv cos (θ) − λxv sin (θ) + λyv cos (θ) + μ1 (−v sin (θ) + v cos (θ))
t=T

= 0 (2.32g)

2 1ue1 + λξ1 − μ1 exp ξ1 t=T
= 0 (2.32h)

− exp ξ1 ue1 + v sin (θ) + v cos (θ)
t=T

= 0 (2.32i)

The boundary conditions and the differential equations derived above are the only

ones that are required to enforce the linear path constraint of the problem, regardless

of how many times the constraint is active or inactive throughout the trajectory.

Analysis

The constrained Brachistochrone problem is solved using both the MPBVP and

ICRM methods using a multiple-shooting algorithm, and the results are compared in

this section. The homotopy continuation method described in Ref. 13 is used to solve

the MPBVP version of the problem. First, the Brachistochrone problem is solved

without any path constraints. After this, a short constrained arc is introduced at

the point with the highest constraint violation by adjusting the constraint limit. The

constraint limit is then changed back to its original value in a series of continuation

steps to obtain the final solution. This results of this process is illustrated in Fig-

ures 2.3 and 2.4. It can be seen from the control history plot that the constrained

arc is a distinctly separate horizontal line compared to the two unconstrained arcs at

the beginning and end of the trajectory.

49

0

-2

-4
E
:;:; -6-s:,

-8

-10

-2.5 0.0 2.5 5.0 7.5 10.0 12.5
x(t) [ml

Figure 2.3. Constrained Brachistochrone - MPBVP Continuation - Trajectory

Cl
_g; -50

-80

0.00 0.25 0.50 0 .75 1.00 1.25 1.50 1.75
t [s]

Figure 2.4. Constrained Brachistochrone - MPBVP Continuation - Control History

50

Unlike the MPBVP solution, when using ICRM, the trajectory remains a single

arc that never violates the path constraint. The solution obtained using ICRM with

E1 = 10-5 is shown in Figure 2.5 and the corresponding optimal control is shown in

Figure 2.6. Both figures also show how the ICRM solution compares to the MPBVP

solution. It can be seen that the actual trajectories practically overlap, while the

control history is very close to what the MPBVP method predicts .

..L

0 - ICRM Solution
- MPBVP Solution
- Unconstrained Solution

-2 -- x+y+l=O

-4

E
~

-6,::

-8

-10

0 2 4 6 8 10
x{t) [m]

Figure 2.5. Constrained Brachistochrone Solution - Trajectory

The results in Figures 2.5 and 2.6 show that ICRM gives a solution that is very

close to the optimal solution while avoiding the difficulties of solving multi-point

boundary value problems. ICRM also retains the structure of a general two-point

boundary value problem which can be solved by most numerical BVP solvers without

requiring any special modifications for processing extra algebraic constraints.

51

- 2o 1~ ICRM ~olution '

- MPBVP Solution

_ 30 -l - Unconstrained Solution 1-1---+-----+---,Jl"-----l..---l

ai -50 +--+-----+----+-,~ -1----.A-----+-------,f-----+--l
Q)

~
CI)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
t [s]

Figure 2.6. Constrained Brachistochrone Solution - Control History

Costate Discrepancies

When a constrained optimal control problem is solved using the MPBVP method,

the costates may have jump conditions in them at the entry and/or exit junctions of

the constrained arcs (Eq. (1.20)). In case of the constrained Brachistochrone problem,

these jump conditions appear in Ax and Ay· From the costate profiles in Figure 2.7,

it can be seen that these jump conditions do not appear when using ICRM. Even

so, the control and the state trajectories still closely match the MPBVP solution as

shown in Figures 2.5 and 2.6. The discrepancy is due to the fact that the control law

equation is different in the case of ICRM and incorporates more variables , ue1 , 6 , E1

and µ 1 .

For additional validation that the costates are correct , the regularized optimal

control problem with the added state variable 6 and control, U ei is solved using the

direct solver GPOPS [6]. GPOPS is able to estimate the costates corresponding to

the states using the Covector Mapping Theorem [48]. These results are compared

52

0.100

0.075

0 .050

0.025

.::- 0.000

"'
~

-0.025

-0.050

-0.075

-0.100

-=-:;;:(~ RM -
~ -----...

- Ay(t) ICRM

{ - - Ax(t) MPBVP - - Ay(t) MPBVP
- Ax(t) Unconstrained - Ay(t) Unconstrained -

.- ----- ---- --------
I
I
I .

- ----- ---- --------
=
I
I
I

----- ---- ----
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

t [s]

Figure 2. 7. Constrained Brachistochrone Solution - Costates

to the costate trajectories from ICRM in Fig 2.8. It can be seen that the costates

estimated by GPOPS matches very well to the results obtained using ICRM.

53

0 .04

0.02

0 .00

-0.02

E
,s::

-0 .04

-0.06

-0.08

-0.10

_L ..L ...1...

- Ax ICRM • Ax GPOPS ..1- Ay lCRM • Ay GPOPS Jr - Av lCRM • Av GPOPS

1 - A1;, ICRM • A1;, GPOPS

I/__.
- - - -= ~ -- ::: == ~ ,;;, -- ~ == =- ..=.. - .. -- -~

l/'

•V
__.../

_,.?

.,..,,..,
-· - - - - - - - ~

0 .00 0 .25 0 .50 0.75 1.00 1.25 1.50 1.75
t (s)

Figure 2.8. Constrained Brachistochrone - Costate Comparison with GPOPS

2.8.2 One-Dimensional Free-Flight Problem with Control Constraint

This problem scenario consists of a point-mass with a single thruster t hat can

provide a specific amount of acceleration. The motion of t he body is constrained

to be along a single axis. The t hrust has a finite magnitude and is implemented as

a control limit using ICRM. The objective is to move the body from one point to

another in the minimum t ime possible using the t hruster. The dynamics model of

this problem is a simple double integrator for which a closed-form analytical solut ion

can be found as demonstrated in the next section.

54

Problem Statement:

Min T (2.33a)

Subject to :

ẋ = v (2.33b)

v̇ = u (2.33c)

x(0) = v(0) = v(1) = 0 (2.33d)

x(1) = 1 (2.33e)

|u| ≤ l (2.33f)

where u is the control.

Analytical Solution

The Hamiltonian can be defined as H = λxv + λvu + 1, and the costate rates are

defined as:

λ̇
x = −

∂H
= 0 (2.34)

∂x

λ̇
v = −

∂H
= −λx (2.35)

∂v

Since the problem is linear in control, the optimal solution is a bang-bang control

according to Pontryagin’s Minimum Principle(PMP) [11]. According to PMP, the

∂Hcontrol law in such a problem is dictated by a switching function,
∂u . The control

law is defined as: ⎧ ⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1 ∂H > 0
∂u

∂Hu = +1 < 0
∂u

∂Hundefined = 0
∂u

For the one-dimensional free-flight problem, the switching function is defined in

Eq. (2.36) and the corresponding control law in Eq. (2.37).

∂H
= λv (2.36)

∂u

� �

55

−1 λv > 0

⎧ ⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u = +1 λv < 0 (2.37)

undefined λv = 0

The dynamic equations for the costates can be analytically solved as:

λ̇x = 0 =⇒ λx(t) = C1

λ̇v = −λx = −C1 =⇒ λv(t) = −C1t+ C2

Since the switching function is linear, there is exactly one switch in the control.

Common-sense dictates that the acceleration should be positive at the initial point

for the particle to move towards the destination, i.e, u(0) = +1. Similarly it should

be negative when arriving at the destination, or u(T) = −1. From the free-final time

condition and because time does not appear explicitly in the Hamiltonian,

H(t) = 0 =⇒ H(0) = C2u(0) + 1 = 0 =⇒ C2 = −1
2

H(T) = 0 =⇒ C1 v(T)+(−C1T+−1)u(T)+1 = 0 =⇒ C1T+2 = 0 =⇒ C1 = −
T

Therefore the switching function is λv = (2/T)t−1, which crosses zero at t = T/2.

The velocity profile is then given by:

v(t) =

⎧ ⎪⎨

⎪⎩

t 0 ≤ t ≤ T/2

T − t T/2 ≤ t ≤ T

Applying the boundary condition on x,

T/2 T

x(T) = t dt+ (T − t) dt
0 T/2

T 2 T 2 T 2 T 2

= + T 2 − − + = 1
8 2 2 8 (2.38)

T 2

=⇒ = 1
4

T = 2.0

�

56

Therefore the analytical solution for x(t) is ⎧ ⎪⎨

⎪⎩

t2/2 0 ≤ t ≤ T/2
x(t) = (2.39)

− T 2
Tt − t

2

2

4 T/2 ≤ t ≤ T

Regularized Optimal Control Formulation

Since the path constraint in this problem is a control bound, it is a zero-order

constraint. Therefore the only extra variable to be added to the optimal control

problem is the new control, ue1. The two-sided saturation function from Eq. (2.18) is

used to regularize the control bound. The new Hamiltonian is then defined as:

H = λxv + λvu + 1 + �u e
2
1 + μ (u − ψ(ue1)) (2.40)

where ψ is defined in Eq. (2.18).

The extended two-point DAE-BVP is then obtained as:

ẋ = v, v̇ = u (2.41a)

λ̇
x = 0, λ̇

v = u (2.41b)

x(0) = v(0) = v(1) = 0 (2.41c)

x(1) = 1 (2.41d)

∂H
= λv + μ = 0 (2.41e)

∂u
∂H

= ψ ue1μ + 2 �u e1 = 0 (2.41f)
∂ue1

∂H
= u − ψ(ue1) = 0 (2.41g)

∂μ

57

Initial Guess and Solution Strategy

The DAE-BVP in Eq. (2.41) is first converted into an explicit ODE by differenti­

ating the algebraic conditions as described in Section 2.4. After trial and error, the

initial guess for the costates was chosen as Ax = -0.2 and Av = -0.4, integrated

until T = 10. The states were set to zeros as in the actual initial conditions in the

problem statement. Homotopy continuation was performed on the terminal position

and velocity until the problem requirements were satisfied as shown in Fig 2.9. The

dark blue line represents the initial guess and the red line is the final case where the

boundary conditions in the problem statement for x and v are satisfied. The regular­

ization parameter, E was initially set to 2. It was later brought down to 10-3 using

continuation in a later step as discussed in the next section. Constraint normalization

is not required in this problem as the constraint limit is already equal to one.

40

30

E
~ 20

0 2 4 6 8 10 12
t [s]

Figure 2.9. One-Dimensional Free Flight - Initial Continuation

Analysis

The evolution of the trajectory as E is decreased from 10-1 to 10-3 during contin­

uation is shown in Figure 2.10. The line in dark blue with an E of 10-1 has a larger

T, i.e, a less optimal result. As E gets smaller, the trajectory approaches the optimal

58

solution while still keeping the state and controls a single smooth arc. The actual

closed-form optimal solution has a discontinuity as shown in Eq. (2.39).

0.0 0.5 1.0 1.5 2.0
t [s]

Figure 2.10. One-Dimensional Free Flight - Evolution of Regularized Solution

The trajectories for x and v, obtained using ICRM with 1:=10-3 is compared to the

analytical solution in Figure 2.11 , and the corresponding control history can be seen

in Figure 2.12. The control histories and the trajectories obtained using ICRM are

seen to match very closely with the analytical solution. The optimal control computed

using ICRM very closely approaches the bang-bang solution, and the corner in v at

T /2 is modeled as closely as possible. This example demonstrates that ICRM is

capable of solving problems that have a bang-bang optimal control solution in the

presence of control bounds.

59

0.00 0 .25 0 .50 0 . 75 1.00 1.25 1.50 1. 75 2 .00
t [s]

Figure 2.11. One-Dimensional Free Flight - Trajectory

1.00

0 .75

~ 0.50
a::
~ 0.25

N 0 .00
"' E
~ -0.25
z
:i' -0.50

-0.75

-1.00

- u - lCRM
-t---,r-----+----+----+- • u -Analytica l ·

\..

0.0 0 .5 1.0 1.5 2.0
t [s]

Figure 2.12. One-Dimensional Free Flight - Control History

60

2.8.3 Maximum Terminal Energy Hypersonic Trajectory with Heat Rate

Constraint

To demonstrate that ICRM can be applied to more complex aerospace problems,

a scenario involving maximum terminal energy trajectories of a slender hypersonic

vehicle is examined. The vehicle is assumed to be capable of angle-of-attack (AoA)

control and having a peak L/D of around 2.4. The boundary conditions and the

environment parameters are listed in Tables 2.1 and 2.2 respectively. The same dy-

namic model and parameters are also used in the next section where an additional

constraint is added to the problem.

Table 2.1. Boundary Conditions.

State h v γ θ

Staging (t=0) 80,000 m 5000 m/s -60 deg 0 deg

Terminal (t=T) 15,000 m free free 1 deg

Table 2.2. Environment Parameters.

Parameter Value

μ

RE

ρ0

hs

23.986 × 1014 m3/s

6.3781 × 106 m

31.2 kg/m

7500 m

� �

�

61

The problem is defined as follows:

Max v(T)2 (2.42a)

Subject to :

ḣ = v sin γ (2.42b)
v cos γ

θ̇ = (2.42c)
r

−D μ sin(γ)
v̇ = − (2.42d)

2m r
L v μ

γ̇ = + − cos(γ) (2.42e)
2mv r vr

r = RE + h

D = qCDAref

L = qCLAref

q =
1
ρv2

2

ρ = ρ0 exp(−h/hs)

CL = CL1 + CL0

CD = CD2
2 + CD1 + CD0

(2.42f)

In this section the problem is solved with a single path constraint, and the result

is validated using the MPBVP formulation of the necessary conditions. A stagnation

point heat rate constraint is applied to the problem defined in Eqs. (2.42). The heat

rate is computed using the Sutton-Graves convective heating equations [127] as shown

in Eq. (2.43).

Q̇ = k
ρ
v 3, k = 1.74153 × 10−4 for Earth (2.43)

rn

� �
� � � �

� �

62

Necessary Conditions of Optimality – MPBVP

The necessary conditions of optimality is derived for both the constrained and

unconstrained versions of the problem. The continuation methodology described in

Chapter 1 is used to solve the problem starting with a trivial initial guess.

For the unconstrained problem, the Hamiltonian is defined as:

v cos γ −D μ sin γ
H = λT f =λhv sin γ + λθ + λv −

2r m r
(2.44)

L v μ
+ λγ + − cos γ

mv r vr2

The two point boundary value problem is defined as:

ḣ = v sin γ (2.45a)
v cos γ

θ̇ = (2.45b)
r

−D μ sin γ
v̇ = −

2
(2.45c)

m r
L v μ

γ̇ = + − cos γ (2.45d)
mv r vr2

λ̇
h = −

∂H
(2.45e)

∂h

λ̇
θ = −

∂H
(2.45f)

∂θ

λ̇
v = −

∂H
(2.45g)

∂v

λ̇
γ = −

∂H
(2.45h)

∂γ

with the algebraic condition for the optimal control law being defined as:

∂H
= 0 (2.46a)

∂

(2.46b)

The boundary conditions on the states are given in Table 2.1, and the boundary

conditions on the costates and the free-final time condition are defined as follows:

λv(T) = −2v(T) (2.47a)

λγ (T) = 0 (2.47b)

H(T) = 0 (2.47c)

�
� � � �

� � � � � �

63

When solving the constrained problem, the assumption is that there is one con-

strained arc in the solution at the point where the heat rate peaks. The trajectory

is split at this point and a new arc is inserted into the unconstrained problem. New

boundary conditions are required at this boundary point along with different dynamic

equations for costates and a new control law. The heat rate constraint is found to be

of order 1 since it has to be differentiated once before the control variable, appears.

S(x) = k
ρ
v 3 (2.48a)

rn

μ sin γρ D ρ sin γ
S(1) = 3kv2 r− −

2 − kv4 (2.48b)
rn m ˙ rn ˙Qmax 2 hs Qmax

S(1) is adjoined to the Hamiltonian using a Lagrange multiplier μ1 to form the

new Hamiltonian, Hc.

μ sin γρ D ρ sin γ rHc = H + μ1 3kv2 − −
2 − kv4 (2.49)

m ˙ ˙rn Qmax rn 2 hs Qmax

The constrained costate rates and control laws are computed based on Hc as shown

below:

λ̇
h = −

∂Hc
(2.50a)

∂h

λ̇
θ = −

∂Hc
(2.50b)

∂θ

λ̇
v = −

∂Hc
(2.50c)

∂v
∂Hc

λ̇
γ = − (2.50d)

∂γ

The Lagrange multiplier μ1 is a time-varying quantity which is zero for the un-

constrained trajectory and is computed simultaneously with the control for the

constrained arc.

∂Hc ∂Hc
= 0, = 0 (2.51)

∂ ∂μ1

64

At the entry to the constrained arc, the following corner conditions apply.

x(t1
−) = x(t1

+) (2.52a)

λ(t−
1) − λ(t1

+) + ΠT Nx = 0 (2.52b)

H(t−
1) = Hc(t

+
1) (2.52c)

∂S(x)
where Nx = (2.52d)

∂x

 is an unknown parameter to be estimated during the numerical solution process,

and t1 represents the entry-junction for the constrained arc. At the exit junction

t2, the states, costates, and Hamiltonian are assumed to be continuous as shown in

Eq. (2.53). These conditions together form a multi-point boundary value problem

with three arcs that is solved using a multiple shooting algorithm.

x(t2
−) = x(t2

+) (2.53a)

λ(t2
−) = λ(t2

+) (2.53b)

Hc(t
−
2) = H(t+2) (2.53c)

(2.53d)

Necessary Conditions of Optimality – ICRM

Before regularizing using saturation functions, the constraint is normalized and

stated as:
Q̇ ≤ 1 (2.54)

Q̇max

Since the heat-rate constraint is of order 1, only one extra state variable, ξ, and

one control, ue1, need to be added to the system. The dynamic equation for the new

state is defined as ξ̇ = ue1. The one-sided saturation function from Eq. (2.16) is used

to regularize the path constraint.

�
�

� � � �

�
�

65

S = k
ρ
v 3 = 1 − exp (−ξ)

rn
(2.55)

=⇒ k
ρ
v 3 − (1 − exp (−ξ)) = 0

rn

S(1) =exp (−ξ) ue1

=⇒ S(1) − exp (−ξ) ue1 = 0

μ sin γ (2.56)ρ D ρ sin γ r =⇒ 3kv2 − −
2 − kv4

rn m ˙ rn ˙Qmax 2 hs Qmax

− exp (−ξ) ue1 = 0

Eq. (2.55) forms the initial condition on the new state variable ξ. Eq. (2.56) is

added as an equality constraint to the problem. The path cost of the problem is

2changed to L =
0
T
�ue1dt where is the regularization parameter. The necessary

conditions of optimality for the extended optimal control problem were derived using

Euler-Lagrange equations, and the control dynamic equations were calculated as de-

scribed in Section 2.4. The resulting two-point boundary value problem was solved

using a shooting method.

Solution Strategy - MPBVP

The initial guess for the numerical solver is created by integrating the dynamic

equations forward from the entry interface conditions except for the flight-path angle

γ which is set to -90 degrees. The costates are all set to 0.1 and the trajectory was

integrated for 0.1 seconds. When solving using conventional optimal control, initially

the unconstrained problem is solved in this manner. The constrained arc is then

introduced at the point with maximum constraint violation. In subsequent steps,

this constraint violation is reduced down to zero to obtain the solution to the original

constrained problem. This continuation process is illustrated in Figure 2.13. The

˙lines transitioning from red to blue denotes a change in Qmax from its value in the

66

unconstrained solut ion to the required value of 1200 W /cm2
. As expected, a penalty

in cost v(T) can be observed as a lower peak heat-rate is enforced. The final solution

obtained using MPBVP is compared to that obtained using ICRM in t he next section.

3000

2500

;::;" 2000
E
u

~ -- 1500
·o-

1000

500

0
0 20 30 40

t [s]

(a) Heat Rate Profile

80

70

60

E so
~

.c: 40

30

20

10

2.0 2.5 3.0 3.5 4.0 4.5 5.0
v [km/s]

(b) Energy Plot

Figure 2.13. Heat Rate Constraint - MPBVP Continuation in C2max

67

Solution Strategy - ICRM

The same initial guess that was used for the MPBVP solution was used with

ICRM. When using ICRM, the regularization parameter, E for the heat-rate constraint

is initially set to 10- 2 and CJmax is set to 10,000 W/cm2 in order to ensure that the

constraint does not impede with the solution process especially at lower altitudes.

Continuation in terminal altitude is used to extend the trajectory towards the ground.

Once the trajectory reaches the targeted altitude (15 km) , a continuation is performed

on the initial flight-path angle to -60 deg and the terminal downrange distance to 55

km as shown in Figure 2.14. Further continuation is performed on 0(T) to extend it

to out to 110 km.

70

60

E 50
~

,<:
40

0 10 20 40 50 0 5 10 15 20 25
Downrange [km) t [s]

(a) Altitude-Downrange (b) Flight-Path Angle Profile

Figure 2.14. Heat Rate Constraint - ICRM Continuation in 1 (0) and 0(T)

After the boundary conditions in altitude and downrange distance were matched

with the problem statement, continuation is performed on the heat-rate limit, Qmax,

and then on the regularization parameter, E. This is performed in multiple steps some

of which are shown in Figures 2.15 and 2.16.

Figure 2.15 plot shows the effect on the trajectory as the constraint limit, Qmax is

changed from 10,000 W/cm2 down to the design limit of 1,200 W/cm2
. It can be seen

that through the entire process, the actual peak heat rate does not exactly reach the

68

constraint. This is due to the effect of E which is still relatively large enough at 10-4

to cause this "push-off" factor. As seen in Fig 2.14(a), the vehicle is forced to climb

higher to avoid the higher heat-rate that is encountered in the lower atmosphere.

1750
2400 80

1500 70
2200 2200

1250 60

11000
20001

u
20001

u

~ ~ ~ 750 1800-;; ..c: 40 1800-;;
·o- ~ ~

500
·o

1600 30
·o

1600

250 1400 20 1400

0 1200
10

1200
0 10 20 30 40 50

t [s]

(a) Heat Rate Profile

j

~ ~
- ---~ - -

I2400

2.0 2.5 3.0 3.5 4.0
v [km/s]

(b) Energy Plot

Figure 2.15. Heat Rate Constraint - ICRM Continuation in Qmax

from 2500 W /cm2 (red) to 1200 W /cm2 (blue) with E = 10-4

Once CJmax is at the desired design value of 1200 W / cm2
, the next step is to reduce

the regularization parameter to bring the trajectory closer to the optimal solution.

This process is illustrated in Figure 2.16 where E is reduced from 10-2 to 10-6 . As

discussed before in Section 2.7, reducing E makes the constraint less restrictive and

a slightly higher peak-heat rate is allowed once E equals 10-5 . This is reflected in

the energy plot (Fig 2.16(b)) as well with the vehicle diving slightly deeper into the

atmosphere to attain a slightly more optimal solution at the cost of more heating.

Analysis

The constrained heat-rate solution obtained using ICRM is compared to that

obtained using MPBVP for validation in Figure 2.17. With E = 10-5 , the two trajec­

tories can be seen to match very well. The trajectory touches the constraint and is

69

le-04 le-04
1200 80

1000 8e-05 70 8e-05

60

NE
u

~

800

600

6e-05

"'
E 50
~

6e-05

·o- 4e-05 .c: 40 4e-05

400
30

2e-05 2e-05
200 20

0 10 20 30 40
t [s]

10

(a) Heat Rate Profile (b) Energy Plot

Figure 2.16. Heat Rate Constraint - ICRM Continuation in E from
410- (red) to 10- 5 (blue)

on it for 8 seconds while remaining a single continuous curve. The cost function (the

terminal velocity) also matches that which was obtained using the MPBVP method.

I I
-

~

)
~ ~

A/
- -"' ~

~

2.0 2.5 3.0 3.5 4.0 4.5 5.0
v [km/s]

1200

1000

800
NE

! 600
·o-

400

200

0

L__

- MPBVP r

• ICRM

10 20 30 40
t [s]

80

70

60

E 50
~
.c: 40

30

20

10
2.0 2.5 3.0 3.5 4.0 4.5 5.0

J.

~ - MPBVP I
• ICRM

- - ~

-
)

-

...-V
~~

- -.......
v [km/s]

(a) Heat Rate Profile (b) Energy Plot

Figure 2.17. Heat Rate Constraint - MPBVP vs ICRM

70

2.8.4 Maximum Terminal Energy Hypersonic Trajectory with Heat Rate

and Angle-of-Attack Constraints

When the hypersonic trajectory problem is formulated as in the last section, there

is a side effect that there is no actual bound on the angle-of-attack. For a maximum

terminal energy problem, this is not a significant issue as the optimal solution tends

to minimize the angle-of-attack.

Figure 2.18 shows the control history for the heat-rate constrained trajectory from

the last section. It can be seen that initially, the angle of attack has very high and

unrealistic values of close to 80 degrees. This is not too critical as this happens in a

phase of the trajectory where there is hardly any atmosphere. However , this can be

mitigated by adding a constraint on the angle-of-attack.

80

60

20

0

,-

~
~ - \ -

\
'-.

~ 7 I
0 10 20 30 40

t [s]

Figure 2.18. Control History for Heat Rate Constrained Trajectory

In order to demonstrate the handling of multiple path constraints using ICRM,

a new problem is set up where an angle-of-attack constraint can be enforced in the

problem simultaneously with the heat rate constraint, and both constraints are sat­

isfied at all points. Since this is a two-sided constraint, the saturation function from

Eq. (2.18) is used to implement this constraint in ICRM. D'.max is set to 40°.

The normalized angle-of-attack constraint is defined as:

a
-1 :S; -- :S; 1 (2.57)

O'.max

--

71

A continuation methodology similar to that used in the previous section is used

to build up the trajectory from a trivial initial guess. The regularization parameter

for both the heat-rate (E1) and the angle-of-attack (E2) constraints, are initially set

to 10- 4 _ Figure 2.19 shows the continuation in CJmax with both constraints enforced

simultaneously. The push-off factor due to the relatively high values or E can be seen

in both the heat-rate and the angle-of-attack profiles in Figures 2.19(a) and 2.19(b),

respectively. The control effort increases as the vehicle is forced to fly at a higher

altitude in order to maintain a lower heat-flux as required by the heat-rate constraint.

10000 100001750

9000 9000
1500

8000 8000
1250

7000 NE
11000 6000 !
- 750 5000 ~ 5000 ~ -o- E E * -o4000 -o 4000500

3000 3000
250

2000 O - ,----.., - ----,, 2000Control limit t-----l-',.11oi;:..,.,. t-- ~ 1

0 T I

j!I

,..
~

j ~ l
I \
I ~"-.

'___

V [_
0 10 20 30 40 50 0 10 20 30 40 50

t [s] t[s]

(a) Heat Rate Profile (b) Angle-of-Attack profile

Figure 2.19. Heat Rate & AoA Constraint - Evolution in Qmax from
10,000 W/cm2 to 1200 W/cm2

In the next continuation step, the regularization parameter for the heat-rate con­

straint, E1 is reduced from 10-4 to 10-6 , bringing the trajectory closer to the heat-rate

constraint. This evolution is shown in Figure 2.20. Changing E1 also affects control

profile as seen in Fig 2.20(b), reducing the peak value of a. This is a side -effect of

the change in relative weights of different terms of the cost functional as discussed

before in Section 2. 7. As E1 is brought down to 10- 6 , the heat-rate profile can be seen

to change so that it touches the constraint as shown in Fig 2.20(a).

The final step in the process is to reduce E2 from 10- 4 to 10-5 so that the control

profile also follows the constraint as shown in Figure 2.21. The change in the heat-rate

72

~ 20 <-+---+--•----+---+---+f----<

profile is almost imperceptible at this point as seen in Figure 2.21(a) since the peak

value for the angle-of-attack happens high in the atmosphere where it is not able to

impact the trajectory of the vehicle in a significant manner. However, by enforcing

the control constraint , it is possible to ensure that the optimal solution obtained is

satisfying all the design constraints in the original problem.

I
le-04

1200

1000

800
NE
u

600 ~
· O-

I
I
I
I

\
\
\
~

-

8e-05

6e-05
N

"'
4e-05

:s
t,

400

200

/
J

I-

..... ...____
,-.

Constraint Lim it

2e-05

0
0 10 20 30 40 50

t [s]

(a) Heat Rate Profile (b) Angle-of-Attack profile

Figure 2.21. Heat Rate & AoA Constraint - Evolution in E2 from 10- 4

(red) to 10-5 (blue)

le-04
1200

1000 8e-05

800
6e-05NE

u
600 "'

~ :s~ t,
4e-05·o-

400

2e-05200

0 - - Control limit ~ '---._+..._-~_;:~...-I•
7 ----,- I0

0 10 20 30 40 50 0 10 20 30 40 50
t [s] t [s]

(a) Heat Rate Profile (b) Angle-of-Attack profile

Figure 2.20. Heat Rate & AoA Constraint - Evolution in E1 from 10- 4

(red) to 10- 5 (blue)

~ 20 +-+---+---\1----t---+--t---+

0 10 20 30 40 50
t [s]

le-04

8e-05

6e-05
N

"'
4e-05

2e-05

le-04

8e-05

6e-05

"'
~

4e-05

2e-05

73

Adding the control constraint does not influence the trajectory much, as the con­

trol saturation occurs in a region wit h very little dynamic pressure. However , adding

this const raint demonst rates t hat ICRM is capable of solving problems in which more

than one path constraint is enforced. The final solut ion obtained using ICRM is com­

pared to that obtained using the direct solver GPOPS in Figures 2.22.

I I I I

"\
I\

•

.l

'-- ICRM
GPOPS

-

-, - Con~traint Li~ I '-~ "- I

120040

1000
30

800
NE

f 600

"0-

40010

200
0

0
0 10 20 30 40 50 0 10 20 30

t [s] t [s]

(a) Control History (b) Heat Rate Profile

- ICRM

• GPOPS
- Constraint Limit

+---

40 50

80

70

60

.c: 40

30

20

10

_L__
-j -- ICRM

GPOPS
--{ •

I

I

I

_j

....../
- --- - -----~

2.0 2.5 3.0 3.5 4.0
v [km/s]

(c) Energy Plot

Figure 2.22. Heat Rate & AoA Constraint - ICRM vs GPOPS

74

2.9 Application Problem

2.9.1 Problem Statement

The capabilities of ICRM are demonstrated in this section by applying it to a

problem with multiple constraints. The problem consists of a co-operative engage-

ment scenario with multiple vehicles in the terminal guidance phase. It is based on

prior work in Ref. 107, which addresses optimal guidance laws for nonlinear missile

models with impact time and angle constraints for a single vehicle. The same dy-

namic model is used, and the scenario is extended to be a three-dimensional model

that includes multiple vehicles engaging a target simultaneously with impact angle

and time constraints along with a keep-out zone path constraint. The objective is to

minimize total control effort expended by all vehicles.

The dynamic model for each vehicle is defined as follows:

ẋ = V cos ψ cos γ (2.58a)

ẏ = V sin ψ cos γ (2.58b)

ż = −V sin γ (2.58c)

ψ̇ = a/V (2.58d)

where x, y and ψ are the position and heading angle of the missile respectively.

The missile is assumed to be capable of maintaining a constant velocity V , and

commanding any flight-path angle (glide slope) with negligible delay. The missile is

assumed to start at some initial position (X0,Y0,Z0) with the target at the origin.

The initial and/or terminal headings may also be constrained based on the scenario

being examined.

As in Ref. 107, the problem is non-dimensionalized so that it does not depend on

the constant missile velocity or impact time. If tf is the reference impact time and V

is the reference speed, the non-dimensional state and control variables are defined as:

� �� �

�
�

75

x
x̄ = (2.59a)

V tf

y
ȳ = (2.59b)

V tf

z
z̄ = (2.59c)

V tf

t
τ̄ = (2.59d)

tf

Since there are multiple vehicles in the problem, each flying at a constant velocity,

the speed of the first vehicle is chosen as the reference value and those of the remaining

vehicles are added as free states (with constant values) that can optimized. The non-

dimensional optimal control problem for n vehicles is then stated as:

T n
2 + γ2Min J = ū i i (2.60a)

0 i=1

Subject to: (2.60b)

ẋ̄ i = v̄i cos ψi cos γ (2.60c)

ẏ̄i = v̄i sin ψi cos γ (2.60d)

ż̄i = −v̄ i sin γ (2.60e)

v̇̄i = 0 (2.60f)

ψ̇i = ūmaxū i (2.60g)

¯ ¯ ¯ x̄ i(0) = Xi0, ȳ i(0) = Yi0, z̄ i(0) = Zi0 (2.60h)

v̄ 0(0) = 1 (2.60i)

ψi(T) = ψif (2.60j)

|ū i| ≤ 1 (2.60k)

(x̄i − xc1)2 + (ȳi − yc1)2 ≥ rc1 (2.60l)

(x̄i − xc2)2 + (ȳi − yc2)2 ≥ rc2 (2.60m)

�

76

where the control variables are ū i and γi, the turn rate and flight-path angle of the

i-th vehicle, respectively. ū max is a scaling factor representing the magnitude of the

acceleration command. The path constraints in Eqs. (2.60l) and (2.60m) and the

control limits in Eq. (2.60k) are enforced on all vehicles simultaneously. The nominal

scaling values used for non-dimensionalizing the problem are defined in Eq. (2.61).

The regularization parameter, , for all path constraints is set to 10−6 in all the

scenarios in this section.

Vref = 300 m/s (2.61a)

Tref = 50 s (2.61b)

2.9.2 Nominal Solution

The path constraints are initially positioned so that only one of them is active

on the trajectory. The boundary conditions applied to the vehicle states are shown

in Table 2.3. These values are scaled using the scale factors defined from Eq. (2.61)

to get the boundary conditions for the non-dimensional state variables. The nominal

path constraint parameters are shown in Table 2.4, and these values are also scaled

in the same manner.

Table 2.3. Nominal Boundary Conditions

Xi(0) Yi(0) Zi(0) ψi(T)

Vehicle-1 -12 km 0.0 km 1.5 km -15 deg

Vehicle-2 -12 km 1.5 km 1.5 km 15 deg

The trajectory solutions for the nominal problem conditions with and without the

no-fly zones are shown in shown in Figure 2.23. In this 2D plot and other similar

77

Table 2.4. Path Constraint Parameters – One Active Constraint

xc yc rc

Zone-1 -9.0 km 0.0 km 1.5 km

Zone-2 -3.0 km 4.5 km 3.0 km

plots that follow in this section, the trajectories of Vehicles 1 and 2 will be marked

as “V-1” and “V-2”, respectively. Figure 2.23(c) shows a 3D view of the trajectories

showing the significant variation in the first vehicle’s trajectory due to the no-fly zone.

The control histories of the two vehicles are shown in Figure 2.23(b). The control has

corners where the trajectory intersects with the constraint as expected from optimal

control theory (Section 1.2.3). The more advantageous starting position of the second

vehicle makes it so that it barely touches the first constraint while maintaining an

optimal trajectory, leading to a less drastic change in its control.

78

- Vehiclel
- Vehicle2
- - Vehicle 1 - Unconstrained

- - Vehicle 2 - Unconstrained

-- - Zone 1
--- Zone 2

/ \
I I
I I
I I
I I

0.25

0.20

0.15

0.10"" "'
0 .05

0.00

-0.05

-0.10

I ~ Vehiclel
,--t----'7, - Vehicle 2

- - Vehicle 1 - Unconstrained

- - Vehicle 2 - Unconstrained

-12 -10 -8 -6
x(t)[km]

-4 -2 10 20
t{s]

30 40 so

(a) P lanar Trajectory Profile (b) Control History

Vehicle 1
Vehicle 2
Vehicle 1 - Unconstrained

-1.4

-1.2

-1.0 E
.:.:

-0.8 ~
:c

-0.6"

-0.4

0.0

-2
0 -2

(c) 3D Trajectories

Figure 2.23. Two-Vehicle Co-operative Engagement - One Active Constraint

79

2.9.3 No-Fly Zone Position

In this section, the effect of changing the position of the no-fly zones is studied.

The starting condition of the scenario is modified from that in the previous section

to match those given in Table 2.5. In this case, both constraints are active in the

trajectory of at least one of the two vehicles as shown in Fig. 2.24.

Table 2.5. Path Constraint Parameters - Two Active Constraints

Ye

Zone-1 -9.0 km 0.0 km 1.5 km

Zone-2 -3. 75 km 3.325 km 3.0 km

- Vehiclel

6 ~- Vehicle 2
--- Zone 1

--- Zone 2

-12 -10 -8 -6 -4 -2
x(t) [km]

Figure 2.24. Two-Vehicle Co-operative Engagement - Two Active Constraints

In the next step, Zone-2 is moved further South so that it significantly affects the

trajectory of Vehicle-2. The effects of this change in Yc2 is shown in Fig. 2.25. Moving

Zone-2 in this manner does not have any significant effect on the altitude profile of the

trajectory as seen in Fig 2.25(b). However , the presence of the constraint does affect

the constant speed, v2 of Vehicle-2 as shown in Fig. 2.26(a). v2 remains unchanged

with change in Yc2 until the constraint becomes active as part of the continuation

process. As the no-fly zone is moved further South, v2 , though constant for each

80

individual solution, is different for the different solutions in the trade-study as Yc2

changes. This happens in order for Vehicle-2 to match the impact time with Vehicle-

1 which remains unaffected by Zone-2. The control history also drastically changes

as the constraint becomes active. It can be inferred from these plots that the optimal

way to go around these no-fly zones is to touch them at a single point when possible

rather than following the curve. This is also illustrated in the sharp corners that show

up in the control history (Fig. 2.26(b)) as the no-fly zone is moved South.

--- Zone 1 ,,- ------J
--- Zone 2

,
' - - :.>--- , ', ' ' '

I I
I I

~ I

\ :
\ I

V- \ ' , - ,
' '

17'-
' '

V- I \ ---~ t~-
-

~
I

'
'--- ' I

-12 -10 -8 -6 -4 -2
x(t)[km]

I 4.4

4.2

4 .0~

3.8

3 .6

3.4

-1.4

-1.2

- 1.0_
E

-0.8 ~

'° -0.6 tr

-0.4

-0.2

0.0

- 20

-40

-60

-80
-1

-2

- 100

(a) Planar Trajectory (b) 3D Trajectory

Figure 2.25. Two-Vehicle Co-operative Engagement - Zone-2 - Trajectories

2.9.4 Terminal Impact Angle Constraints

The problem defined in Eq. (2.60) is solved for different values of terminal head­

ings for Vehicle-2, and the effects on the trajectory is examined. Starting with the

condition in Figure 2.23(a) , the terminal heading of Vehicle-2 is changed from -15

deg using a continuation process (Section 5.6.3). The resulting change in the vehicle

trajectories are shown in Fig 2.27(c). The problem becomes extremely difficult to

solve once 1/J2 (T) is increased beyond 110 deg. This could be because the solution

is very close to being infeasible. This is also reflected in Vehicle-2's optimal control

profile shown in Fig 2.27(b). The control is saturated at the end of the trajectory and

81

4.4
290 .0

4 .2 289 .5
0.1

o.o+--J.,.:::---+---/,(j ~~::§11~~'1~ 289.0 4 .0 ~
E

;;: ,,3 - 0.1
288 .5

3.8
- 0.2

288 .0

-0 .3 3.6

287 .5

3.4

\
\
'
\

\
I\.

"+--'1"
,,, It-

3.0 3.2 3 .4 3.6 3.8 4 .0 4.2 4 .4 10 20 30 40
Yc2 (km] t[s]

(a) V2 vs. Yc2 (b) Control History

Figure 2.26. Two-Vehicle Co-operative Engagement - Moving Zone-2
- Velocity and Control History

the vehicle is unable to turn any sharper to arrive at the destination from further to

the right without violating other constraints such as impact-time and the keep-out

zone path constraints. The steeper the arrival heading, the closer this control gets

to a bang-bang style control. The Zone-2 constraint is also seen to be active for a

significant amount of time as the terminal heading is increased. This is reflected in

the sudden switch in u2 at the 30 second mark.

A 3D view of the evolution of Vehicle-2's trajectory is shown in Fig 2.28. The

steeper arrival heading constraint causes Vehicle-2 to stay higher in the atmosphere

and then suddenly dive down at the end as opposed to flying in a straight line. This is

for increasing the distance flown, and thereby allowing flexibility in the time of flight

to match impact time with Vehicle-1. The altitude profile forms an extra degree of

freedom that is leveraged for avoiding the no-fly zones while obeying other geometry

and timing constraints.

The velocity of Vehicle-2, while constant for each individual trajectory, is a free

parameter that can be optimized. The initial heading of both vehicles are also free

parameters. Fig. 2.29 shows the variation in the free initial heading of Vehicle-1 and

the speed of Vehicle-2 as the constrained arrival heading of Vehicle-2 is changed. v2

82

0.2
-20

-

-20

0.0

-40

-0.2

- 40

-60~ -0.4

-60

-0.6
- 80

-80

-0 .8

-100 - 100
-1.0

10 20 30 IO 20 30
t[s] t [s]

(a) Vehicle-2 - Heading (b) Control History

~
-

40 40

8 .L .L

Zone 1

2 V-

' \
I

I
I

I

-2

✓

-40

-20
Zone 2

6 \
I \
I I

I

I
4

II 'c,II
I\E

I\ -60 ~ "' ~ I
✓.:; i:-' ' '~ ~

-80

-100

-12 -10 -8 -6 -4 0
x(t) [km]

(c) Planar Trajectory Profiles

Figure 2.27. Two-Vehicle Co-operative Engagement - Evolution of
Trajectories w.r.t 1fJ2 (T)

83

-1.4

-1.2

-1.0~
E

-0.8 :!':.
.:;-

-0.6"'

-0.4

-0.2

0.0

-12_10 6

-8 -6

~(tJ lkrr,J -4 -2 o 0

-20

-40

0)
QJ

-60 ~
i:::-
g

-80

-100

Figure 2.28. Two-Vehicle Co-operative Engagement - Evolution of
3D Trajectory of Vehicle-2 with Change in 'I/J2 (T)

is initially 287 m/s when 'ljJ2 (T) = 15 deg. As this terminal boundary condition

changes, the speed increases given that Vehicle-2 now has to travel a longer distance

in the same amount of time. This is because the impact time of both vehicles is

constrained to be the same. However, close to the maximum value of 'I/J 2 (T) , there

is sudden reversal and a decrease in v2 . The reason for this can be seen in the

corresponding profile of the free initial heading of Vehicle-1. While it initially stays

close to constant, as 'ljJ2 (T) crosses -100 deg, it is seen to rapidly decrease. This

corresponds to the non-intuitive side-effect that can be seen in this scenario where

Vehicle-1 actually starts flying further south and away from Zone-1 as 'I/J2 (t) is made

steeper. With these combination of constraints, it is more optimal for Vehicle-1

to stay further away from Zone-1 so that Vehicle-2 has more time to perform its

maneuvers. This is one example of non-intuitive cross-coupling effects that appear

when optimizing trajectories of multiple vehicles simultaneously.

84

-34.0

310

-34.5

-35.0 ci.,~
E. 300 -·t---+---,.+----+----+----+----1 0,: ""

~
-35.5

-36.0

-100 -80 -60 -40 -20
'112<n [deg]

Figure 2.29. Two-Vehicle Co-operative Engagement - Cross-coupling
of 1µ 1 (0), V2 and ?j!2 (T)

Another notable effect seen in the optimal path for Vehicle-2 is that the Zone-

1 constraint, while initially active, becomes inactive as the arrival heading, ?j!2 (T) ,

turns further North. However, further changes in ?j!2 (T) reverses this trend, and the

constraint becomes active again in order reduce the distance to target.

This scenario is one example whereby using ICRM, a smooth transition from

unconstrained arcs to constrained arcs and vice versa can be achieved, facilitating

the study of non-intuitive cross-coupling effects such as the ones described in this

section. Performing this same trade study would be a non-trivial task if the trajectory

was split into multiple arcs for handling path constraints as is the norm when using

indirect methods.

2.10 Summary

The Integrated Control Regularization Method (ICRM) has been shown to be a

viable process for incorporating path constraints into optimal control problems when

using indirect methods. ICRM converts constrained optimal control problems into

two-point boundary value problems with a few extra states for each constraint effec-

85

tively making the BVP bigger. However, this is a reasonable trade-off considering

that the alternative is a huge multi-point boundary problem that grows in size with

the number of times each constraint is active and quickly becomes highly impractical

at scale. ICRM helps avoid the challenges conventionally associated with path con-

straints in indirect methods, such as finding the right sequence of constrained and

unconstrained arcs and providing initial guesses for interior boundary conditions. As

shown in one of the scenarios in Section 2.9, keeping the solution as a single arc allows

trades to be performed where path constraints smoothly change from being active to

inactive and vice-versa. This is something that cannot be done with the MPBVP

formulation of constrained optimal control problems.

Another possible application for ICRM is for incorporating high-fidelity models

when using indirect methods. These models may be expressed as black-box functions

for which analytic derivatives may not be available. This makes it very difficult to

obtain a control law when using conventional optimal control theory. For example,

Ref. 15 used high-fidelity atmosphere and aerodynamic models while numerically

solving the optimal control law every time the system dynamics was evaluated. This

resulted in very long computation times while solving the BVP. ICRM avoids this

problem by folding in the control law computation into the overall root-solving process

of solving the BVP. While this may lead to some numerical stability issues in some

cases, it is still better than embedding a numerical root-solving process inside of the

numerical integration process.

Regularizing path constraints using ICRM represents a first step towards obtain-

ing high quality solutions for highly constrained trajectory optimization problems

which would generally be considered practically impossible to solve using indirect or

direct methods. It forms a key component of the general indirect trajectory opti-

mization framework detailed in Chapter 5. However, ICRM also adds extra states

for every constraint that is added, resulting in larger BVPs that are to be numeri-

cally solved. As the number of vehicles and the number of constraints increase, the

computation time can get prohibitively large when using existing numerical methods

86

such as multiple shooting. In order to address this, a new numerical method is devel-

oped specifically to exploit parallel computing architectures, as detailed in the next

chapter.

87

3. QUASILINEAR CHEBYSHEV-PICARD ITERATION

(QCPI)

3.1 Background

3.1.1 Prior Work

The use of emerging parallel computational architectures is one way to acceler-

ate numerical solution of large boundary value problems. There have been different

approaches for parallelizing the numerical methods underlying indirect [30], [32] as

well as direct methods [128], with varying degrees of success. Past work [79] showed

that while it is indeed possible to accelerate the numerical methods used for solving

BVPs associated with indirect methods, there are challenges once the problems get

larger. This points to a need to develop a BVP solver that is inherently parallel and

can efficiently exploit parallel computational resources for solving large-dimensional

problems.

Graphics processing units (GPUs) were originally designed to be used as dedicated

processors for rendering three-dimensional graphics on computers. Therefore GPUs

are specialized in efficiently running compute-intensive, highly parallel operations

especially matrix operations that are required for rendering 3D graphics. CPUs were

designed with more transistors dedicated to data caching and flow control, leading to

very small latencies as opposed to high throughput. GPUs, in contrast have slower

memory access and allows parallel execution of thousands of threads of execution,

with some limitations. Hence, a GPU is especially suited to problems which can

be expressed as large numbers of data-parallel computations [129], with a high ratio

of arithmetic operations to memory operations. These operations should ideally be

independent of each other and require very little cross-communication.

88

In a prior work, a highly parallel indirect optimization strategy for the rapid de-

sign of optimal trajectories was developed [79]. The multiple shooting method was

used to develop this custom algorithm, bvpgpu, that ran very efficiently on a GPU.

It was demonstrated that indirect optimization methods can be used to rapidly solve

complex optimization problems by utilizing this GPU-accelerated multiple shooting

method as shown by the benchmarks in Fig. 3.1. The benchmarks involved solving

maximum terminal energy trajectories for a hypersonic vehicle with varying combi-

nations of initial and terminal point constraints as well as path constraints. The

test problem in this case was relatively small in terms of number of dimensions (6-24

states). These benchmarks showed a speedup of 2x-4x by using a GPU-based shooting

method instead of bvp4c.

The multiple shooting algorithm, while not very parallel in its original formulation,

has several elements in it that could be modified to make it run fast on a GPU.

The computation of the State Transition Matrix (STM) is the most computationally

intensive part of the multiple shooting method. At the most basic level, computing

the STM involves propagating N2 extra differential equations for a dynamic system

of N equations. On a CPU, algorithms can be parallelized by delegating independent

parts of the code to separate threads of execution. GPU computation also involves

threads that are conceptually similar, but drastically different in implementation. The

naive way of porting the multiple shooting algorithm over to a GPU would involve

assigning each equation (from both the original system of equations as well as the

STM) to a separate thread on the GPU. While this is very simple to implement, it is

also very inefficient. In fact, benchmarking showed that this made the process twice

as slow as performing the same operation on a CPU. In order to optimize the code for

maximum performance on the GPU, it is necessary to understand how the threads are

scheduled and executed by CUDA (NVIDIA’s GPU computing library). The various

algorithmic optimizations that help maximize GPU performance by accounting for

GPU processor occupancy, memory access coalescing, and parallel matrix operations

were examined and implemented in our prior work [30], as well as the manner in which

89

the problem is structured is crucial to obtaining optimum performance on a GPU.

The methodology was shown to provide significant speedups over using a CPU-based

solution method such as MATLAB’s bvp4c to solve trajectory optimization problems.

However, the multiple shooting method is still not “parallel enough” to scale well

as the BVPs become large as in the case of multi-vehicle problems. This is partly

because the method was not originally formulated with the express purpose of utiliz-

ing parallel computational architectures. In order to obtain the 2x-4x speed-up seen

in the benchmarks, the multiple shooting method had to be reformulated to make it

more parallel in nature. This motivates the need for developing a numerical method

that is inherently parallel and is designed specifically to exploit parallel computing

architectures. This chapter will describe the design of a new, scalable, highly paral-

lel numerical method which advances the state-of-the-art for solving large nonlinear

boundary value problems.

= c:::::J

--

90

Im
p
ac
t
G
eo
m
et
ry

P
os
t-
b
o
os
t
G
eo
m
-

S
ta
gn
at
io
n

 H
ea
t

C
ou
n
tr
y

 O
ve
rfl
ig
h
t

S
im
u
lt
an
eo
u
s

02040608010
0

12
0

14
0

16
0

18
0

20
0

10
0

60

11
0

13
5

17
5

24

50

51

85

75

Runtime (seconds)

b
v
p
4c

b
v
p
gp
u

C
on
st
ra
in
ts

et
ry

 C
on
st
ra
in
ts

R
at
e
C
on
st
ra
in
t

C
on
st
ra
in
t

C
on
st
ra
in
ts

F
ig
u
re

 3
.1
.
B
en
ch
m
ar
k
s
–
bv
p4

c
v
s.

 b
vp
gp
u

 [
79
]

�

�

�

�

�
�
�

91

3.1.2 Picard Iteration

The starting point for the numerical method developed in this dissertation is the

Picard iteration, also known as the Picard–Lindelöf theorem [93]. It is a method that

was originally used to prove the existence and uniqueness of solutions to first-order

differential equations with a given set of initial conditions.

y = f(t, y(t)), y(t0) = y0

φ0 = y0
(3.1)

t

φk+1 = y0 + f(s, φk(s))ds, for iteration k

t0

The Picard-Lindelöf Theorem shows that this series summation (φn) in Eq. (3.1)

converges to y(t) at the limit [93]. An example of the application of this theorem is

shown in Eq. (3.2) for a simple first-order initial value problem (IVP), y = f(t, y(t)) =

−y; y(t0) = 1.0.

y = f(t, y(t)) = −y (3.2a)

φ0 = y0 = 1.0 (3.2b)
t

φ1 = y0 + −1 ds = 1 − t (3.2c)

t0

t
t2

φ2 = y0 + (−1 + s) ds = 1 − t + (3.2d)
2

t0

t
t2 3t3

φ3 = y0 + (−1 + s) ds = 1 − t + − (3.2e)
2 6

t0

It can be seen that this series converges to the analytical solution of the system

− 3t
3

at the limit as: y(t) = 1 − t + t
2

2

6 + ... = exp (−y). This iteration forms the core

of the Modified Chebyshev Picard Iteration algorithm.

92

3.1.3 Chebyshev Polynomials

Chebyshev polynomials [130] are a complete set of orthogonal polynomials that

are commonly used for function approximation. There are two kinds of Chebyshev

polynomials. For convenience, Chebyshev polynomials of the first kind are referred

to as simply Chebyshev polynomials in this work. These polynomials are defined

through a recurrence relation:

To(x) = 1 (3.3)

T1 (x) = x (3.4)

Tk+1(x) = 2TTk(x) - Tk-1(x) (3.5)

where Tk represents the k-th order Chebyshev polynomial. They may also be com­

puted using a trigonometric relation, Tk (x) = cos (k arccos x) where x E [-1, 1].

Chebyshev polynomials Tk(x) up to k = 5 are shown in Figure 3.2.

1.00 +---11- ...---,------------c-1
0.75

0.50

0 .25 ,------J - T_l(x) 1-

- T2(x)
0. 00 +-+-1-1--1----\~ --+-+--- ----"e--- ---+-< _ T=3(x) i-

-0 .25 - T_4(x) -

-0.50 -l-l,l-1-\----E----l-f- \---1_

-0 . 7 5 -t-lf- -\-7"'-- J'-t--\-~ - J----t-- c-/-~ r-/1t-J--l-i- l

-1.00 ~- -+-I ----+------+----+I___-+--'

-1.0 -0.5 0.0 0.5 1.0
X

Figure 3.2. Chebyshev Polynomials up to k = 5

The zeros of these polynomials are called Chebyshev-Gauss-Lobatto (CGL) nodes.

The N+l CGL nodes for an Nth order Chebyshev Polynomial can be calculated as:

� �

���

���

� � �

93

kπ
xk = cos , k = 0, 1, 2, ..., N + 1 (3.6)

n

When these nodes are used for polynomial interpolation, Runge’s phenomenon

is minimized, and the best function approximation under the minimax norm can be

obtained [131, 132]. Ref. 131 shows that if a smooth function f(τ) is approximated
N

by an N-th order Chebyshev polynomials as f(τ) ≈ kTk(τ), the coefficients
k=0

 k can be computed as:

N
2

 k =
N

f(τj)Tk(τj), k = 0, 1, ..., N (3.7)
j=0

The ” in the summation denotes that the first and the last terms in the summation

are to be halved. The integral of Chebyshev polynomials is defined by:

1 Tk+1 Tk−1
Tk(x) = − (3.8)

2 k + 1 k − 1

The relation in Eq. (3.8) forms the basis for numerical methods that use Chebyshev

polynomials to solve differential equations. There are many past works describing

such methods that solve initial value problems and boundary value problems [133–

139]. There are also some direct methods for solving optimal control problems using

Chebyshev polynomials [43,140,141]. In the next section, some of these methods that

combine the Picard Iteration with Chebyshev polynomials to solve IVPs and BVPs

are examined.

3.1.4 Chebyshev-Picard Methods

Clenshaw’s work in Ref. 134 is one of the first works where the Picard iteration

was combined with Chebyshev polynomials to create a practical numerical method

for solving IVPs and BVPs. This method was later applied to several astrodynamics

problems involving interplanetary trajectories by Feagin [142]. The suitability of

this Chebyshev-Picard method for efficient implementation on parallel processors was

examined by Shaver [143] by using it to create a parallel orbit propagation algorithm

94

and a parallel orbit estimation algorithm. A vector-matrix formulation of the same

algorithm was designed by Feagin in Ref. 144 but no experimental results were shown.

This was the precursor to the method used in MCPI which forms part of the numerical

method developed in this dissertation. Ref. 145 shows an implementation of the

Chebyshev-Picard method on a vector computer. However, this implementation was

in some cases slower than the scalar version of the code owing to some overheads and

inefficiencies. The Modified Chebyshev Picard Iteration algorithm [31] built on these

existing works and created a unified matrix-vector method for solving both IVPs and

certain classes of BVPs. MCPI was shown to be capable of solving several important

celestial mechanics problems. The original work also showed techniques for improving

the convergence domain of Chebyshev-Picard methods.

Modified Chebyshev-Picard Iteration Method

The Modified Chebyshev Picard Iteration (MCPI) method is a numerical method

for solving Initial Value Problems (IVPs) and certain classes of Boundary Value Prob-

lems (BVPs) without directly propagating the equations of motion or evaluating gra-

dients [31]. MCPI is based on the Picard iteration method described in Section 3.1.2.

The algorithm represents the integrand in Eq. (3.1) as a weighted sum of Chebyshev

polynomials of sufficiently high order. The integration step of Picard iteration is

performed using the quadrature rule in Eq. (3.8). The coefficients of the Chebyshev

polynomials representing the solution is solved for based on the boundary conditions

of the problem.

While this iteration can also be implemented using other orthogonal polynomial

sets such as Legendre polynomials, this particular formulation of Chebyshev polyno-

mials was chosen because it is possible to fit a function to these polynomials without

solving a linear algebra problem [131]. As shown before in Eq. (3.7), the calcula-

tion of polynomial coefficients on a Chebyshev mesh for a given function is a long

�

95

summation operation which can be reformulated into a simple matrix multiplication

operation [31].

The MCPI algorithms for initial value problems (MCPI-IVP) and boundary value

problems (MCPI-BVP) are very similar in their implementation. The simpler of the

two, MCPI-IVP, using Chebyshev polynomial series of order N , is summarized below.

For a given dynamic system,

ẏ = Φ(y, t) y(0) = y0 (3.9)

a scaled version, φ, is formulated which can be evaluated between -1 and 1.

T T T
φ(y, t) = Φ(y, τ +) (3.10)

2 2 2

The solution is evaluated over Chebyshev-Gauss-Lobatto (CGL) mesh points of a

given order, N , that are defined by:

τj = cos (jπ/N), j = 0, 1, ..., N (3.11)

The main steps in the algorithm are as follows. First, the dynamic equations are

evaluated over the CGL mesh, and the coefficients for the Chebyshev polynomials,

Fk, corresponding to these equations are calculated.

N
2

Fk = φ(t, yk) Tk(τj) (3.12)
N

j=0

Each coefficient Fk is obtained through the summation of N + 1 terms, each in-

volving the product of the scaled dynamic equations φ and the Chebyshev polynomial

Tk evaluated at node τj . By applying the Picard iteration and the integration rule

from Eq. (3.8) to Eq. (3.12), the dynamic equations are integrated to obtain the

coefficients, βk (k = 0, 1, 2..., N), corresponding to the solution.

�
�

�

�

96

1
βr = (Fr−1 − Fr+1) , r = 1, 2, ..., N − 1 (3.13)

2r
FN−1

βN = (3.14)
N

N

β0 = 2y0 + (−1)j+1βj (3.15)
j=1

N

yk+1(τ) = βj Tj (τ) (3.16)
j=0

The algorithm starts with an initial guess for the entire solution expressed on

a Chebyshev-Gauss-Lobatto grid and continues until the change in yk is less than

a desired tolerance. The original author showed that the operations involved in

calculating βk, as well as computing the solution from βk in each iteration can be

expressed as a series of matrix-vector operations [31]. The steps in Eqs. (3.12)-(3.16)

then condense to the following form:

β = Cαφ(yk, τ) + y0 (3.17)

yk+1 = Cxβ (3.18)

Cx and Cα are constant matrices for a given order of Chebyshev polynomials. The

overall structure of these matrices are given in Appendix A. These matrices can be

computed and cached before the iteration process begins, and hence the “integration”

consists entirely of matrix-vector multiplication operations. Such operations are ideal

for parallel implementation such as on a GPU or multi-core CPUs for accelerated

processing. A GPU implementation of MCPI-IVP is shown in Ref. 146, where it was

used for high-precision parallel orbit propagation.

The BVP version of the algorithm specifies a different update equation for each

state depending on whether it is constrained at the initial point, terminal point, or

https://3.12)-(3.16

97

both [91]. If both the initial and terminal values are given for a state, the update

equations for β are changed as shown below:

1
βr = (Fr−1 − Fr+1) , r = 2, 3, ..., N − 1 (3.19a)

2r
FN−1

βN = (3.19b)
N

β0 = y0 + yf − 2 (β2 + β4 + β6 + ...) (3.19c)
yf − y0

β1 = − (β3 + β5 + β7 + ...) (3.19d)
2

An astrodynamics trajectory problem was solved in the original work using this

method, and its performance and solution quality were compared to a direct pseu-

dospectral method. Significant speedups were obtained over direct methods, and it

was also shown that the method can derive huge benefits from implementation on

GPU computing architectures.

However, there is a significant drawback when it comes to using this algorithm for

solving BVPs arising in trajectory optimization problems. The MCPI-BVP formu-

lation assumes that every state in the problem has at least one boundary condition

defined for it. If the BVP does not define a boundary condition for a particular

state, a boundary condition has to be derived for it from other domain-specific in-

formation available in the problem, if any. This is only possible for a limited class

of problems such as the astrodynamics problems demonstrated in the original imple-

mentation [31]. The algorithm also assumes that the boundary conditions are simple

equality constraints at the initial and terminal points. This was the motivation for the

development of a more generalized MCPI-BVP algorithm that is capable of handling

general nonlinear boundary conditions such as those encountered in optimal control

problems.

3.1.5 A Generalized MCPI-BVP Algorithm

A more generalized formulation of the MCPI-BVP method will enable the fast

computation of optimal trajectories for large dimensional problems. Initially, a version

� � �

� �

�

� � � � � �

� �

�
�

98

of MCPI was created which linearized the boundary conditions and tried to solve the

polynomial coefficients by solving a linear system [147]. The original MCPI algorithm

was formulated by assuming a set of fixed boundary conditions of the form shown in

Eq. (3.20) and solving a linear system analytically to obtain the expressions for the

Chebyshev coefficients βk.

y(t0) = y0,� y(tf) = yf (3.20)

In order to formulate a more generalized version of this method, it is necessary to

start with a more generic boundary condition function such as the one described by

Eq. (3.21) for a two-point boundary value problem.

b (y(t0), �y(tf)) = 0
(3.21)d�y

Subject to: = f(t, y(t))
dt

The boundary conditions are linearized in Eq. (3.22) and combined with the ex-

pressions for initial and terminal states, Eq. (3.23), in order to obtain the Chebyshev

coefficients (βk) of the solution as shown in Eq. (3.24).

b ≈ M× (y(t0) − y0) + N × (y(tf) − yf) + b(y0, �yf)
(3.22)∂b ∂b

where M = , N =
∂�y0 ∂�yf

β0
x(t0) = − β1 +

2

N
k+1(−1) βk

k=2
(3.23)

N
β0

x(tf) = + β1 + βk
2

k=2

�
�

� � �
�

�

�
�

� �

�

99

N −
x(τ) ≈ β kTk(τ), where

k=0

1
βr = (Fr−1 + Fr+1), r = 1, 2, ..., N − 1

2r
FN−1

βN =
2N (3.24)⎛ ⎞ − NM+ N β0 k+1 ⎝, N −M ⎠ = M× (y0 − (−1) βk)− 2 β1 k=2

N

+ N × (yf − βk) − b(y0, �yf)
k=2

Eq. (3.24) outlines one way to incorporate non-linear boundary conditions into the

MCPI algorithm. In Ref. 147, this algorithm was demonstrated using the Brachis-

tochrone problem. However, it was found that it was not capable of solving problems

with more numerical sensitivity such as hypersonic optimal control problems. This

prompted the search for a different approach to solving boundary value problems

that complements the drawbacks of MCPI-BVP and can be combined with MCPI to

create a more general numerical method.

Modified Quasi-Linearization Algorithm

The method of particular solutions for solving linear two-point boundary value

problems is described by Miele in Ref. 148. The boundary-value problem is solved

by linearly combining several particular solutions of the original differential system.

This method was further expanded to include some classes of nonlinear problems in

Ref. 149 with nonlinear dynamic equations. The modified quasi-linearization algo-

rithm (MQA) [108, 150] is a further refinement of the method of particular solutions

that allows nonlinear boundary conditions at the terminal point. Ref. 151 explores the

use of MQA for solving optimal control problems. In the modified quasi-linearization

algorithm, the known initial conditions and guesses for the unknown initial states

are used to generate a reference solution using numerical integration. Then, small,

�

� �

100

linearly independent perturbations of the unknown states are also propagated using

a numerical integrator. The resulting perturbations at the terminal point are used

to compute corrections for the for the entire state history until all the boundary

conditions are satisfied.

Consider a nonlinear dynamic system with n states as follows:

ẏ = φ(y, t), 0 ≤ t ≤ tf (3.25)

with the initial conditions,

b0j(y(t0)) = 0 j = 1, 2, ..., p (3.26)

and terminal conditions,

bfj(y(tf)) = 0 j = 1, 2, ..., q (3.27)

Taking a first order approximation of bf ,

∂bf (y(tf))
Δy(tf) + bf (y(tf)) = 0 (3.28)

∂y

Let Aj(t) denote the perturbations from the reference solution for a small pertur-

bation in a free initial state. Aj(tf) is computed for q + 1 perturbed initial conditions

to form the linear combination:

q+1

A(t) = kjAj(t) (3.29)

j=1

Ref. 149 shows that this linear combination satisfies the system in Eq. (3.28).

Therefore the coefficients kj can be computed by solving the following linear system:

q+1 q+1

kj = 1 ψy(y(tf)) kjAj(t) + ψ(y(tf)) = 0 (3.30)
j=1j=1

The correction for the solution is computed as shown in Eq. (3.31). This correction

is applied not just to the initial state, but to the entire state history. This feature

�

�

101

makes it apt for inclusion into a method like MCPI where unlike a shooting method,

the entire trajectory is approximated at all times.

q+1

Δy(t) = kj Aj (t) where 0 ≤ ≤ 1 (3.31)
j=1

The step-size, can be determined by a one-dimensional line-search of the per-

formance index, P, defined in Eq. (3.32), the cumulative error in the differential

equations and the boundary conditions. Ref. 149 proves the use of this performance

index gives the algorithm its descent property : If the step-size, , is sufficiently small,

the reduction in P is guaranteed. The search is started with = 1.0 and continues

until P () < P (0).

T

P () = (ẏ − φ)T (ẏ − φ) dt + bTf bf + bT
0 b0 (3.32)

0

A recent work [92] examined the use of the method of particular solutions (MPS)

[149] along with MCPI for computing perturbed orbits of orbital debris by solving

Lambert’s problem. The current work is focused on expanding this to include the

ability to solve optimal control problems using a hybrid method that uses both MCPI

and MQA, called the Quasi-Linear Chebyshev-Picard Iteration (QCPI) algorithm.

3.2 QCPI Algorithm Implementation

The Quasi-Linear Chebyshev-Picard Iteration (QCPI) method leverages MCPI

and the modified quasi-linearization algorithm to solve nonlinear two-point bound-

ary value problems such as those arising in trajectory optimization. It incorporates

MCPI as the IVP integrator and uses MQA to perform solution updates for the free

parameters in the problem.

The algorithm is designed to solve a general nonlinear two-point boundary value

problem of the following form:

�

� �

102

ẋ = φ(t, x) (3.33a)

b0(x(0), 0) = 0 (3.33b)

bf (x(T), T) = 0 (3.33c)

The solution is approximated using a Chebyshev Polynomial series of order N ,

with separate coefficients for each state. The algorithm consists of the following steps.

1. Define the matrices Ca and Cx as well as the independent variable mesh τ ∈

[−1, 1] for the given value of N . The structure of Ca and Cx are detailed in

Appendix A.

2. For the initial state, x0 , The perturbed initial states, xp are initialized as:

Aj = δij Δxi, for i, j = 1, 2..., n (3.34)

0 0 0 xp(0) = [x + A0, x + A1, ..., x + An] (3.35)

where δij is the Kronecker delta function, and n is the number of ODEs in the

BVP. xp, is a row vector of size n2 .

3. The initial guess matrix, xguess, is initialized. This is either using the value from

a previous iteration or by calling a separate MCPI-IVP integrator to propagate

the equations of motion with the actual initial state, x0 , along with the per-

turbed states, xp(0), to generate xguess for the given value of N . This combined

state vector will now be denoted as X and contains the original state vector

followed by state vectors with each state perturbed one at a time.

X(0) = x(0) x(0) + A0 x(0) + A1 ... x(0) + An (3.36)

�

�

�

�

�

103

4. Evaluate the dynamic equations of the BVP at every point of the CGL mesh,

for both the original and the perturbed initial conditions. The results are stored

in the matrix Φ which has the same dimension as xguess.

⎤⎡

Φ = w1

 ⎣

φ(τ0,x(τ0))

φ(τ1,x(τ1))
. . .

φ(τN ,x(τN))

⎥⎥⎥⎥⎥⎥⎦

where w1 = T/2 (3.37)

n2×(N+1)

The above computation assumes that the function φ(τ, x) returns a row vector

of length n.

5. The derivative information in Φ is fit to a Chebyshev polynomial series of order

N . By using the Matrix-Vector form described by Feagin [31,144] and Bai [31],

the computation of the polynomial coefficients representing the solution, β, is

done with a simple matrix multiplication operation:

⎤⎡

β = 2χ0 + Ca × Φi where χ0 =

 ⎣

X(0)

0

0
. . .

0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.38)

(N+1)×1

6. The solution and the guess for the next iteration, xnew, is obtained as:

xnew = Cx × β (3.39)

7. The change in x is calculated as e = xnew − xguess. If the L2-norm of e is greater

that the required tolerance, skip to step 13.

https://xguess.If

�
�

� �� �

104

8. Once e is under the required tolerance, the integration is complete, and xnew

contains dynamically feasible unperturbed and perturbed trajectories. The per-

turbations due to the change in each state is used to update the solution to sat-

isfy the nonlinear boundary conditions. The Jacobian matrices for the initial

and terminal boundary conditions are calculated using finite-difference meth-

ods. The residual error in the boundary conditions are also evaluated.

r0 = b0(0, x(0)) (3.40)

rf = bf (T, x(T)) (3.41)

∂b0
b0x = |x=x(0) (3.42)

∂x
∂bf

bfx = |x=x(T) (3.43)
∂x

9. If the L2-norms of residual errors rg and rf are below the desired tolerance, the

solution for the BVP has converged and the iteration process can be stopped.

10. The required correction for the solution to reduce the residual errors to zero is

assumed to be a linear combination of all the initial perturbations in state, or
n+1Δx = j=0 Kj Aj (T), where Aj (t) is the perturbation at t when starting with a

perturbation in the j-th state. It is to be noted that A0 is a zero-vector which is

used to add an additional constraint on the coefficients Kj that
n+1 Kj = 1. j=0

The coefficients of this linear combination, K, are calculated by solving the

following linear system.

⎤⎡ ⎤⎡ K1
⎤⎡

1 1 ⎣

⎥⎥⎥⎥⎥⎥⎦

=

1 ⎣

⎥⎥⎥⎦

K2

. . .

 ⎣

⎥⎥⎥⎦
(3.44)b0x × Aj (0) −r0

bfx × Aj (T) −rf
Kn+1

K

�

Initialize

Start C.. , Cx and Xgucs,

Evaluate ro , r1, box, br

Converged! Stop

Evaluate 4>

Compute K and 6.

~ = 2i + ¼ X ¢>,

X.Cw = Cx X ~

Perform line search
to find step-size a

105

n+111. The direction of the state-correction vector is given by Δx(t) = j=0 Kj Aj (t).

Ref. 148 shows that a sufficiently small step-size applied to this direction vec-

tor will reduce the residual error, leading to convergence. is found by perform-

ing a line-search on the performance index, P () = ||bf (x(T) + Δx(T))||2 +

||b0(x(0) + Δx(0))||2, to find a value of such that P () < P (0). This value

is then selected as the step-size for the iteration.

12. The solution is updated using the correction vector as x(t) = Δx(t).

13. xguess is replaced with xnew. Repeat from Step 4 until convergence criteria is

satisfied or maximum number of iterations exceeded.

The algorithm is summarized in the flowchart in Figure 3.3.

Figure 3.3. QCPI Algorithm Implementation – Flowchart

106

3.3 Acceleration using Numba Just-In-Time (JIT) Compiler

Parallelization of computational methods is generally a very time-consuming task

that requires careful organization of data-parallel operations and creation of special

data-structures required for exploiting parallel computation architecture. Prior work

[30] explored in detail an efficient GPU implementation of the multiple shooting

method in MATLAB. In contrast, QCPI is parallelized in a more automated manner

using the JIT compiler Numba [106]. Numba helps speed up computation-heavy code

written in Python by compiling it to high-performance native machine code with

speeds comparable to C/FORTRAN without having to switch languages or Python

interpreters. Numba is based on the LLVM (Low-Level Virtual Machine) compiler

which can inspect and analyze code on-the-fly and generate optimized native machine

code. It is designed to work with multi-core CPUs or GPUs and can integrate directly

with the Python scientific software stack such as NumPy and SciPy.

Numba supports three different compiler modes:

• Python JIT mode which allows the use of Python data structures such as dic-

tionaries and objects and is the slowest of all three. This option includes a

compilation overhead the first time the code is executed.

• nopython JIT mode – this restricts the types of variables that can be included

in a function. This mode can achieve performance close to C or FORTRAN

native code. Since it is “just-in-time” compiled, there is an added overhead the

first time the code is executed.

• Ahead-Of-Time mode – This compiles code into machine-specific binary ahead

of time and can be used later without Numba.

For QCPI, the nopython JIT mode was used. Both of the JIT compilation modes

also support automatic parallelization of certain types of loops, as long as the loop

does not have cross-iteration dependencies (with some exceptions). This is an ex-

tremely useful feature when calculating Jacobian matrices and when evaluating equa-

107

tions with multiple sets of perturbed states. Each individual iteration is run on

separate CPUs in parallel at close to C/FORTRAN speeds by just adding some an-

notations to the Python code. In one case, the use of nopython JIT mode gave a

speed up of nearly 60x over pure Python code.

3.4 Validation

The QCPI solver is validated by testing it on some representative optimal control

problems with known solutions. The results are compared to those obtained using a

multiple shooting algorithm.

3.4.1 Classical Brachistochrone Problem

The classical Brachistochrone problem is the minimum-time problem described in

Section 2.8.1 but without the path constraint. It is used for validation as it is one of

the simplest nonlinear optimal control problems with a known solution.

Min T (3.45a)

Subject to :

ẋ = v cos θ (3.45b)

ẏ = v sin θ (3.45c)

v̇ = g sin θ (3.45d)

x(0) = y(0) = 0, x(T) = −y(T) = 1 (3.45e)

g = −9.81 (3.45f)

where θ is the control.

The initial guess was created by propagating the equations of motion form the

initial conditions with a fixed initial values (=-0.1) for the costates for 0.1 seconds.

108

I - -' '
.l

• QCPI

\ - Multiple Shooting

~
~
~~

~ .____
0 2 4 6 8 10

x(t) [m]

(a) Trajectory

f- -200

-30
-2

-40

-4E fil'-50
~z

:;::, <t> -60

-70
-8

-80

-10

-6

--,----l .L

• QCPI

~ - Multiple Shooting /
/

V
V

J
V

~/
,/

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
t [s]

(b) Control History

Figure 3.4. QCPI Validation - Classical Brachistochrone Problem

- v -
//

/
/

V

/ - Ax(t)

~
- --, _ Ay(t) r

- Av(t) --,-

le-6
0.02

3.70
0.00

3.65
-0.02

vi'
;: 3.60

:i:
-0.06

~-0.04

3.55

-0.08
3.50

-0.10

0.00 0.25 0.50 0 .75 1.00 1.25 1.50 1.75
t [s]

(b) Hamiltonian

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
t [s]

(a) Costates

I I -L
I ' "' \

\

\
\
\

Figure 3.5. QCPI Validation - Classical Brachistochrone - Optimality Conditions

109

-10

The terminal conditions were updated to the design value of (x, y) = (10, -10) over

11 continuation steps. The converged trajectory and control history are shown in

Fig 3.4. The optimality of the solution is verified in Fig 3.5. The costate profiles

in Figure 3.5(a) match the necessary conditions of optimality with Ax and Ay being

constant, and Av(T) being equal to zero as v(T) is unconstrained. Fig 3.5(b) shows

that the Hamiltonian remains very close to zero as it should for the optimal solution.

3.4.2 Constrained Brachistochrone Problem

The same problem described in Section 2.8.1 is solved using QCPI after regular­

izing the constraint using ICRM. The initial guess was generated in a similar manner

to how it was done in Section 2.8.1. However, a key difference in this case was that

QCPI is able to solve the constrained problem starting with a low value of E = 10-4

for the regularization parameter. The shooting method required that E be defined as

one in the beginning and then reduced later using a continuation strategy. This factor

also contributed to the fast convergence time for QCPI. The result is compared to

that obtained using ICRM and the shooting method in Figure 3.6 in order to validate

it.

0

-2

-4
E
~

,;; -6

-8

r '
• QCPI

- ICRM + Shooting
<--+-..,i=--+----+---< - - - X + y = 1

-30

-40

-50
Cl
Q)

~-60
CI)

-70

-80

,' ' ' • QCPI Solution / '- ICRM + Shooting

~

r
Ii'

j

I

-I -

0 2 4 6 8 10 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
x(t) [ml t [s]

(a) Trajectory (b) Control History

Figure 3.6. QCPI Validation - Constrained Brachistochrone Problem with E = 10-4

110

3.4.3 Unconstrained Maximum Terminal Energy Hypersonic Trajectory

In this scenario, a modified version of the hypersonic trajectory problem from

Section 2.8.3 is solved using QCPI. All the staging conditions are the same as those

specified in Table 2.1 from Chapter 2 except for the flight-path angle which is left

unconstrained. The terminal boundary condition was changed to have the vehicle fly

a longer distance of 566 km downrange, corresponding to a longitude of 5 degrees.

The same problem was also solved using the shooting method. This is a particular

example where QCPI in its current form performs worse than the shooting method

even after parallelization. The reason for this is that in its current form, QCPI uses

a CGL mesh of a fixed size and structure that is set before starting the solution pro-

cess. The shooting method on the other hand, uses an adaptive numerical integrator

method, Runge-Kutta-Fehlberg-45, which is able to adaptively select the mesh size

based on the sensitivity of the dynamic equations. Due to this reason, regions of high

numerical sensitivity towards the middle of the trajectory tends to cause the solver

to diverge. Therefore, while both methods required the use of continuation, starting

with a trivial initial guess, it is to be noted that the continuation strategy used for

QCPI was different from that used for the shooting algorithm.

In case of the shooting algorithm, continuation was performed only on the bound-

ary conditions of the problem as described in Section 1.3. However, for QCPI the

problem initially had to be solved with the atmospheric density parameter, ρ0, set to

a very low value of 0.0012 kg/m3 (0.1% of the actual value). Once the near-ballistic

trajectory connecting the starting and ending points is solved, ρ0 was increased up

to its actual value of 1.2 kg/m3 . The majority of the time of the solution process

is spent on changing ρ0 to its actual value. This extra step is required due to the

limitation of QCPI when dealing with problems with high-sensitivity regions near the

middle of the trajectory as described in Section 3.6.1. By solving the trajectory first

with very low atmospheric density, it is possible to avoid intermediate trajectories

with high sensitivity regions. It is in fact, possible to solve such problems with the

111

current implementation of QCPI if the number of nodes are significantly increased,

at the cost of very high computation time. This is address further in the next chapter

in Section 4.3.4.

The evolution of the trajectory and control history with changing p0 is shown in

Figure 3.7. The control effort increases as the atmospheric density increases so that

the vehicle can utilize lift to fly higher. There is also a significant decrease in the

terminal velocity due to atmospheric drag.

80

70

60

I so
.....
:E' 40

30

20

~
~

tl

0

-1

-3 -t-+--+---f-,

-41-+--+--+---....""11l~~""-?'R,--:~~/Alt-+

3.7 3.8 3.9 4 .0 4.1 0 20 40 60 80 100 120 140
v(t) [km/s] t [s]

(a) Energy Plot (b) Control History

Figure 3.7. QCPI Validation - Unconstrained Hypersonic Trajectory
Problem - Continuation in p0

112

80

70

60

E 50
-"'

..c:
40

30

20

0 100 200 300 400 500
Downrange distance [km]

(a) Energy Plot

Figure 3.8. QCPI Validation - Unconstrained Hypersonic Trajectory Problem

3 .5 Benchmark Problem and Performance Comparison

3.5.1 Problem Definition

A large multi-vehicle problem is set up for testing the performance of QCPI against

that of shooting methods. The problem is based on the application problem detailed

in Chapter 2, but uses a two-dimensional model in place of the 3-DOF syst em. There

are also no path const raints enforced in the problem, and instead the number of

vehicles are increased from 2 to 25. The motivation for doing this is to demonst rate

scalability of this method as the number of dynamic variables in the BVP increases.

The initial positions of the vehicles are linearly spaced out between ±2.25 km and

the impact heading are linearly distributed between ±45 degrees.

3 .5.2 Test Setup

The benchmarking was performed on a computer with the specifications given in

Table 3.1. The performance of QCPI is compared against three separate implemen­

t ations of the shooting method.

-
I

-1

en
-4 ➔-1---+----+--~'Wc--+-------,f---+---1'-+--I

• QCPI
- 5 - Shooting

T l

0 20 40 60 80 100 120 140
t [s]

(b) Control History

113

1. A single shooting method, with automatic parallelization and code-acceleration

using the Numba Just-In-Time compiler.

2. A parallel shooting solver with an explicit multi-core implementation. Python’s

built-in parallel computing primitives are used to propagate each trajectory

arc and its sensitivity matrix in parallel on separate CPU cores. The dynamic

equations are still compiled to binary using Numba in this implementation.

3. A parallel shooting solver, with automatic parallelization and code-acceleration

using the Numba Just-In-Time compiler.

Both the single and multiple shooting solvers use an explicit Runge-Kutta 4(5)

adaptive integration algorithm based on the DOPRI5 code described in Ref. 152.

A 21-st order Chebyshev Polynomial Series was used for function approximation in

QCPI. All the four solvers being tested used an integration tolerance of 10−6 and a

convergence tolerance of 10−4 .

The general multi-vehicle problem is solved for different values of n and the run-

time is recorded. It is to be noted that the run-time values described in the bench-

marks do not include the time taken by Numba for compiling the functions to efficient

parallel binary code. In order to ensure that the compilation time is accounted for,

the solver was run twice for each test case. Since the compilation always happens

the first time that the dynamic equations are evaluated, the second run gives pure

run-time statistics.

Table 3.1. Benchmarking Hardware & Software Specifications

Processor AMD FX-8320 Eight-core @ 3.5 GHz

Memory 8 GB DDR3 - 2400 MHz

OS Ubuntu Linux 17.04

Python v3.6.1

-2

-4

-12 -10 -8

I

I

--~ -~ Vehicle 1

----- Vehicle 2 - ::::::::,- Vehicle3
~ Vehlcle4

.....- ! Vehicle 5 -- - Vehicle6 1- Vehicle7
- Vehicles t- Vehicle9
- VehiclelO

-6
x[km)

-4 -2

0.15

0.10

0.05

;;; 0.00

-0.05

-0.10

-0.15

10 20 30 40
t[sec)

114

3.5.3 Solution

The solution for the problem with n = 10 is shown in Fig. 3.9 with the trajectories

in Fig. 3.9(a) and the corresponding control profiles in Fig. 3.9(b). Since there are no

path constraints, the optimal trajectory mainly involves a smooth turn with gradually

increasing turn-rate that allows the vehicles to reach their target with the desired

impact headings.

(a) Planar View (b) Control History

Figure 3.9. QCPI Benchmark Problem – Optimal Solution

3.5.4 Performance Benchmarks

The number of vehicles in the problem, n, is varied and the time taken for solving

the problem is measured. Figure 3.10 compares the run-time performance of QCPI

against the single and parallel shooting solvers for solving the candidate problem in

Section 3.5.1. The runtime performance is also tabulated in Table 3.2.

The number of arcs used by the parallel shooting solvers is also varied between 4

and 8 arcs. It is important to note that the convergence characteristics of the parallel

shooting solver changes with the number of arcs. While a larger number of arcs may

115

require fewer iterations to converge, the linear system to be solved in each iteration

grows progressively larger with the number of arcs.

An interesting result here is that the Numba version of parallel shooting is signifi-

cantly faster than the explicit parallel shooting implementation. The explicit parallel

version starts to achieve similar performance to the Numba version once n = 25. This

could be due to significant overheads when the parallelization is implemented at a

high-level in the Python language. The Numba version analyzes code and parallelizes

the code automatically where possible. For example, Numba unrolls iterations of

loops that can be run independently and executes them in parallel. This happens

transparently wherever such loops are present and therefore can significantly boost

performance. Also, all the parallel code exists at the binary level as opposed to in

interpreted Python code, which leads to very low overhead.

The relative magnitudes of the run-times of the different implementations remain

the same going from two vehicles to 10. However, once the number of vehicles in-

creases from 10 to 25, these values change radically. One factor that could be causing

this drastic increase is the size of the state-transition matrix (STM) in the shooting

methods. With double-precision floating point numbers, the memory used by the

STM goes from around 64 kilobytes for 10 vehicles to 403 kilobytes for 25 vehicles. A

matrix of this size gets initialized and multiplied during every time-step of integration

when evaluating the dynamic equations corresponding to the STM. This is in addition

the state vector and other intermediate variables which will themselves be of similar

sizes. The size of the L1 cache and L2 cache in the processor used for the benchmarks

is 384 KB and 8 MB, respectively. With the larger sized matrices, there is a higher

probability of the matrices not fitting in the cache, therefore requiring more expensive

RAM access. In the case of QCPI, while a similar number of ODEs are integrated,

such large matrices are only operated on as part of the MCPI integration process

rather than when evaluating the dynamic equations.

Profiling the code also revealed that the number of times the dynamic equations

are evaluated is approximately 8× more for the single shooting method as compared

116

to QCPI. This further contributes to higher run-time as the number of vehicles is

increased. This particularly affects single shooting more due to the more parallel

nature of multiple-shooting as well as the fixed overhead associated with parallel

processing that may not change much with size of the problem.

It can be seen that the QCPI implementation obtains a consistent 3.5× to 4.5×

speed-up over the fastest parallel shooting implementation for values of n ranging from

1 to 25. It is to be noted that these speed-ups were obtained using only automated

parallelization by Numba and no explicitly parallel optimized code was developed for

QCPI. This highlights to a certain extent the potential of QCPI for huge performance

benefits with custom parallel implementations, particularly those targeting architec-

tures such as GPUs. However, given the trends in the benchmarks discussed above,

further analysis is needed to exactly quantify the degree of parallelism in the algo-

rithm. It would also be beneficial to establish a lower bound on problem size that is

required to efficiently exploit parallel architectures using QCPI.

Table 3.2. QCPI Benchmarks – Runtime vs. Number of Vehicles

Solver n = 1 n = 2 n = 5 n = 10 n = 25

QCPI 0.02 0.05 0.15 0.43 2.86

Single Shooting 0.19 0.37 1.29 3.65 26.91

Parallel Shooting Explicit (8 arcs) 2.92 3.07 5.05 6.88 15.73

Parallel Shooting Explicit (4 arcs) 3.89 4.29 6.29 7.71 15.11

Parallel Shooting Numba (8 arcs) 0.08 0.16 0.659 2.233 14.12

Parallel Shooting Numba (4 arcs) 0.07 0.16 0.595 1.952 11.14

u
Q)

~
Q)

E

r

- Single Shooting

1
- Parallel Shooting Explicit (8 arcs)

JO - Parallel Shooting Explicit (4 arcs)

- Parallel Shooting Numba (8 arcs)
,LS.ho.o.ting....l\Lumb_a_{.4.._a.rcs

- QCPI
I

25

20

·-g 15
:::;
a:

10

5

J
3.9

2.9 .

j I OW0~02

n=l

3.1

0.2 0.20.os

n=2 n=5 n=l0

, 8

26.9

- 7

-------+ 6

5.7

~
a.
:,
'O

-1------+ 5 al

4

3

2
n=25

a.
<fl

a:
u
0

Number of Vehicles

Figure 3.10. QCPI Benchmark - Comparison with Shooting Solvers

f-'
f-'
-.:i

118

3.6 Limitations

3.6.1 Numerical Instability due to Fixed Mesh Size

The Quasilinear Chebyshev Picard Iteration algorithm has much in common with

collocation methods. Like some collocation-based methods, QCPI represents the so­

lution using an orthogonal polynomial series and uses quadrature rules to integrate

the dynamic equations in the problem. This causes QCPI to have some of the same

drawbacks as collocation based methods. The solution is represented on an uneven

mesh of Chebyshev-Gauss-Lobatto (CGL) nodes as shown in Fig. 3.11. In this mesh,

the nodes are clustered at the beginning and end of the trajectory with fewer nodes in

the middle. This causes numerical instabilities when solving problems with dynami­

cally sensitive regions in the middle of the trajectory. In shooting methods, the use

of adaptive numerical integrators help avoid this issue. In collocation-based solvers

such as GPOPS, adaptive mesh refinement methods [153,154] are used to dynami­

cally change the node positions, usually by concatenating meshes of different sizes.

This allows the solver to add extra nodes in regions where the trajectory is highly

sensitive, thereby improving the numerical stability of the solver.

0.04

0.02

0.00 1-l 10()(-)(-)(--)(- x- x

-0.02

-0.04 1--- -

-)(-)i(-><- X

- f--

x - >E--x- x- xXl r

-f--

-1.0 -0.5 0.0 0.5 1.0
X

Figure 3.11 . CGL Nodes for Chebyshev Polynomial Series of Order, N = 20

119

QCPI in its current implementation, uses a fixed size grid that is specified a-priori.

While it is still applicable to many nonlinear optimal control problems as illustrated

in this chapter, this limits its use for problems with numerically sensitive regions in

the middle of the trajectory. As such, the multi-vehicle application problem detailed

in the next chapter is chosen such that the numerically sensitive regions appear in

the beginning and/or end of the trajectory. The challenges posed by this limitation

and some strategies for mitigating them are explored further in Section 4.3.4 and

Section 6.2.4, respectively.

3.6.2 Compilation Delays from Numba

One of the drawbacks of using Numba is the relatively long compilation stage

the first time that the accelerated code is executed. Though Numba was used for

accelerating both QCPI and the shooting solver (where possible) for this benchmark,

the compilation time required by the two methods are starkly different as shown in

Fig. 3.12. In the shooting solver, the only part that is parallelized using Numba is the

computation of the Jacobian matrix used for generating the State Transition Matrix

(STM). The fraction of code that can be parallelized using Numba in the case of the

shooting solver is much smaller than in the case of QCPI. Consequently, this results

in the compilation of QCPI code taking much longer to compile than the shooting

solver.

Another reason for this compilation overhead is that the every state of every

vehicle in the problem are treated as having unique equations of motion even if

that is not the case in a particular problem. This is especially true in the case of

multi-vehicle systems. Numba performs in-depth automated analysis of the code to

perform its parallelization, and the increase in number of equations to be analyzed

further increases the compilation time. Explicit parallelization of the code, such

as what Ref. 30 does for shooting methods, would significantly improve the run-

time performance as well as the compile-time performance of the numerical method.

120

Special handling of repeated equations in the problem can help significantly speed up

the algorithm for multi-vehicle systems.

j- Shooting Method
100

- QCPI

~ 80
u
Q)
l/l

Q)

E 60
-:;:;

~ ·c.
E 40
0 u

20

n=l n=2 n=S n=l0 n=25
Number of Vehicles

Figure 3.12. Benchmark - Compilation Time for QCPI and Shooting Methods

3.7 Summary

The Quasilinear Chebyshev Picard Iteration (QCPI) method builds on prior work

utilizing a Chebyshev Polynomial series and the Picard Iteration combined with the

Modified Quasi-linearization Algorithm. The capabilities of the numerical method

are validated by solving some representative nonlinear optimal control problems. The

performance of the solver is benchmarked against existing numerical solvers using a

large multi-vehicle optimal control problem. QCPI is shown to obtain speedups in

the range of 3.5x-4.5x when compared to a parallel shooting solver for solving the

same boundary value problems when running on an 8-core processor. The results

demonstrate that QCPI has a lot of potential for leveraging parallel computing archi-

https://3.5x-4.5x

121

tectures and can greatly benefit from implementation on highly parallel architectures

such as GPUs.

Even with the limitations of its current implementation, QCPI has been demon-

strated to be a viable, fast numerical method for solving large nonlinear boundary

value problems. It advances the state-of-the-art in using indirect methods for solving

large scale trajectory optimization problems. This is further illustrated in the next

chapter where QCPI is combined with ICRM to solve a large multi-vehicle constrained

trajectory optimization problem.

122

4. MULTI-VEHICLE CONSTRAINED TRAJECTORY

OPTIMIZATION

4.1 Problem Statement

A constrained multi-vehicle trajectory optimization problem is posed in this Chap-

ter to demonstrate the combined application of the ICRM and QCPI algorithms de-

scribed in this dissertation. This problem is an extension of the application problem

in Section 2.9 and the benchmark problem in Section 3.5.1. It consists of five vehicles

each with a control constraint along with a path-constraint that enforces a keep-out

zone. The scenario models a co-operative, simultaneous engagement of two targets

by five vehicles and is shown in Fig 4.1. The objective is to minimize total control

effort. The full optimal control problem is stated in Eq. (4.1). The various problem

parameters and boundary conditions are listed out in Table 4.1 and Table 4.2 respec-

tively. In Section 4.3, these conditions are modified in order to study the evolution

of optimal trajectories for varying terminal geometry conditions. All the coordinates

are specified in terms of a flat Cartesian coordinate system centered around the first

target with the Y-axis pointing North and the X-axis pointing East. It is to be noted

that unlike the benchmark problem used in the previous chapter, the current problem

uses a three-dimensional model.

Table 4.1. Multi-Vehicle Trajectory Optimization – Problem Parameters

xc yc rc

Zone 1 -9.0 km 0.0 km 1.5 km

E
~
::,._

1

0 •B-
A

-1

-2 -t--+-------;------+--------~----+--------i---1

5-r-
-12 -10 -8 -6

x[km]
-4 -2 0

123

Figure 4.1. Multi-Vehicle Trajectory Optimization - Scenario Overview

Table 4.2. Multi-Vehicle Trajectory Optimization – Boundary Conditions

Vehicle Xi(0) Yi(0) Zi(0) Xi(T) Yi(T) Zi(T) ψi(T)

Vehicle-1 -12.0 km -0.750 km 1.5 km 0.0 km 0.0 km 0.0 km +15 deg

Vehicle-2 -12.0 km +1.500 km 1.5 km 0.0 km 0.0 km 0.0 km -15 deg

Vehicle-3 -12.0 km +2.250 km 1.5 km 0.0 km 0.0 km 0.0 km -30 deg

Vehicle-4 -12.0 km -1.500 km 1.5 km 0.0 km 0.75 km 0.0 km +30 deg

Vehicle-5 -12.0 km -2.250 km 1.5 km 0.0 km 0.75 km 0.0 km +45 deg

� �� �

�

124

T n

Min J = ū2
i + γi

2 (4.1a)
0 i=1

Subject to: (4.1b)

ẋ̄ i = v̄i cos ψi cos γ (4.1c)

ẏ̄i = v̄i sin ψi cos γ (4.1d)

ż̄i = −v̄ i sin γ (4.1e)

v̇̄i = 0 (4.1f)

ψ̇i = ūmaxū i (4.1g)

¯ ¯ ¯ x̄ i(0) = Xi0, ȳ i(0) = Yi0, z̄ i(0) = Zi0 (4.1h)

v̄ 0(0) = 1 (4.1i)

ψi(T) = ψif (4.1j)

|ū i| ≤ 1 (4.1k)

(x̄i − xc)2 + (ȳi − yc)2 ≥ rc (4.1l)

where i = 1, 2, ..., 5

This multi-vehicle constrained trajectory optimization problem, as defined above,

consists of 24 state variables, 10 control variables, 5 path constraints and 5 control

constraints. On using ICRM to compute the necessary conditions of optimality, it

is converted into a two-point boundary value problem with 89 ODEs. This number

includes the original state variables, the extra states added by ICRM to incorporate

the path constraints, the corresponding costates, the original control variables, the

ICRM regularization controls, and the free final time. The Quasilinear Chebyshev

Picard Iteration algorithm developed in this dissertation is used to numerically solve

this nonlinear two-point boundary value problem and obtain the optimal solution.

125

4.2 Nominal Solution

As in the examples in the prior chapters, the variables were scaled based on a

reference velocity of ¼eJ = 300 m/s and reference flight-time of Tref = 50 sec.

A continuation strategy consisting of two steps was used to evolve the trajectory

starting from a trivial initial guess to the solution for the actual problem. The first

stage of this progression with the intermediate targets is shown in Fig 4.2(a), and

the solution obtained at the second step, where the trajectories are extended to the

desired targets, is shown in Fig 4.2(b). Using the intermediate target allowed the

continuation methodology (Section 5.6) to skip over any possible continuation steps

that could have landed inside the no-fly zone.

t-----t--------t--~r-:,,,.,-------t------1 - Vehicle 1

- Vehicle2
- Vehicle3
- Vehicle4

t-----t--------+l--f-----t------1- Vehicle 5 r-
- No-Fly Zone

0 -

-4

-14 -12 -10 -8 -6 -4

--+-----+----+-----+- - Vehicle 1

- Vehicle2
- Vehicle3

0

-2 +-t-------"'-....::,f---=""-- ---i=---+----=-.-<:t-:;>"'---+-1

-12 -10 -8 -6 -4 -2
x(t) [km] x(t) [km]

(a) Intermediate Solution (b) Nominal Solution

Figure 4.2. Multi Vehicle Problem - Construction of Nominal Solution

The optimal trajectory for the nominal problem setup as defined in the last sec­

tion is shown in Fig 4.2(b). ICRM is used to regularize the path constraints and

incorporate them into the problem. The regularization parameter E is set to 10-4
_

This relatively high value of E results in a push off factor for the path constraint as

seen by the trajectory of Vehicle-1 which is the closest to the no-fly zone constraint.

Making E smaller caused numerical instabilities when using QCPI to solve the bound­

ary value problem. This is one of the limitations of QCPI as discussed before in

�

126

Section 3.6. This effectively increases the radius of the no-fly zone that is enforced

on the trajectory and decreases the control authority available, as discussed before

in Section 2.7. A specific case where for the no-fly zone is decreased to 10−6 is

examined in Section 4.3.4.

4.3 Analysis

Starting with the nominal problem as shown in the previous section, boundary

conditions and problem parameters are changed using homotopy continuation in order

to obtain families of optimal trajectories for these conditions and illustrating the

cross-coupling of dynamics in multi-vehicle systems.

4.3.1 Changing the Location of the Keep-Out Zone

The location of the no-fly zone constraint is changed in this section using a con-

tinuation method, and the evolution of the optimal trajectories are examined in this

section. The constraint is implemented as a circle positioned at (xc, yc) with a radius,

rc.

The position of the zone is changed by increasing yc, pushing the constraint further

North 2.25 km. The resulting change in the trajectories of all five vehicles are shown

in Fig 4.3. As the constraint moves up, it becomes inactive in Vehicle-1’s trajectory.

This has the compound effect of also moving the trajectories of vehicles 2 and 3

further North as seen in Fig. 4.3(b). Since the speed of all vehicles except Vehicle-1

are free states, these values also change as the constraint limit is varied. Fig 4.4(a)

shows the variation in vehicle speed as yc is changed from 0 km to 2.25 km.

Vehicles 4 and 5, though initially the faster due to the placement of the path

constraint, only gets slightly faster and the effect on their velocity diminishes as the

path constraint gets further away from their trajectories. On the other hand, Vehicle-

2 transitions from being the slowest of all when yc = 0 to being the fastest when

yc = 2.25km. This is because the constraint and the arrival heading make the distance

127

-
-

Vehicle!
Vehicle2

2.25

2.00

1.75

1.50

1.2s I
1.00 ~

0.75

0.50

0.25

-12 -10 -8 -6
x(t) (km]

-4 -2

-12 -10 -8 -6
x(t) [km]

-4 -2
0 .00

8 ---+--

(a) Solution (b) Evolution of Solution with change in Ye

Figure 4.3. Multi Vehicle Problem - Moving Path Constraint - Solution

- v, - Vehicle I
- v,

350 -J _ V
3
---+----+----+---+-+---I j - Vehicle2

- Vehicle3

~ 330

.§.
>

- v,
- v,

0.0 0.5 1.0 1.5

0 .1 =~:~:~::: --i-----r---r:::::::J:;:=,=~~ ~ ;-1

2 .0 10 ~ w 3 ~ n ~

Yc [km] t[s]

(a) Vi vs. Ye (b) Control History for Ye = 2.25 km

Figure 4.4. Multi Vehicle Problem - Moving Path Constraint - Ve­
locity and Control History

-2 0 2 4
y(t) [km]

Vehicle 1
Vehicle 2
Vehicle 3

-- Vehicle4

11 ''"--_ -_J. -_ Vehicle 5

-1.4

-1.2

-1.0

E
-0.8 =.

-0.4

-0.2

0.0

128

it has to travel longer than that of the other vehicles. Vehicle-3’s optimal speed is

significantly higher due to being pushed North in order to avoid the constraint. This

is also reflected in the final control profile in Fig. 4.4(b), where ū 2 and ū 3 shows

higher magnitudes of control effort compared to that of the other vehicles. The total

distance flown by Vehicle-2 is the highest because there it’s trajectory also has a 3D

component to it and flies slightly below Vehicle-3 to arrive at the target with the

right impact heading as shown in Fig. 4.5.

Figure 4.5. Multi Vehicle Problem – Moving Path Constraint – 3D
Trajectory Profiles

4.3.2 Changing the Impact Heading of Vehicle-3

In this section, the constrained impact heading of Vehicle-3 is changed, and the

effect on the overall solution structure is examined. First, the terminal heading

constraint on Vehicle-3, ψ3(T), is changed from its nominal value of -30 deg to -179

deg. This limit was chosen as this approach heading would be almost directly opposite

to the starting position of Vehicle-3. Changing the heading any further would result

in the optimal solution changing to loop around the south of the trajectory, which

129

causes the continuation strategy to fail. The evolution of both the trajectories are

shown both 2D and 3D in Fig. 4.6. There is a significant 3D component to the change

in the trajectory of Vehicle-3 as seen in Fig. 4.6(b). As heading angle turns further

East, the vehicle stays higher for longer before turning around.

This scenario is one case where additional constraints are needed to ensure that

the trajectory is feasible. Unlike in Section 2.9, because there is no second constraint

restricting the motion of Vehicle-3, the maximum allowed velocity is the limiting

factor that determines how much the impact heading can be changed. The longer

flight path of Vehicle-3 results in an increase in speed as shown in the velocity profile

in Fig. 4.7(a). The altitude profile, the vehicle speed, and turns are all timed so that

all the vehicles reach their respective targets at the same time while satisfying all the

other geometry and path constraints.

In fact, due to the significantly longer trajectory, the speed required is around

700 m/s. This shows that in this particular scenario, if all the other constraints

remain the same, one of the vehicles need to be significantly different and capable

of flying near two and half times as fast as the others in order to satisfy the impact

heading constraint. Since the velocity is implemented as a constant value (v̇3 = 0)

in this particular model, enforcing it as a path constraint is not possible. This is

one of the limitations of the current approach. Further analysis in the next section

proceeds assuming that Vehicle-3 is capable of achieving the required speed. The

final trajectories of all 5 vehicles are shown in Fig. 4.7(b). This is the starting point

for the analysis in the next section.

I
"' "

10 -

0

-2 ' , . I
-4 _j I I -

-12.5 -10.0 -7 .5 -5.0 -2.S
x(t) (km] 0 .0 25 5 .0

180

-s -7.510-:-d-2.s

0 0-2 .5 .0
5.0 2.s .](\t) \\<!1'\

10

I- Vehicle 1
- Vehicle 2
- Vehicle 3
I- Vehicle4
- Vehicles

-5 -7 5101>12 .5

5.0
2.5 0.0 -2 .5 .0 .

](\t) \\<!1'\

130

(a) Planar trajectories (b) 3D view

Figure 4.6. Multi Vehicle Problem – Vehicle-3 Impact Heading –
Evolution of Trajectories

(a) vi vs ψ3(T) (b) Final 3D Trajectory

Figure 4.7. Multi Vehicle Problem – Vehicle-3 Impact Heading –
Velocity Profile and Final Trajectory

10.0 120 120

7.5 no no

5.0 100
100

90 I i
E ~ 80 al! 0.0

90 I
~

80 j

-2.5 70 -0.6~

-0.4 70

-5.0 60 -0.2

0 .0 60
-7.5 50

-12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 50
x(t) [km)

131

4.3.3 Changing the Impact Heading of Vehicle-5

Starting with the final trajectory in the previous section (Fig. 4.7(b)), the con-

strained impact heading of Vehicle-5 is changed from +45 deg to +125 deg. The

evolution of the vehicle trajectories are shown in Fig.4.8. The evolution of Vehicle-5’s

trajectory shows a similar profile to that of Vehicle-3 in the previous section. A new

change in this case is that the trajectory of vehicle 1 (the “reference” vehicle) is also

affected in this case. In fact as seen in the final trajectories in Fig. 4.9, this change also

results in a collision between Vehicle-1 and Vehicle-4. The collision could be avoided

by adding a separation distance constraint between every vehicle pair in the problem.

Limitations in the current implementation makes the addition of these constraints

prohibitively time-consuming. Some possible improvements to the implementation of

QCPI and ICRM that can overcome these challenges are explored in the Section 6.2.

(a) Planar View (b) 3D view

Figure 4.8. Multi Vehicle Problem – Vehicle-5 Impact Heading –
Evolution of Trajectories

4.3.4 Improving Accuracy by Reducing �i

As mentioned earlier in this chapter, all of the results shown so far for this five-

vehicle problem, were solved with all the regularization parameters, �i, set to 10−4 ,

I 2.5 i-,--."=:::!::=----,
~ 0.0

-15 -10 -5 0
x(t)(km)

- Vehiclel
- Vehicle2
- Vehicle3

I
'--... - Vehicle4

't- - Vehicles

-1.4

-1.2

-1.0 .._
E

-0.8 ~

-0.6 ~
-0.4

-0.2

0.0

132

(a) Planar View (b) 3D view

Figure 4.9. Multi Vehicle Problem – Vehicle-5 Impact Heading – Final
Trajectory for ψ5(T) = 125 deg

for the no-fly zone constraint. It is to be noted that each vehicle has a separate

parameter, �i for its no-fly zone constraint as well as a different parameter for the

control limit constraint. Therefore, in the context of this section, changing �i refers

to � for the no-fly zone constraint for all five vehicles in the problem. While lower

values of �i would reduce the push-off factor around the constraint, it would also make

the BVP significantly more difficult to solve. This is a side-effect of the numerical

sensitivity issue outlined before in Section 2.7 as well as QCPI’s fixed mesh spacing

(Section 3.6.1) in its current implementation.

One way to allow for smaller values of �i is to increase the number of nodes used

by QCPI to discretize the problem space, at the cost of increased computation time.

In this section, the number of nodes, N , used by QCPI is increased to 151 to facilitate

a continuation process on �i, reducing it down to 10−6 . This is done to demonstrate

that QCPI is indeed capable of closely tracking path constraints albeit at a significant

computational cost. The trajectory obtained for �i = 10−6 starting with the nominal

solution from Section 4.2 is shown in Fig. 4.10. It can be seen that the push-off factor

around the no-fly zone that appeared in the previous trajectories in this Chapter

has practically vanished with trajectories closely following the boundary of the no-fly

133

4 -<-+----t-------,,-------+----+-----,__-'- Vehicle 1 -'- '"

- Vehicle2
- Vehicle3

2 +-+===t:::::==1~~=.J- ==---+---- Vehicle 4

o +---,f--------j

-12 -10 -8 -6
x(t) [km]

zone. It is to be noted that when N was increased to 151, the computation time

increased significantly, with the continuation process from Ei = 10-4 to Ei = 10-5

taking almost 4 hours on a MacBook Pro with a quad-core processor.

E
=-

-4 -t-+----t-------,,-------+----+-----+----+----<

-4 -2 0

Figure 4.10. Multi Vehicle Problem - Trajectory for E = 10-5

A rough analysis of the relation between the value of Ei and the number of QCPI

nodes required is also performed and the results are shown in Fig. 4.11. The con­

tinuation process for decreasing Ei was repeated for different values of N until the

process fully converged to a solution. If the number of nodes is too low to capture

the dynamics at the middle of the trajectory, the residual error in boundary condi­

tions plateaus at a valuer higher than convergence tolerance. The emerging trend

in Fig. 4.11 shows that QCPI's numerical sensitivity issue is not intractable. Such

highly sensitive problems can indeed be solved using QCPI by adding extra nodes

at the affected areas of the trajectory. However , the method for adding such nodes

is highly inefficient in the current implementation of QCPI, owing to the fixed mesh

spacing. Some strategies for making QCPI more efficient in this aspect are outlined

later in Section 6.2.4.

134

-o 140

~
::::,

CY 120
~
Vl
aJ

15 100
C

a:
u
O 80

L...
aJ
.c 60
E
::::,
z

40

10-4 10-5 10-6

E

Figure 4.11. Multi Vehicle Problem - Number of QCPI Nodes Re­
quired for Different Values of Ei

4.4 Summary

A multi-vehicle trajectory problem with path constraints was solved using a com­

bination of the ICRM and QCPI methods developed in this dissertation. The scenario

was set up to serve as a demonstration of the capabilities of these methods for solv­

ing large-scale trajectory optimization methods. Analysis in this chapter, along with

that in Section 2.9 demonstrated some of the cross-coupling effects that appear when

the optimal trajectories of multiple vehicles are simultaneously solved for while ac­

counting for various geometry and path constraints. This is a type of problem that

would be considered infeasible to solve using traditional implementations of indirect

methods due to the challenges conventionally associated with these methods [8] .

The scenario described in this chapter as well as the ones used for validation of

the methods presented in this dissertation were solved using an open source, indirect

trajectory optimization framework - beluga. ICRM and QCPI form integral parts

of this framework that automates the construction of the necessary conditions of

optimality and includes automated continuation strategies for numerically solving

135

boundary value problems. The design and architecture of this framework is described

in the next chapter.

136

5. BELUGA — AN INDRECT TRAJECTORY

OPTIMIZATION FRAMEWORK

5.1 Introduction

The methods developed in this dissertation as described in the previous chap-

ters form the key components of a generalized, open source trajectory optimiza-

tion framework. In its current nascent form, the framework only supports indirect

methods. However, the longer term goal of this framework is to become a viable

alternative to state-of-the-art direct solvers such as GPOPS [6] and DIDO [7], by

supporting a wide variety of direct and indirect methods for solving real-world op-

timal control problems. This chapter describes the design and overall structure

of this framework and demonstrates some of its use cases. This trajectory opti-

mization framework with full source code can be obtained at https://github.com/

Rapid-Design-Of-Systems-Laboratory/beluga/tree/tantony-phdthesis.

A prototype of this rapid trajectory optimization framework was originally devel-

oped using MATLAB [96] as described in Ref. 155. It was used as a foundation for

implementing a “mathematically unified design environment that is capable of per-

forming rapid simultaneous hypersonic aerodynamic and trajectory optimization”.

The prototype framework was very specific to the application that it was created for

and had limited options for the numerical solvers and symbolic engines it could use.

Mathematica [73] and MATLAB Symbolic Toolbox [74] were used for symbolic com-

putation, and the bvp4c [88] numerical solver was used for solving boundary value

problems. In Ref. 79 and 30, this framework was further extended to be a more gen-

eralized framework for solving optimal control problems capable of leveraging GPUs

for accelerated computation. The capabilities of this framework was demonstrated in

a range of aerospace applications [14, 15, 110,156–161].

https://github.com

137

Owing to licensing limitations in MATLAB as well as performance issues, the

framework, now code-named beluga1 , was redesigned from scratch using the Python

[105] programming language. Python’s powerful object oriented and functional pro-

gramming capabilities and close integration with C/C++ and FORTRAN [162] has

made it an ideal candidate for the implementation of scientific computing libraries

[163]. In the recent years, the availability of fast scientific computing and visualiza-

tion libraries such as NumPy [2], SciPy [1, 163], and Matplotlib [164, 165] coupled

with the huge open source community around it has led to Python emerging as one

of the most favored platforms for scientific computing. Python has been used in a

wide range of scientific fields such as astronomy [166], astrodynamics [167], parti-

cle physics [168], quantum mechanics [169] and biotechnology [170]. Several popular

linear algebra, numerical integration, and optimization codes written in FORTRAN

such as LAPACK [171] and ODEPACK [172] have been linked to Python. By lever-

aging these tools, it is possible write programs that utilize these really fast methods

while retaining the flexibility of a high-level language like Python. All these features

makes Python an ideal platform for the development of an open-source computation

framework like beluga.

All of the optimal control problems shown in this dissertation were solved using

the beluga optimal control framework. This chapter highlights some of the features

of the framework as well as some guidelines on how to use it.

5.2 Problem Definition

As mentioned before, one of the major drawbacks of using indirect methods is

the derivation of the necessary conditions of optimality. beluga simplifies this by

automating the derivation of these conditions. However, this requires that all the

components of the optimal control problem be defined. This section describes some

of the major components of a problem definition file used for solving an optimal

1beluga is not an acronym. The name was chosen because we think beluga whales are interesting
creature and we wanted a simple, easy-to-remember name like many other open source projects

138

control problem in beluga. Many of these variables have units associated with them

which are used for dynamic scaling as described in Section 5.3. In this section, the

constrained brachistochrone problem from Section 2.8.1 will be used as the example

and different sections of the input file will be shown. The complete input file is shown

in Appendix B.2.

State and Control Variables

State variables are the mathematical variables that define the state of the dy-

namic system being optimized. Each state variable has a dynamic equation and a

unit associated with it while the control variable has just a name and a unit. The

following code-block shows state and control variable definitions for the constrained

Brachistochrone problem. The independent variable in the problem (usually time),

and it’s unit is also defined in the input file.

Define independent variables

ocp.independent(’t’, ’s’)

Define equations of motion

ocp.state(’x’, ’v*cos(theta)’, ’m’)\

.state(’y’, ’v*sin(theta)’,’m’)\

.state(’v’, ’g*sin(theta)’,’m/s’)

Define controls

ocp.control(’theta’,’rad’)

Constants

Constants are usually used to define model parameters such as gravity, atmo-

spheric density, etc. While these are constant while the problem is being solved, it is

�

139

possible to vary these values using continuation over a series of steps. One application

of this would be to solve a trajectory problem without an atmosphere and then gradu-

ally increasing the constant corresponding to surface atmospheric density to examine

the effect of accounting for drag. In case of the constrained brachistochrone problem,

the only constant is the acceleration due to gravity and it is defined as shown below:

Define constants

ocp.constant(’g’,-9.81,’m/s^2’)

Cost Functionals

beluga allows for two kinds of objective functions to be defined – path costs and

terminal-point costs. For path costs of the form J =
0
T
L dt, the integrand L is

defined in the input file. In case of the constrained brachistochrone problem, since

the objective is to minimize the total-time, the cost functional is defined as:

Define costs

ocp.path_cost(’1’,’s’)

Constraints

Three kinds of constraints can be defined in the input file – initial point con-

straints, terminal point constraints, and path inequality constraints. The initial and

terminal point constraints form the boundary conditions on the state variables in the

problem. Any state variable that is not included in these definitions is assumed to

be unconstrained at either end of the trajectory. In case of the constrained brachis-

tochrone problem, these are defined as:

ocp.constraints() \

.initial(’x-x_0’,’m’) \

.initial(’y-y_0’,’m’) \

.initial(’v-v_0’,’m/s’)\

.terminal(’x-x_f’,’m’) \

�

140

.terminal(’y-y_f’,’m’)

In the case of path constraints, additional specifiers are required to define if the

path constraint is an upper bound, lower bound, or a two-sided constraint. In case

of the constrained brachistochrone problem, the path constraint is defined as:

ocp.constraints() \

.path(’constraint1’,’y+x’,’>’,-1.0,’m’,start_eps=1e-4)

The above definition enforces the path constraint y + x > −1. Since the problem

is to be solved using ICRM, a starting value for the regularization parameter, , is

also specified (in this case as 10−4). An upper bound path constraint would similarly

be defined as:

ocp.constraints() \

.path(’constraint1’,’x+1’,’<’,1,’m’,start_eps=1e-4)

A two-sided constraint such as a control bound would be defined as :

ocp.constraints().path(’ulim’,’u’,’<>’,1,’rad/s’,start_eps=1e-4)

Sub-expressions

Sub-expressions are optional definitions that may help simplify equations in the

input file. For example, in a hypersonic trajectory problem, the atmospheric density

ρ is a variable that may appear multiple times in different state equations. When

using an exponential atmospheric model, it may be expanded to ρ = ρ0 exp (−h/H)
where h is the altitude, H is the scale-height of the atmospheric model and ρ0 is the

surface atmospheric density. In order to avoid repetition, beluga offers the provision

of defining “quantities” that get automatically substituted into all equations before

the necessary conditions are derived. So in case of the hypersonic problem, some

common quantities such as density and dynamic pressure may be defined as:

ocp.quantity(’rho’,’rho0*exp(-h/H)’)

ocp.quantity(’q’,’0.5*rho*v^2’)

141

These variables, ‘rho’ and ‘q’ can then be used in place of these expressions in

other equations in the problem. This helps significantly improve the readability of

the input file.

5.3 Dynamic Scaling

The different states and costates in the BVP resulting from using indirect methods

can vary from each other by several orders of magnitude. This presents a challenge

while solving the BVP using numerical methods. For example, it may be impractical

to enforce a tight error tolerance (e.g., 10−10), on a state that has values on the order

of 109 . In order to mitigate this issue, the states, costates, constants, parameters,

constraints, and the independent variable (time) are dynamically scaled during every

iteration of the continuation method. It is generally difficult to identify scaling factors

for all these parameters for complex, hypersonic problems. By starting with a simple

problem and evolving it into more complex problems, it is possible to evolve the scaling

factors based on the solution history of the past iterations during the continuation

process. This scaling methodology is fully automated and the designer only has to

specify the scaling factor associated with each of the fundamental units. In beluga,

scaling is performed based on the units associated with the different components of

the problem. For example, in the constrained brachistochrone problem, the base

scaling factors are defined as:

ocp.scale(m=’y’, s=’y/v’, kg=1, rad=1, nd=1)

Here, the ‘meter’ unit is scaled based on the absolute magnitude of the y state vari-

able. As the magnitude of y increases during continuation, this value also increases,

thereby keeping the scaled state variable value on the order of unity. Similarly the

time unit is scaled by the magnitude of the expression x/v and every other unit is

left unscaled. Since all the other associated variables and constants also have their

own dimensional units (e.g. m/s2 for g), these values also get scaled accordingly.

142

5.4 Necessary Conditions

The framework offers two options for calculating the necessary conditions of op-

timality – conventional optimal control theory [12] and ICRM. The former converts

the constrained optimal control problem into a multi-point boundary value problem

while the latter regularizes the path constraints using the methods described in this

dissertation to form a two-point boundary value problem.

All of the equations relevant to the problem are defined as strings by the designer.

These strings are converted into Sympy [72] symbolic expressions so that they can be

manipulated. In case of ICRM, the path constraints are regularized and extra states

and control variables are added to the problem definition. The dynamic equations

and cost functionals are used to formulate the Hamiltonian and then the dynamics

and boundary conditions for the costates. The necessary conditions of optimality thus

formulated are used to generate Python functions that evaluate both the ODEs and

the boundary conditions for the two-point or multi-point boundary value problem.

Each numerical solver defines a template file that converts the symbolic expressions

representing the necessary conditions of optimality into executable Python code.

5.5 Numerical Solvers

beluga defines a generic interface that allows the implementation of different nu-

merical methods for solving boundary value problems. Each numerical method de-

fines its own pre-processing step for converting symbolic expressions into executable

Python code. This allows for method-specific code optimizations to be applied. For

example, QCPI implements code parallelization using the Numba library that is not

implemented by the shooting solver. At the time of writing, beluga offers two numer-

ical methods – a multiple shooting solver and a QCPI implementation. The designer

specifies the numerical method in the input file. The open nature of the project offers

scope for further expansion of the framework using third-party contributions.

143

5.6 Continuation Strategies

Continuation plays a major role in being able to use indirect methods to solve

complex optimal control problems [13]. As such, beluga offers different strategies

for generating initial guess as well as for performing continuation. Currently, two

types of continuation strategies are implemented – manual strategy and bisection

strategy. These methods assume that the initial guess converges to a valid solution to

the boundary value problem. Continuation is then performed or the initial/terminal

boundary conditions or the constants until the desired parameters are achieved.

5.6.1 Initial Guess Generation

Practically all numerical methods for solving nonlinear boundary value problems

require an initial guess. Indirect methods in particular are known for requiring an

accurate initial guess and having a small radius of convergence. beluga includes three

types of initial guess generators.

Automatic Initial Guess using Integration

This method is the simplest to set up but may not work immediately for more

complex problems. In this method, a starting/ending point is specified for the states

along with fixed initial guess for the costates. This starting point is then integrated

forward/backward numerically for a fixed amount of time, and the result is used as the

initial guess for the numerical solver. When using ICRM, it is also necessary to provide

starting values for the control variables. In case of the constrained Brachistochrone

problem solved using ICRM, the initial guess is generated using this method, and it

is defined in the input file as:

guess_maker = beluga.guess_generator(’auto’,

start=[0,0,1], # Starting values for states

direction=’forward’,

144

costate_guess = 0.1,

control_guess = [-3.14*60/180, 0.0, 0.0],

)

Data File Initial Guess

This method uses a previously converged solution as the starting point for con-

tinuation. In this case, the name of the data file and the index of the solution to be

used is specified. The solution data is loaded from the file and passed directly to the

numerical solver.

Custom or Static Initial Guess

This method is used when the designer wants to manually specify the complete

initial guess data structure. This provides adequate flexibility in those cases where

the automatic guess generator proves insufficient or when the designer wants to use

insight into the problem to provide a custom initial guess solution.

5.6.2 Manual Continuation Strategy

This is the simplest homotopy continuation strategy implemented in beluga. The

designer specifies the target values for the initial or terminal boundary condition as

well as the number of intermediate steps to take. The framework then solves each

step in sequence, using the previous solution as the initial guess for the next until

the desired parameters are achieved. If any of the steps fail to converge, the iteration

stops.

For example, for the Brachistochrone problem, if the automatic initial guess is

used, a trajectory that is about 0.1 s long is obtained. Continuation is performed on

the terminal x and y values until the desired values are reached. This is defined as:

continuation_steps = beluga.init_continuation()

145

continuation_steps.add_step(’manual’) \

.num_cases(21) \

.terminal(’x’, 10) \

.terminal(’y’,-10)

It is possible to add more than one continuation step to, for example, perform a

continuation in x first and then in y. This may be required in some cases to navigate

around infeasible areas in the design space.

5.6.3 Bisection Continuation Strategy

The bisection strategy builds on the manual strategy and attempts to automati-

cally find a feasible continuation step size. In case of the Brachistochrone example,

such a continuation strategy would be defined as:

continuation_steps = beluga.init_continuation()

continuation_steps.add_step(’bisection’) \

.num_cases(21) \

.terminal(’x’, 10) \

.terminal(’y’,-10)

Unlike the manual strategy, if any of the intermediate steps fail to converge, the

step is cut in half, and the numerical solver attempts to solve it again. For example, if

the continuation succeeded up to terminal boundary conditions of x = 5 and y = −5,
but somehow failed to converge for x = 5.5 and y = −5.5, the solver would cut this

step size in half and try to solve for x = 5.25 and y = −5.25. This bisection would

continue until a pre-defined number of divisions (10 by default).

This strategy helps reduce some of the burden on the designer of selecting contin-

uation steps and was used to solve all of the examples described in this dissertation.

146

5.6.4 Advanced Continuation Strategies

The challenge with the two continuation strategies discussed above is that there are

many cases in which a smaller continuation step may result in the problem becoming

even more infeasible. An example of this can be seen in this figure from Ref. 80. If

continuation is simultaneously being performed on both x1 and x2, there are scenarios

where decreasing the step-size may result in the problem becoming infeasible when

the terminal boundary conditions land in the red area. The way to resolve this using

manual/bisection strategies would be to perform continuation on x1 and x2 separately.

x2 Optimal Trajectory

x1
Initial

Terminal

Difficult
Region

i =1

i = 3
i = 2

~ o· -✓·
..... " : - -- :

(2) (3) Δ x1 ≠ Δ x1

Figure 5.1. Adaptive Continuation in Design Space with Infeasible
Areas [Source: Mansell [80]]

Ref. 80 describes two adaptive strategies that can automatically search in the

continuation space by changing both the step-size and direction. The strategy uses

Lagrange multipliers used for adjoining boundary conditions and graph-search meth-

ods such as A* and RRT for find a feasible path through complex design spaces.

beluga offers an interface in which this and other advanced continuation strategies

can be implemented.

147

5.7 Visualization

Visualizing the results is an important part of solving any engineering problem.

beluga includes a flexible, extensible visualization library that supports renderer back-

ends such as MatPlotLib [164], Bokeh [173] and ToyPlot [174]. The visualization

module offers the ability to compute and plot time-series data consisting of arbitrary

expressions containing constants and variables defined in the problem. These expres-

sions can be evaluated on coarse or fine meshes using spline interpolation, transparent

to the user.

The visualization module also defines a generic data source interface that can

be customized to load data from a variety of sources. The default implementation

includes support for beluga data files as well .MAT files generated by GPOPS [6].

This allows comparison of results obtained from different sources with the solutions

obtained by beluga. This is very important for validation purposes. A sample plot-

ting script used for comparing results from beluga and GPOPS can be seen in Ap-

pendix B.3.

5.8 Summary

beluga is being developed with the goal of being a viable contender to state-of-the-

art direct solvers such as GPOPS and DIDO. In its current form, as illustrated by the

various examples in this dissertation, it has made significant advances in automating

the use of indirect methods for trajectory optimization. The implementation of ICRM

has enabled easy inclusion of path constraints in optimal control problems, almost

with the level of ease as GPOPS. Though there are numerical difficulties in some

cases, the bulk of the complex analytical math is automatically performed behind-the-

scenes without requiring any intervention from the designer. beluga offers a powerful

interface for implementing custom algorithms and numerical methods. In fact, it could

even be expanded to support direct solvers which could facilitate the application of

a mix of direct and indirect solvers on different parts of the same problem.

148

Following on the path of popular and widely used scientific software projects such

as SciPy [1] and Numpy [2], beluga is released under the permissive MIT license

[3]. Being an open source project allows the community to contribute freely to the

framework, further expanding its capabilities and allow faster integration of new

advances to the state-of-the-art [175–178].

149

6. SUMMARY AND FUTURE WORK

6.1 Summary of Contributions

The contributions described in the previous chapters advance the state-of-the-art

in solving large scale trajectory optimization problems using indirect methods. The

Integrated Control Regularization Method (ICRM), described in Chapter 2, over-

comes one of the major limitations traditionally associated with indirect methods. It

does so in a way that makes it possible to still use existing numerical methods for

solving boundary value problems. In Chapter 3, ICRM is complemented by a new

numerical method for solving large scale nonlinear boundary value problems that is

capable of utilizing parallel computing architectures. This is particularly important

as modern computing hardware is trending towards highly parallel architectures. In

Chapter 4, a large scale multi-vehicle problem is solved using the two methods de-

veloped in the previous chapters. It demonstrates that even with relatively simple

dynamic models, it is possible to study complex behavior that emerges in optimal

trajectories of multi-vehicle systems. Chapter 5 summarizes the features and design

of an open source indirect trajectory optimization framework which was used to solve

all of the examples in this dissertation. QCPI and ICRM are implemented as part of

this framework. This chapter summarizes all these contributions and then describes

future work that can overcome limitations of the current implementations.

6.1.1 Integrated Control Regularization Method (ICRM)

Incorporation of path constraints into optimal control problems using indirect

methods is generally considered a non-trivial task. It is also cited one of the main

reasons for not using indirect methods for solving real-world trajectory optimization

150

problems. This is because when using indirect methods, path constraints force the

solution to be split into multiple arcs with a sequence that has to be known a-priori.

The arcs also introduce interior boundary conditions forming a multi-point boundary

value problem (MPBVP). Providing an accurate initial guess to these MPBVPs is

also a non-trivial task. Prior to this dissertation, one way for overcoming this issue

was to use a continuation strategy for introducing path constraint arcs one at a time

into an unconstrained solution. However, this strategy does not scale well as the

number of constraints increase or when the same constraint is active and inactive

multiple times in the solution. Another strategy is to regularize the path constraints

using saturation functions and formulating the BVP as one consisting of a differential

algebraic equation (DAE) system. This type of BVP required the development of a

special numerical solver that also has difficulties scaling as the problem size increases.

The Integrated Control Regularization Method (ICRM), as described in this dis-

sertation, uses saturation functions to incorporate path constraints into an optimal

control problem, while at the same time enabling the use of existing numerical solvers

such as the shooting method. It does not introduce interior boundary conditions, and

the solution remains a single arc. The ability to use existing numerical methods also

means that it can leverage parallel numerical methods developed for solving generic

boundary value problems. Comparisons with results obtained using conventional op-

timal control theory as well as direct solvers such as GPOPS, where applicable, vali-

dates the accuracy of the constrained solutions generated using ICRM. The method

is then applied to a two-vehicle cooperative engagement scenario with two path con-

straints to illustrate that it is capable of solving complex optimal control problems of

the type that was previously considered impractical to solve using indirect methods.

6.1.2 Quasilinear Chebyshev-Picard Iteration (QCPI)

The main performance bottleneck when solving large scale optimal control prob-

lems using indirect methods is the numerical method used for solving the boundary

151

value problems that result from applying indirect methods. One way to accelerate

these numerical methods is by leveraging parallel computing architectures that can

execute different parts of the algorithm simultaneously rather as a serial process.

Prior work in Ref. 30 examined ways to structure a multiple shooting solver to lever-

age highly parallel GPUs for solving boundary value problems. It also highlighted

some of the limitations of the method as the size of the problem increases.

In this dissertation, a new numerical method is developed with inherently parallel

features for the express purpose of leveraging parallel computing architectures. The

Quasilinear Chebyshev-Picard Iteration (QCPI) method builds on prior work based on

the Picard Iteration and the Chebyshev-Gauss quadrature rule. While the previous

method, the Modified Chebyshev-Picard Iteration (MCPI) was restricted to being

able to solve specific types of nonlinear boundary value problems with fixed boundary

conditions, QCPI extends it to a larger class of general nonlinear boundary value

problems. MCPI was not capable of solving for free-parameters in boundary value

problems or nonlinear boundary conditions. QCPI overcomes this by leveraging the

Modified Quasilinearization Algorithm which can solve for free-parameters without

explicitly propagating the sensitivity matrix.

One of the main features of QCPI that make it highly parallel is that it mainly

consists of multiplying large matrices – an operation which has many existing efficient,

highly parallel implementations. It also consists of large number of independent nu-

merical operations evaluating functions over the entire solution space unlike multiple

shooting where the solution is built up one time-step at a time. QCPI is developed

in the Python programming language and then accelerated using the automatic par-

allelization library, Numba. The method is validated by solving some well-known op-

timal control problems and comparing the results to those obtained using a shooting

solver. The performance of the solver is then benchmarked by solving a multi-vehicle

cooperative engagement scenario and comparing the runtime to that of a shooting

solver. It was shown that QCPI scales very well as the problem gets larger and is

152

also able to more efficiently leverage parallel computing resources as compared to the

shooting solver.

6.1.3 Large Scale Multi-Vehicle Trajectory Optimization

A multi-vehicle cooperative engagement scenario with path constraints is set up

to illustrate the capabilities of the ICRM and QCPI methods developed in this dis-

sertation. The problem consists of five vehicles, a 3DOF kinematic model, control

constraints, and a keep-out zone constraint. The versatility of ICRM is demonstrated

by performing trade-studies that involve changing constraint parameters and prob-

lem boundary conditions. Smooth transitions between constrained and unconstrained

arcs and vice-versa are demonstrated which is something that is not possible with con-

ventional path constraint implementations when using indirect methods. The trades

are also used to demonstrate the cross-coupling effects that emerge in optimal tra-

jectories of multi-vehicle systems even when using relatively simple dynamic models.

This provides a starting point and demonstrates that indirect methods can indeed be

used to solve highly constrained, large, nonlinear trajectory optimization problems.

6.1.4 Open Source Indirect Trajectory Optimization Framework

Another major challenge often cited as a drawback of indirect methods is that

knowledge of optimal control theory is required in order to derive the necessary con-

ditions of optimality. The advent of modern symbolic computation engines such as

Sympy and Mathematica has allowed the automation of almost all aspects of deriving

the necessary conditions of optimality. In this dissertation, the design and develop-

ment of an open source, indirect trajectory optimization framework is described. The

framework, called beluga, enables a designer to define a trajectory optimization prob-

lem and solve it using indirect methods without having to manually derive any of

the necessary conditions of optimality. This framework helps bring near parity in

ease-of-use between indirect methods and direct solvers such as GPOPS. Similar to

�

�

153

GPOPS, the designer only has to list out the various components of the problem such

as states, controls, constraints and dynamic equations, and the framework automates

the rest of the derivations required for applying indirect methods. It also includes

a rich visualization framework that can leverage existing visualization libraries while

combining data from multiple sources.

beluga also implements continuation strategies which are used to solve the non-

linear boundary value problems that result from applying indirect methods. This is

required because it is often not practical to supply an accurate initial guess to the

highly complex nonlinear boundary value problem. Instead, it is easier to start with

a trivial initial guess for a simpler problem and then change the solution in a series of

steps until the desired problem parameters are achieved. This dissertation describes

two such continuation strategies, namely, manual and bisection strategies that pro-

vide some level of automation to this process. The framework was used to solve all

of the optimal control problems described in this dissertation and to generate all ac-

companying trajectory visualizations. beluga was designed with the goal of becoming

a viable, free, and open source alternative to state-of-the-art design software in terms

of performance, accuracy, and ease-of-use, and the work presented in this dissertation

lays the foundation for achieving this goal.

6.2 Future Work

6.2.1 Automated Computation of ICRM Push-Off Factor

In the multi-vehicle example in Chapter 4, the path constraint was enforced in

such a way that there was a significant push-off factor with how close the trajectory

approached the constraint. This was because a relatively large value was used for

the regularization parameter, , while incorporating the constraint using ICRM. As

discussed before in Section 2.7, smaller values of can reduce the push-off factor

with the added cost of high numerical sensitivity. A multiple shooting solver with

adaptive stepping is able to accommodate for this but a solver like QCPI with a

�

� �

�

154

fixed grid struggles to solve such BVPs. While the addition of extra nodes can help

mitigate this to a certain extent, doing so can significantly increase the computation

time.

An alternative approach would be to use a higher value of and modify the con-

straint limit such that the push-off factor ensures that the actual trajectory obeys

the design constraints. However, the relationship between the push-off factor and

is highly problem specific. One way to find the “right” values for and the con-

straint limit would be to use a bisection search strategy. A good starting value for

should be first found using trial and error which keeps the problem feasible in terms

of constraints while also not making the problem numerically sensitive. The con-

straint limit can then be adjusted using a bisection search methodology until the

effective constraint limit in the problem (due to the push-off factor) matches the

desired problem parameters. This would significantly improve the performance of

numerical solvers when using ICRM to solve constrained optimal control problems.

6.2.2 Fully Numerical Indirect Optimal Control

The use of indirect methods for optimal control still involves a significant amount

of symbolic computation when the necessary conditions of optimality are derived.

Especially with the use of ICRM, all these computations involve taking one or more

derivatives of expressions consisting of the dynamic equations and objective function-

als of the problem. These could be formulated as a single two-point boundary value

problem by using automatic differentiation algorithms [179,180] completely avoiding

the symbolic manipulation of large equations.

Another strategy for doing this would involve representing the Hamiltonian as a

Chebyshev polynomial series and then using the derivative rules of Chebyshev poly-

nomials to represent the costates and other necessary conditions of optimality. This

would involve combining QCPI and ICRM into a hybrid method which directly for-

mulates the two-point boundary value problem without symbolically deriving the

155

necessary conditions of optimality. Developing such a unified method that lever-

ages indirect methods would allow the easy incorporation of black-box functions into

dynamic models while still maintaining the high quality of solutions guaranteed by

indirect methods.

6.2.3 Improved Numerical Stability for DAEs

In ICRM, the differential algebraic equations in the boundary value problem are

differentiated to obtain differential equations for the algebraic variables. While this

works effectively in many cases as illustrated in the examples in this dissertation, there

are many problems in which numerical instabilities arise when using this approach

to solve DAEs. The original work that ICRM is based on [111] overcomes this by

developing a custom numerical solver based on collocation that can incorporate the

algebraic conditions directly into the numerical solution process. In a similar fashion,

one strategy to solve DAEs without differentiation would be to incorporate the alge-

braic constraints directly into the QCPI solution process. If the algebraic conditions

can be incorporated into the QCPI iteration process for calculating Chebyshev coef-

ficients, the numerical instabilities that arise from taking derivatives of the algebraic

variables can be avoided.

6.2.4 Adaptive Grid & Mesh Refinement for QCPI

One of the major limitations of QCPI in its current form is that it uses a fixed-size

mesh for representing the solution which has nodes clustered at the beginning and end

of the trajectory. While this may be ideal in some cases, those problems that have

highly sensitive dynamics towards the middle of the trajectory may be difficult to

solve using the current implementation. This limitation was explored before in more

detail in Section 4.3.4. This is very similar to the challenges encountered when using

by collocation-based numerical methods such as bvp4c or direct solvers like GPOPS.

156

These solvers use an adaptive mesh-sizing and mesh refinement strategy that adjusts

the points where the nodes are clustered based on the sensitivity of the problem.

Some strategies for overcoming this limitation are described in Refs 88, 153, and

154. A similar strategy can be developed for QCPI that uses multiple sets of Cheby-

shev polynomial series starting and ending at points of high numerical sensitivity.

Such an adaptive mesh refinement strategy would help greatly improve the numerical

stability of QCPI and make it applicable to a wider range of nonlinear optimal control

problems. Ref. 181 describes a method for choosing the order of the Chebyshev series

based on the desired accuracy of the solution. This is another strategy that could be

implemented in QCPI to make it more robust.

6.2.5 Parallel Implementation of QCPI

The work in this dissertation demonstrated the inherent parallelism of the QCPI

algorithm using benchmarks on a multi-core computer. The various components of

QCPI – independent evaluation of dynamic equations, matrix multiplication opera-

tions, and linear algebra, are all operations that can be very efficiently implemented

on parallel processors. The MCPI algorithm that this method was built on was

demonstrated to be very efficient at leveraging GPU processors [31, 146]. Similarly

the QCPI can also greatly benefit from the highly parallel computing environment

offered by GPUs and significantly accelerate the numerical solution of large-scale

nonlinear boundary value problems.

6.2.6 On-board Trajectory Optimization and Model Predictive Control

Model predictive control is an advanced method of process control where the

control is generated by repeatedly solving a numerical optimization problem to a

finite time-horizon. Since the optimal control problem is solved for successive starting

points in a short time-span, the prior solutions can be used as a very good initial

guess for the next iteration. The performance of QCPI with an eight-core processor

157

was demonstrated in Section 3.5. The run-time values illustrated in that section

was for starting from a trivial initial guess and evolving the problem to the desired

parameters. When starting with a very good initial guess, as in the case of MPC,

such a continuation process is not required. This makes QCPI a very good candidate

for implementing model predictive control or onboard trajectory optimization.

The NVIDIA Jetson is a credit-card sized system-on-a-chip (SoC) that contains a

suite of input, output, and processing hardware including an NVIDIA GPU [182–184].

Ref. 185 shows that the form factor of the Jetson TX1 computer allows its use in a

small satellite such as a Cubesat for image processing tasks such as image recogni-

tion, object detection and localization, and image segmentation. The newer version of

this platform, the NVIDIA Jetson TX2 [186] has even more processing power. Com-

bined with a highly parallel implementation as outlined in the previous section, QCPI

would be capable of achieving real-time performance on such a computing platform

even for scenarios with moderately complex dynamic systems. This could be used

for performing real-time trajectory planning to account for perturbations form the

reference trajectory during flight or planning optimal maneuvers in-flight. In military

applications, such a system could be used for real-time trajectory planning for missile

avoidance, optimal adversary engagement strategies, and countermeasure maneuvers

for pilot assistance or fully autonomous vehicles.

6.2.7 Expansion of beluga

Being a free, open source software project allows for wide adoption by the design

community as well as faster growth using community contributions. In order to fulfill

this objective, beluga is designed to be highly customizable with a rich API that

allows implementation of new numerical methods, new optimal control algorithms,

continuation strategies, etc. For example, the current version of beluga includes fixed-

step and bisection strategies for performing homotopy continuation while solving

optimal control problems. beluga also provides an interface for the implementation

158

of more advanced continuation strategies such as those that leverage graph search

algorithms [80] which can automate the continuation process even further putting

less of a burden on the designer. Another possible improvement would be support for

multi-phase optimal control problems as described in Ref. 187.

beluga currently does not treat multi-vehicle problems any differently from single

vehicle problems. Every state is considered to have a unique dynamic equation,

and they are not grouped together in any way. This results in inefficiencies in both

run-time and compile-time in some cases as shown in Chapter 3. The necessary

conditions for multiple vehicles with the same dynamic models could be formulated

to more efficiently to reuse code and leverage parallelization. This would further

improve performance when solving multi-vehicle problems.

REFERENCES

159

REFERENCES

[1] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–. [Online; accessed 10 Jan, 2018].

[2] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The NumPy ar-
ray: a structure for efficient numerical computation. Computing in Science &
Engineering, 13(2):22–30, 2011.

[3] Open Source Initiative and others. The MIT license, 2006.

[4] Timothy R Jorris, Christopher S Schulz, Franklin R Friedl, and Anil V Rao.
Constrained trajectory optimization using pseudospectral methods. In Proceed-
ings of the AIAA atmospheric flight mechanics conference and exhibit, 2008.

[5] Isaac M Ross, Christopher D’Souza, Fariba Fahroo, and JB Ross. A fast ap-
proach to multi-stage launch vehicle trajectory optimization. In aiaa Guidance,
Navigation, and control conference and Exhibit, volume 11, page 14, 2003.

[6] Michael A. Patterson and Anil V. Rao. GPOPS-II: A MATLAB Software for
Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian
Quadrature Collocation Methods and Sparse Nonlinear Programming. ACM
Trans. Math. Softw., 41(1):1:1–1:37, October 2014.

[7] I Michael Ross. A beginner’s guide to DIDO: a MATLAB application package
for solving optimal control problems. 2007.

[8] John T Betts. Survey of numerical methods for trajectory optimization. Journal
of Guidance, Control and Dynamics, 21(2):193–207, 1998.

[9] F Fahroo, DB Doman, and AD Ngo. Modeling issues in footprint generation for
reusable launch vehicles. In Proceedings of the 2003 IEEE Aerospace Conference,
volume 6, 2003.

[10] J.T. Betts. Practical Methods for Optimal Control Using Nonlinear Program-
ming. Advances in Design and Control. Society for Industrial and Applied
Mathematics, 2001.

[11] LS Pontryagin, VG Boltyanskii, RV Gamkrelidze, and EF Mishchenko. Math-
ematical Theory of Optimal Processes. NY Google Scholar, 1962.

[12] A. E. Bryson and Y. C. Ho. Applied Optimal Control — Optimization, Esti-
mation, and Control. Taylor & Francis, 1975.

[13] Michael J Grant and Robert D Braun. Rapid Indirect Trajectory Optimization
for Conceptual Design of Hypersonic Missions. AIAA Journal of Spacecraft and
Rockets, pages 1–6, 2014.

160

[14] Michael J Grant and Thomas Antony. Rapid Indirect Trajectory Optimization
of a Hypothetical Long Range Weapon System. In AIAA Atmospheric Flight
Mechanics Conference, page 0276, Jan 2016.

[15] Michael J Grant and Michael A Bolender. Minimum terminal energy opti-
mizations of hypersonic vehicles using indirect methods. In AIAA Atmospheric
Flight Mechanics Conference, page 2402, 2015.

[16] Michael Grant, Ian Clark, and Robert Braun. Rapid Simultaneous Hypersonic
Aerodynamic and Trajectory Optimization Using Variational Methods. Guid-
ance, Navigation, and Control and Co-located Conferences. American Institute
of Aeronautics and Astronautics, Aug 2011. 0.

[17] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control
for linear and hybrid systems. Cambridge University Press, 2017.

[18] Paolo Falcone. Nonlinear model predictive control for autonomous vehicles. PhD
thesis, Università del Sannio, 2007.

[19] Craig Earl Beal and J Christian Gerdes. Model predictive control for vehicle
stabilization at the limits of handling. IEEE Transactions on Control Systems
Technology, 21(4):1258–1269, 2013.

[20] Yiqi Gao, Theresa Lin, Francesco Borrelli, Eric Tseng, and Davor Hrovat. Pre-
dictive control of autonomous ground vehicles with obstacle avoidance on slip-
pery roads. In ASME 2010 dynamic systems and control conference, volume 1,
pages 265–272. American Society of Mechanical Engineers, 2010.

[21] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. Kine-
matic and dynamic vehicle models for autonomous driving control design. In
Intelligent Vehicles Symposium (IV), 2015 IEEE, pages 1094–1099. IEEE, 2015.

[22] Nazareth Bedrossian, Sagar Bhatt, Mike Lammers, Louis Nguyen, and Yin
Zhang. First ever flight demonstration of zero propellant maneuver attitude
control concept. In Proceedings of the 2007 Guidance, Navigation and Control
Conference, pages 1–12, 2007.

[23] Nguyen X Vinh, Adolf Busemann, and Robert D Culp. Hypersonic and plane-
tary entry flight mechanics. NASA STI/Recon Technical Report A, 81, 1980.

[24] Qin Weiwei, He Bing, Liu Gang, and Zhao Pengtao. Robust model predictive
tracking control of hypersonic vehicles in the presence of actuator constraints
and input delays. Journal of the Franklin Institute, 353(17):4351 – 4367, 2016.

[25] Xiangyuan Tao, Ning Li, and Shaoyuan Li. Multiple model predictive control
for large envelope flight of hypersonic vehicle systems. Information Sciences,
328(Supplement C):115 – 126, 2016.

[26] Weiqiang Tang, Wenkun Long, and Haiyan Gao. Model predictive control of
hypersonic vehicles accommodating constraints. IET Control Theory & Appli-
cations, 11(15):2599–2606, 2017.

[27] Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael Garland, and
David Glasco. GPUs and the Future of Parallel Computing. IEEE Micro,
31(5):7–17, 2011.

161

[28] Andre R Brodtkorb, Christopher Dyken, Trond R Hagen, Jon M Hjelmervik,
and Olaf O Storaasli. State-of-the-art in heterogeneous computing. Scientific
Programming, 18(1):1–33, 2010.

[29] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger. Clock
Rate Versus IPC: The End of the Road for Conventional Microarchitectures.
In Proceedings of the 27th Annual International Symposium on Computer Ar-
chitecture, ISCA ’00, pages 248–259, New York, NY, USA, 2000. ACM.

[30] Thomas Antony and Michael J Grant. Rapid Indirect Trajectory Optimization
on Highly Parallel Computing Architectures. Journal of Spacecraft and Rockets,
54(5):1081–1091.

[31] Xiaoli Bai. Modified Chebyshev-Picard Iteration Methods for Solution of Initial
Value and Boundary Value Problems. PhD thesis, Texas A&M University, 2010.

[32] Michael Sparapany. Towards the Real-Time Application of Indirect Methods
for Hypersonic Missions. Master’s thesis, Purdue University, West Lafayette,
2015.

[33] Derek F. Lawden. Optimal trajectories for space navigation. Butterworths,
1963.

[34] Oskar Von Stryk and Roland Bulirsch. Direct and indirect methods for trajec-
tory optimization. Annals of operations research, 37(1):357–373, 1992.

[35] Michael J. Grant. Rapid Simultaneous Hypersonic Aerodynamic and Trajectory
Optimization for Conceptual Design. PhD thesis, Georgia Institute of Technol-
ogy, 2012.

[36] David Hull. Conversion of optimal control problems into parameter optimization
problems. Guidance, Navigation, and Control and Co-located Conferences.
American Institute of Aeronautics and Astronautics, Jul 1996. 0.

[37] Dieter Kraft. On converting optimal control problems into nonlinear program-
ming problems. In Computational mathematical programming, pages 261–280.
Springer, 1985.

[38] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algo-
rithm for large-scale constrained optimization. SIAM journal on optimization,
12(4):979–1006, 2002.

[39] Charles R Hargraves and Stephen W Paris. Direct trajectory optimization
using nonlinear programming and collocation. Journal of Guidance, Control,
and Dynamics, 10(4):338–342, 1987.

[40] von Stryk, Oskar and Bulirsch, R. and Miele, A. and Stoer, J. and Well, K.
Numerical Solution of Optimal Control Problems by Direct Collocation, pages
129–143. Birkhäuser Basel, Basel, 1993.

[41] David A Benson, Geoffrey T Huntington, Tom P Thorvaldsen, and Anil V
Rao. Direct trajectory optimization and costate estimation via an orthogonal
collocation method. Journal of Guidance Control and Dynamics, 29(6):1435,
2006.

162

[42] B. A. Conway and K. M. Larson. Collocation Versus Differential Inclusion in
Direct Optimization. Journal of Guidance, Control, and Dynamics, 21(5):780–
785, Sep 1998.

[43] Fariba Fahroo and I Michael Ross. Direct trajectory optimization by a cheby-
shev pseudospectral method. Journal of Guidance, Control, and Dynamics,
25(1):160–166, 2002.

[44] David Benson. A Gauss pseudospectral transcription for optimal control. PhD
thesis, Massachusetts Institute of Technology, 2005.

[45] Timothy R Jorris and Richard G Cobb. Multiple method 2-d trajectory opti-
mization satisfying waypoints and no-fly zone constraints. Journal of Guidance,
Control, and Dynamics, 31(3):543, 2008.

[46] Timothy R Jorris and Richard G Cobb. Three-dimensional trajectory opti-
mization satisfying waypoint and no-fly zone constraints. Journal of Guidance,
Control, and Dynamics, 32(2):551, 2009.

[47] Scott Josselyn and I Michael Ross. Rapid verification method for the trajectory
optimization of reentry vehicles. Journal of Guidance Control and Dynamics,
26(3):505–507, 2003.

[48] Qi Gong, I Michael Ross, Wei Kang, and Fariba Fahroo. On the pseudospec-
tral covector mapping theorem for nonlinear optimal control. In Decision and
Control, 2006 45th IEEE Conference on, pages 2679–2686. IEEE, 2006.

[49] Qi Gong, I Michael Ross, Wei Kang, and Fariba Fahroo. Connections between
the covector mapping theorem and convergence of pseudospectral methods for
optimal control. Computational Optimization and Applications, 41(3):307–335,
2008.

[50] I Michael Ross. A Historical Introduction to the Convector Mapping Principle.
In Proceedings of Astrodynamics Specialists Conference. Naval Postgraduate
School (US), 2005.

[51] H.G. Bock and K.J. Plitt. A multiple shooting algorithm for direct solution of
optimal control problems*. IFAC Proceedings Volumes, 17(2):1603 – 1608, 1984.
9th IFAC World Congress: A Bridge Between Control Science and Technology,
Budapest, Hungary, 2-6 July 1984.

[52] Gan Chen, Zi-ming Wan, Min Xu, and Si-lu Chen. Genetic Algorithm Opti-
mization of RLV Reentry Trajectory. International Space Planes and Hyper-
sonic Systems and Technologies Conferences. American Institute of Aeronautics
and Astronautics, May 2005. 0.

[53] Nobuhiro Yokoyama and Shinji Suzuki. Modified genetic algorithm for con-
strained trajectory optimization. Journal of Guidance, Control, and Dynamics,
28(1):139–144, Jan 2005.

[54] Michael J Grant and Gavin F Mendeck. Mars science laboratory entry optimiza-
tion using particle swarm methodology. In AIAA atmospheric flight mechanics
conference and exhibit, page 6393, 2007.

163

[55] Mauro Pontani and Brace A Conway. Particle swarm optimization applied to
space trajectories. Journal of Guidance, Control and Dynamics, 33(5):1429–
1441, 2010.

[56] Xiuqiang Jiang and Shuang Li. Mars atmospheric entry trajectory optimization
via particle swarm optimization and gauss pseudo-spectral method. Proceed-
ings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering, 230(12):2320–2329, 2016.

[57] SW Paris, BK Joosten, and LE Fink. Application of an advanced trajectory
optimization method to ramjet propelled missiles. Optimal Control Applications
and Methods, 1(4):319–334, 1980.

[58] Charles Hargraves, Forrester Johnson, Stephen Paris, and Ian Retties. Nu-
merical computation of optimal atmospheric trajectories. Journal of Guidance,
Control, and Dynamics, 4(4):406–414, 1981.

[59] C Hargraves. Numerical computation of optimal atmospheric trajectories in-
volving staged vehicles. In 20th Aerospace Sciences Meeting, page 360, 1982.

[60] Jane Cullum. Finite-dimensional approximations of state-constrained continu-
ous optimal control problems. SIAM Journal on Control, 10(4):649–670, 1972.

[61] Renjith R Kumar and Hans Seywald. Should controls be eliminated while
solving optimal control problems via direct methods? Journal of Guidance
Control and Dynamics, 19:418–423, 1996.

[62] Kevin P Bollino. High-fidelity real-time trajectory optimization for reusable
launch vehicles. 2006.

[63] I. Michael Ross, Qi Gong, and Pooya Sekhavat. Low-thrust, high-accuracy tra-
jectory optimization. Journal of Guidance, Control, and Dynamics, 30(4):921–
933, Jul 2007.

[64] Qi Gong, LR Lewis, and I Michael Ross. Pseudospectral motion planning for
autonomous vehicles. Journal of Guidance, Control, and Dynamics, 32(3):1039–
1045, 2009.

[65] Ian D Cowling, Oleg A Yakimenko, James F Whidborne, and Alastair K Cooke.
Direct method based control system for an autonomous quadrotor. Journal of
Intelligent & Robotic Systems, 60(2):285–316, 2010.

[66] Fariba Fahroo and I Michael Ross. Costate estimation by a legendre pseudospec-
tral method. Journal of Guidance, Control, and Dynamics, 24(2):270–277, 2001.

[67] Divya Garg, Michael A Patterson, Camila Francolin, Christopher L Darby, Ge-
offrey T Huntington, William W Hager, and Anil V Rao. Direct trajectory
optimization and costate estimation of finite-horizon and infinite-horizon op-
timal control problems using a radau pseudospectral method. Computational
Optimization and Applications, 49(2):335–358, 2011.

[68] James Ferguson. A Brief Survey of the History of the Calculus of Variations
and its Applications. arXiv preprint math/0402357, 2004.

164

[69] Miguel de Icaza Herrera. Galileo, Bernoulli, Leibniz and Newton around the
Brachistochrone Problem. Rev Mexicana Fis, 40(3):459–475, 1994.

[70] Cornelius Lanczos. The variational principles of mechanics, volume 4. Courier
Dover Publications, 1970.

[71] James M. Longuski, José J. Guzmán, and John E. Prussing. Optimal Control
with Aerospace Applications. Springer, 2014.

ˇ[72] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Cert́ık,
Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Ja-
son K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger,
Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Jo-
hansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, ˇ ep´ cka, Stˇ an Rouˇ
Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and An-
thony Scopatz. Sympy: symbolic computing in python. PeerJ Computer Sci-
ence, 3:e103, January 2017.

[73] Wolfram Research, Inc. Mathematica, Version 11.2. Champaign, IL, 2017.

[74] The MathWorks Inc. Symbolic Math Toolbox version 8.0.0. Natick, Mas-
sachusetts, 2017.

[75] Michael J Grant and Michael A Bolender. Rapid, Robust Trajectory Design
Using Indirect Optimization Methods. In AIAA Atmospheric Flight Mechanics
Conference, page 2401, 2015.

[76] Geethu Lisba Jacob, Geethu Neeler, and RV Ramanan. Mars entry mission
bank profile optimization. Journal of Guidance, Control, and Dynamics, 2014.

[77] Tieding Guo, Fanghua Jiang, and Junfeng Li. Homotopic approach and pseu-
dospectral method applied jointly to low thrust trajectory optimization. Acta
Astronautica, 71(Supplement C):38 – 50, 2012.

[78] H. Julian Allen and Alfred J. Eggers. A study of the motion and aerodynamic
heating of missiles entering the earth’s atmosphere at high supersonic speeds.
National Advisory Committee for Aeronautics, 1957.

[79] Thomas Antony. Rapid Indirect Trajectory Optimization on Highly Parallel
Computing Architectures. Master’s thesis, Purdue University, West Lafayette,
2014.

[80] Justin R Mansell. Adaptive continuation strategies for indirect trajectory op-
timization. Master’s thesis, Purdue University, 2017.

[81] Benjamin R Saunders. Optimal Trajectory Design Under Uncertainty. PhD
thesis, Massachusetts Institute of Technology, 2012.

[82] Owens, John D and Houston, Mike and Luebke, David and Green, Simon and
Stone, John E and Phillips, James C. GPU computing. Proceedings of the
IEEE, 96(5):879–899, 2008.

[83] John H Ahlberg and T Ito. A collocation method for two-point boundary value
problems. Mathematics of Computation, 29(131):761–776, 1975.

-

165

[84] R. D. Russell and L. F. Shampine. A collocation method for boundary value
problems. Numerische Mathematik, 19(1):1–28, Feb 1972.

[85] R. D’Ambrosio, M. Ferro, Z. Jackiewicz, and B. Paternoster. Two-step almost
collocation methods for ordinary differential equations. Numerical Algorithms,
53(2):195–217, Mar 2010.

[86] James M Varah. A comparison of some numerical methods for two-point bound-
ary value problems. Mathematics of Computation, 28(127):743–755, 1974.

[87] Jacek Kierzenka and Lawrence F Shampine. A bvp solver based on residual con-
trol and the maltab pse. ACM Transactions on Mathematical Software (TOMS),
27(3):299–316, 2001.

[88] Lawrence F Shampine, Jacek Kierzenka, and Mark W Reichelt. Solving bound-
ary value problems for ordinary differential equations in matlab with bvp4c.
Tutorial notes, 2000:1–27, 2000.

[89] Jacek Kierzenka and Lawrence F Shampine. A bvp solver that controls residual
and error. Journal of Numerical Analysis, Industrial and Applied Mathematics,
3:27–41, 2008.

[90] RD Russell and J Christiansen. Adaptive mesh selection strategies for solving
boundary value problems. SIAM Journal on Numerical Analysis, 15(1):59–80,
1978.

[91] Xiaoli Bai and John L Junkins. Modified Chebyshev-Picard iteration Methods
for Solution of Boundary Value Problems. The Journal of the Astronautical
Sciences, 58(4):615–642, 2011.

[92] Robyn M Woollands, Julie L Read, Brent Macomber, Austin Probe, Ah-
mad Bani Younes, and John L Junkins. Method of particular solutions and
kustaanheimo-stiefel regularized picard iteration for solving two-point bound-
ary value problems. In AAS/AIAA Spce Flight Meeting, Williamsburg, VA,
2015.

[93] Earl A Coddington and Norman Levinson. Theory of Ordinary Differential
Equations. Tata McGraw-Hill Education, 1955.

[94] JP Riehl, SW Paris, and WK Sjauw. Comparison of implicit integration meth-
ods for solving aerospace trajectory optimization problems. In AIAA/AAS
Astrodynamics Specialist Conference and Exhibit, pages 21–24, 2006.

[95] GL Brauer, DEj Cornick, and R Stevenson. Capabilities and applications
of the program to optimize simulated trajectories (post). program summary
document. 1977.

[96] The MathWorks Inc. MATLAB, 2013.

[97] G Basset, Yunjun Xu, and OA Yakimenko. Computing short-time aircraft
maneuvers using direct methods. Journal of Computer and Systems Sciences
International, 49(3):481–513, 2010.

[98] Geoffrey T Huntington and Anil V Rao. Optimal reconfiguration of spacecraft
formations using the gauss pseudospectral method. Journal of Guidance Control
and Dynamics, 31(3):689–698, 2008.

166

[99] Georges S Aoude, Jonathan P How, and Ian M Garcia. Two-stage path plan-
ning approach for solving multiple spacecraft reconfiguration maneuvers. The
Journal of the Astronautical Sciences, 56(4):515–544, 2008.

[100] Kathryn F Graham and Anil V Rao. Minimum-time trajectory optimization of
multiple revolution low-thrust earth-orbit transfers. Journal of Spacecraft and
Rockets, 2015.

[101] Yanning Guo, Matt Hawkins, and Bong Wie. Waypoint-optimized zero-effort-
miss/zero-effort-velocity feedback guidance for mars landing. Journal of Guid-
ance, Control, and Dynamics, 2013.

[102] Joel Benito and Robert Shotwell. Trajectory design for a mars ascent vehicle
concept terrestrial demonstration. In Aerospace Conference, 2017 IEEE, pages
1–7. IEEE, 2017.

[103] Victor M Becerra. Solving complex optimal control problems at no cost with
psopt. In Computer-Aided Control System Design (CACSD), 2010 IEEE In-
ternational Symposium on, pages 1391–1396. IEEE, 2010.

[104] Michael J Grant, Ian G Clark, and Robert D Braun. Rapid Design Space Ex-
ploration for Conceptual Design of Hypersonic Missions. In AIAA Atmospheric
Flight Mechanics Conference, 2011.

[105] Guido Rossum. Python reference manual. Technical report, Amsterdam, The
Netherlands, The Netherlands, 1995.

[106] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based
python jit compiler. In Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, LLVM ’15, pages 7:1–7:6, New York, NY,
USA, 2015. ACM.

[107] Shunsaku Arita and Seiya Ueno. Optimal feedback guidance for nonlinear mis-
sile model with impact time and angle constraints. In AIAA Guidance, Navi-
gation, and Control (GNC) Conference, volume 4785, 2013.

[108] A. Miele, A. Mangiavacchi, and A. K. Aggarwal. Modified quasilinearization
algorithm for optimal control problems with nondifferential constraints. Journal
of Optimization Theory and Applications, 14(5):529–556, Nov 1974.

[109] Cristiana Silva and Emmanuel Trélat. Smooth regularization of bang-bang opti-
mal control problems. IEEE Transactions on Automatic Control, 55(11):2488–
2499, 2010.

[110] Kshitij Mall and Michael J. Grant. Trigonomerization of optimal control prob-
lems with bounded controls. AIAA AVIATION Forum. American Institute of
Aeronautics and Astronautics, Jun 2016. 0.

[111] Knut Graichen, Andreas Kugi, Nicolas Petit, and Francois Chaplais. Handling
constraints in optimal control with saturation functions and system extension.
Systems & Control Letters, 59(11):671–679, 2010.

[112] Stephen L Campbell and B Leimkuhler. Differentiation of constraints in
differential-algebraic equations. Journal of Structural Mechanics, 19(1):19–39,
1991.

167

[113] Kathryn Eleda Brenan, Stephen L Campbell, and Linda Ruth Petzold. Numer-
ical solution of initial-value problems in differential-algebraic equations. SIAM,
1995.

[114] Charles William Gear and Linda Ruth Petzold. Ode methods for the solu-
tion of differential/algebraic systems. SIAM Journal on Numerical Analysis,
21(4):716–728, 1984.

[115] Stephen L Campbell. The numerical solution of higher index linear time vary-
ing singular systems of differential equations. SIAM journal on scientific and
statistical computing, 6(2):334–348, 1985.

[116] Kathryn E Brenan and Björn E Engquist. Backward differentiation approxima-
tions of nonlinear differential/algebraic systems. Mathematics of Computation,
51(184):659–676, 1988.

[117] Charles William Gear. Maintaining solution invariants in the numerical solution
of odes. SIAM journal on scientific and statistical computing, 7(3):734–743,
1986.

[118] Rafael de P Soares and Argimiro R Secchi. Direct initialisation and solution
of high-index dae systems. Computer Aided Chemical Engineering, 20:157–162,
2005.

[119] Claus Führer and BJ Leimkuhler. Numerical solution of differential-algebraic
equations for constrained mechanical motion. Numerische Mathematik,
59(1):55–69, 1991.

[120] C. W. Gear. Differential-algebraic equation index transformations. SIAM Jour-
nal on Scientific and Statistical Computing, 9(1):39–47, 1988.

[121] K Brenan. Stability and convergence of difference approximations for higher
index differential/algebraic equations with applications to trajectory control.
PhD Disertation, Math. Dept. UCLA, Los Angeles, 1983.

[122] Per Lötstedt and Linda Petzold. Numerical solution of nonlinear differential
equations with algebraic constraints. i. convergence results for backward differ-
entiation formulas. Mathematics of computation, 46(174):491–516, 1986.

[123] Linda Petzold and Per Lötstedt. Numerical solution of nonlinear differential
equations with algebraic constraints ii: Practical implications. SIAM Journal
on Scientific and Statistical Computing, 7(3):720–733, 1986.

[124] Joachim Baumgarte. Stabilization of constraints and integrals of motion in
dynamical systems. Computer methods in applied mechanics and engineering,
1(1):1–16, 1972.

[125] LF Shampine. Conservation laws and the numerical solution of odes. Computers
& Mathematics with Applications, 12(5-6):1287–1296, 1986.

[126] LF Shampine. Conservation laws and the numerical solution of odes, ii. Com-
puters & Mathematics with Applications, 38(2):61–72, 1999.

[127] Kenneth Sutton and Randolph A. Graves Jr. A general stagnation-point con-
vective heating equation for arbitrary gas mixtures. Technical report, National
Aeronautics and Space Administration, 1971.

168

[128] Yun Fei, Guodong Rong, Bin Wang, and Wenping Wang. Parallel L-BFGS-B
Algorithm on GPU. Computers & Graphics, 40:1–9, 2014.

[129] NVIDIA Corporation. Cuda C Programming Guide, 2014.

[130] Pafnuti Lvovitch Tchebychev. Théorie des mécanismes connus sous le nom de
parallélogrammes. Imprimerie de l’Académie impériale des sciences, 1853.

[131] L Fox and IB Parker. Chebyshev polynomials in numerical analysis. 1968.

[132] John C Mason and David C Handscomb. Chebyshev polynomials. CRC Press,
2002.

[133] CW Clenshaw. The numerical solution of linear differential equations in cheby-
shev series. In Mathematical Proceedings of the Cambridge Philosophical Society,
volume 53, pages 134–149. Cambridge University Press, 1957.

[134] CW Clenshaw and HJ Norton. The solution of nonlinear ordinary differential
equations in chebyshev series. The Computer Journal, 6(1):88–92, 1963.

[135] K Wright. Chebyshev collocation methods for ordinary differential equations.
The Computer Journal, 6(4):358–365, 1964.

[136] David Gottlieb and Steven A Orszag. Numerical analysis of spectral methods:
theory and applications. SIAM, 1977.

[137] Mehmet Sezer and Mehmet Kaynak. Chebyshev polynomial solutions of lin-
ear differential equations. International Journal of Mathematical Education in
Science and Technology, 27(4):607–618, 1996.

[138] John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation,
2001.

[139] Minoru Urabe. Numerical solution of multi-point boundary value problems in
chebyshev series theory of the method. Numerische Mathematik, 9(4):341–366,
1967.

[140] Jacques Vlassenbroeck and Rene Van Dooren. A chebyshev technique for solving
nonlinear optimal control problems. IEEE transactions on automatic control,
33(4):333–340, 1988.

[141] Gamal N Elnagar and Mohammad A Kazemi. Pseudospectral chebyshev opti-
mal control of constrained nonlinear dynamical systems. Computational Opti-
mization and Applications, 11(2):195–217, 1998.

[142] T Feagin. The numerical solution of two point boundary value problems using
chebyshev series. PhD thesis, Ph. D. dissertation, The Universtiy of Texas at
Austin, Austin, TX, 1973.

[143] J Shaver. Formulation and evaluation of parallel algorithms for the orbit deter-
mination problem. PhD thesis, 1980.

[144] Terry Feagin and Paul Nacozy. Matrix formulation of the picard method for par-
allel computation. Celestial Mechanics and Dynamical Astronomy, 29(2):107–
115, 1983.

169

[145] Toshio Fukushima. Vector integration of dynamical motions by the picard-
chebyshev method. The Astronomical Journal, 113:2325, 1997.

[146] Darin Koblick, Mark Poole, and Praveen Shankar. Parallel High-Precision Orbit
Propagation using the Modified Picard-Chebyshev Method. In ASME 2012
International Mechanical Engineering Congress and Exposition, pages 587–605.
American Society of Mechanical Engineers, 2012.

[147] Thomas Antony and Michael J. Grant. A Generalized Adaptive Cheby-
shev–Picard Iteration Method for Solution to Two–Point Boundary Value Prob-
lems. In 3rd Annual Meeting of the AFRL Mathematical Modeling and Opti-
mization Institute, 2015.

[148] Angelo Miele. Method of particular solutions for linear, two-point boundary-
value problems. Journal of Optimization Theory and Applications, 2(4):260–
273, Jul 1968.

[149] Angelo Miele and RR Iyer. General technique for solving nonlinear, two-point
boundary-value problems via the method of particular solutions. Journal of
Optimization Theory and Applications, 5(5):382–399, 1970.

[150] A. Miele, R. R. Iyer, and K. H. Well. Modified quasilinearization and optimal
initial choice of the multipliers part 2—optimal control problems. Journal of
Optimization Theory and Applications, 6(5):381–409, Nov 1970.

[151] S. Gonzalez and S. Rodriguez. Modified quasilinearization algorithm for op-
timal control problems with nondifferential constraints and general boundary
conditions. Journal of Optimization Theory and Applications, 50(1):109–128,
Jul 1986.

[152] E Hairer, S.P. Norsett, and G. Wanner. Solving ordinary, differential equations
i, nonstiff problems. 2000.

[153] Christopher L Darby, William W Hager, and Anil V Rao. An hp-adaptive
pseudospectral method for solving optimal control problems. Optimal Control
Applications and Methods, 32(4):476–502, 2011.

[154] Christopher L Darby, William W Hager, Anil V Rao, et al. Direct trajectory op-
timization using a variable low-order adaptive pseudospectral method. Journal
of Spacecraft and Rockets, 48(3):433, 2011.

[155] Michael J Grant. Rapid Simultaneous Hypersonic Aerodynamic and Trajectory
Optimization for Conceptual Design. PhD thesis, Georgia Institute of Technol-
ogy, 2012.

[156] Thomas Antony, Michael J. Grant, and Michael A. Bolender. Optimization
of Interior Point Cost Functions Using Indirect Methods. AIAA AVIATION
Forum. American Institute of Aeronautics and Astronautics, Jun 2015.

[157] Michael J. Grant and Michael A. Bolender. Rapid, Robust Trajectory Design
Using Indirect Optimization Methods. AIAA AVIATION Forum. American
Institute of Aeronautics and Astronautics, Jun 2015. 0.

[158] Kshitij Mall and Michael J. Grant. High mass mars exploration using slender
entry vehicles. AIAA SciTech Forum. American Institute of Aeronautics and
Astronautics, Jan 2016. 0.

170

[159] Kshitij Mall and Michael J. Grant. Epsilon-trig regularization method for bang-
bang optimal control problems. AIAA AVIATION Forum. American Institute
of Aeronautics and Astronautics, Jun 2016. 0.

[160] Janav P. Udani, Kshitij Mall, Michael J. Grant, and Dengfeng Sun. Opti-
mal flight trajectory to minimize noise during landing. AIAA SciTech Forum.
American Institute of Aeronautics and Astronautics, Jan 2017. 0.

[161] Joseph Williams, Kshitij Mall, and Michael J. Grant. Trajectory optimization
using indirect methods and parametric scramjet cycle analysis. AIAA SciTech
Forum. American Institute of Aeronautics and Astronautics, Jan 2017. 0.

[162] Pearu Peterson. F2py: a tool for connecting fortran and python programs.
International Journal of Computational Science and Engineering, 4(4):296–305,
2009.

[163] Travis E Oliphant. Python for scientific computing. Computing in Science &
Engineering, 9(3), 2007.

[164] John D Hunter. Matplotlib: A 2d graphics environment. Computing In Science
& Engineering, 9(3):90–95, 2007.

[165] Luke Barnard and Matej Mertik. Usability of visualization libraries for web
browsers for use in scientific analysis. International Journal of Computer Ap-
plications, 121(1), 2015.

[166] Christoph Weniger. A tentative gamma-ray line from dark matter annihila-
tion at the fermi large area telescope. Journal of Cosmology and Astroparticle
Physics, 2012(08):007, 2012.

[167] Helge Eichhorn and Reiner Anderl. Plyades: A Python Library for Space Mis-
sion Design. arXiv preprint arXiv:1607.00849, 2016.

[168] Andy Buckley, Hendrik Hoeth, Heiko Lacker, Holger Schulz, and Jan Eike von
Seggern. Systematic event generator tuning for the lhc. The European Physical
Journal C-Particles and Fields, 65(1):331–357, 2010.

[169] JR Johansson, PD Nation, and Franco Nori. Qutip: An open-source python
framework for the dynamics of open quantum systems. Computer Physics Com-
munications, 183(8):1760–1772, 2012.

[170] Michael J Keiser, Bryan L Roth, Blaine N Armbruster, Paul Ernsberger, John J
Irwin, and Brian K Shoichet. Relating protein pharmacology by ligand chem-
istry. Nature biotechnology, 25(2):197–206, 2007.

[171] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford, James
Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammar-
ling, Alan McKenney, et al. LAPACK Users’ guide. SIAM, 1999.

[172] Alan C Hindmarsh. Odepack, a systematized collection of ode solvers, rs steple-
man et al.(eds.), north-holland, amsterdam,(vol. 1 of), pp. 55-64. IMACS trans-
actions on scientific computation, 1:55–64, 1983.

[173] Bokeh Development Team. Bokeh: Python library for interactive visualization,
2014.

171

[174] Timothy M Shead. toyplot. Technical report, Sandia National Laboratory,
2014.

[175] Audris Mockus, Roy T Fielding, and James D Herbsleb. Two case studies of
open source software development: Apache and mozilla. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(3):309–346, 2002.

[176] Karim R Lakhani and Eric Von Hippel. How open source software works:“free”
user-to-user assistance. Research policy, 32(6):923–943, 2003.

[177] Eric von Hippel and Georg von Krogh. Open source software and the “private-
collective” innovation model: Issues for organization science. Organization sci-
ence, 14(2):209–223, 2003.

[178] Karim R Lakhani, Robert G Wolf, et al. Why hackers do what they do: Un-
derstanding motivation and effort in free/open source software projects. Per-
spectives on free and open source software, 1:3–22, 2005.

[179] Andreas Griewank, David Juedes, and Jean Utke. Algorithm 755: Adol-c: a
package for the automatic differentiation of algorithms written in c/c++. ACM
Transactions on Mathematical Software (TOMS), 22(2):131–167, 1996.

[180] Joel Andersson, Johan Åkesson, and Moritz Diehl. Casadi: A symbolic pack-
age for automatic differentiation and optimal control. In Recent Advances in
Algorithmic Differentiation, pages 297–307. Springer, 2012.

[181] P. E. Nacozy and T. Feagin. Approximations of interplanetary trajectories by
chebyshev series. AIAA Journal, 10(3):243–244, 1972.

[182] Nvidia: Embedded systems developer kits.

[183] Augusto Vega, Chung-Ching Lin, Karthik Swaminathan, Alper Buyukto-
sunoglu, Sharathchandra Pankanti, and Pradip Bose. Resilient, uav-embedded
real-time computing. In Computer Design (ICCD), 2015 33rd IEEE Interna-
tional Conference on, pages 736–739. IEEE, 2015.

[184] Yash Ukidave, David Kaeli, Umesh Gupta, and Kurt Keville. Performance of
the NVIDIA Jetson TK1 in HPC. In Cluster Computing (CLUSTER), 2015
IEEE International Conference on, pages 533–534. IEEE, 2015.

[185] Nick Buonaiuto, Mark Louie, Jim Aarestad, Rohit Mital, Dennis Mateik,
Robert Sivilli, Apoorva Bhopale, Craig Kief, and Brian Zufelt. Satellite Identi-
fication Imaging for Small Satellites Using NVIDIA. In Small Satellite Confer-
ence, 2017.

[186] Tanya Amert, Nathan Otterness, Ming Yang, James H Anderson, and F Donel-
son Smith. GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed.
In Real Time Systems Conference, 2017.

[187] Saranathan, Harish and Grant, Michael J. Relaxed Autonomously Switched
Hybrid System Approach to Indirect Multiphase Aerospace Trajectory Opti-
mization. Journal of Spacecraft and Rockets, pages 1–11, 2017.

APPENDICES

�

� � �

�

�

�

�
� �

�� ��

172

A. MCPI Matrices

There are two matrices used in formulating the matrix-vector form of the Chebyshev-

Picard iteration used by QCPI. The first, Ca, is used to compute the coefficients, F ,

for an N-th order Chebyshev Polynomial series to a given function, g(x), as follows:

F = 2χ0 + Ca × g(x) (A.1)

where g(x) is g(x) evaluated on an N-th order Chebyshev mesh as:

g = [g(τ0), g(τ1), ..., g(τN)]
T (A.2)

and χ0 is defined as:
T

χ0 = 2x0 0 0 · · · 0 0 (A.3)

with x0 being the initial value of x. Ca is defined as:

Ca ≡ RST V (A.4)

where

1 1 1 1
R = diag 1, ,

2
, ...,
4

,
2(N − 1) 2N

(A.5a) ⎤⎡

S =

 ⎣

1 −2 11 −1 −2 · · · (−1)N+1
2 3 4 15 N−1

1 0 −1 0 0 · · · 0

0 1 0 −1 0 · · · 0
.

0 0 0 · · · 1 0 −1
0 0 0 0 · · · 1 0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.5b)

� �
�� ��

�

� �

�� ��

- - -

173

⎤⎡
T0(τ0) T0(τ1) · · · T0(τN)

T1(τ0) T1(τ1) · · · T1(τN)

T =

 ⎣

T2(τ0) T2(τ1) · · · T2(τN)
.

TN (τ0) TN (τ1) · · · TN (τN)

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.5c)

Tk(τj) = cos (k arccos τj) (A.5d)

jπ
τj = cos

N
(A.5e)

1 2 2 2 1
V = diag ,

N N
,
N
, ..., ,

N N
with N + 1 elements (A.5f)

(A.5g)

The second matrix is Cx which is used to evaluate an N-th order Chebyshev series

represented by its coefficients, β on a Chebyshev grid.

x = Cx × β (A.6)

Cx is defined as:

Cx ≡ TW (A.7)

where
1

W = diag , 1, 1, · · · , 1, 1 with N + 1 elements (A.8)
2

174

B. beluga Software Information

B.1 Obtaining & Installing beluga

Follow these steps to obtain and install beluga.

1. Install Python version 3.6 or newer. It is recommended that a package such

as Anaconda be used (https://www.anaconda.com/distribution/) since it

includes many popular scientific computing libraries such as NumPy and SciPy

that are used by beluga

2. Download and install the latest version of beluga by following the instructions

at https://github.com/thomasantony/beluga

B.2 Sample Input File

"""Brachistochrone example with path constraint."""

ocp = beluga.OCP(’constrainedBrachistochrone’)

Define independent variables

ocp.independent(’t’, ’s’)

Define equations of motion

ocp.state(’x’, ’v*cos(theta)’, ’m’)\

.state(’y’, ’v*sin(theta)’,’m’)\

.state(’v’, ’g*sin(theta)’,’m/s’)

Define controls

https://github.com/thomasantony/beluga
https://www.anaconda.com/distribution

175

ocp.control(’theta’,’rad’)

Define constants

ocp.constant(’g’,-9.81,’m/s^2’)

Define costs

ocp.path_cost(’1’,’s’)

Define constraints

ocp.constraints() \

.initial(’x-x_0’,’m’) \

.initial(’y-y_0’,’m’) \

.initial(’v-v_0’,’m/s’)\

.terminal(’x-x_f’,’m’) \

.terminal(’y-y_f’,’m’)

ocp.constraints() \

.path(’constraint1’,’y+x’,’>’,-1.0,’m’,start_eps=1e-4)

ocp.scale(m=’y’, s=’y/v’, kg=1, rad=1, nd=1)

bvp_solver = beluga.bvp_algorithm(’MultipleShooting’,

tolerance=1e-4,

max_iterations=500,

verbose = True,

max_error=50,

)

guess_maker = beluga.guess_generator(’auto’,

�

�

176

start=[0,0,1], # Starting values for states

direction=’forward’,

costate_guess = 0.1,

control_guess = [-3.14*60/180, 0.0, 0.0],

)

continuation_steps = beluga.init_continuation()

continuation_steps.add_step(’bisection’) \

.num_cases(21) \

.terminal(’x’, 10) \

.terminal(’y’,-10)

beluga.solve(ocp,

method=’icrm’,

bvp_algorithm=bvp_solver,

steps=continuation_steps,

guess_generator=guess_maker)

B.3 Sample Plotting Script

from beluga.visualization import BelugaPlot

from beluga.visualization.datasources import Dill, GPOPS

gpops_ds = GPOPS(’./brachisto_eps5.mat’,states=(’x’,’y’,’v’,’xi’,’tf’)

 ,controls=(’theta’,’ue1’))

plots = BelugaPlot(’./data.dill’,default_sol=-1,default_step=-1,

 renderer=’matplotlib’)

�

�

�

�

�

�

177

plots.add_plot(mesh_size=None).line(’x’,’y’,label=’ICRM�Solution’, sol

 =-1, step=-1) \

.line(’x’,’y’,label=’GPOPS�Solution’, style=’o’,sol=-1,

 step=-1, datasource=gpops_ds) \

.line(’x’,’-1.0-x’,label=’Constraint1’,step=-1,sol=-1)

 \

.xlabel(’x(t)’).ylabel(’y(t)’) \

.title(’Trajectory’)

plots.add_plot(mesh_size=None).line(’t’,’ue1’,label=’ICRM’) \

.line(’t’,’ue1’,label=’GPOPS’,datasource=gpops_ds,style

 =’o’) \

.xlabel(’t�(s)’).ylabel(’theta�(degrees)’) \

.title(’Control�history’)

plots.add_plot(mesh_size=None).line(’t’,’theta*180/3.14’,label=’ICRM’)

 \

.line(’t’,’theta*180/3.14’,label=’GPOPS’,datasource=

 gpops_ds,style=’o’) \

.xlabel(’t�(s)’).ylabel(’theta�(degrees)’) \

.title(’Control�history’)

plots.add_plot(mesh_size=None).line(’t’,’lamX’)\

.line(’t’,’lamY’)\

.line(’t’,’lamV’)\

.line(’t’,’lamXI11’)\

.line(’t’,’lamX’,datasource=gpops_ds,style=’o’) \

.line(’t’,’lamY’,datasource=gpops_ds,style=’o’) \

.line(’t’,’lamV’,datasource=gpops_ds,style=’o’) \

178

.line(’t’,’lamXI’,datasource=gpops_ds,style=’o’) \

.xlabel(’t�(s)’).ylabel(’lambda’) \

.title(’lamX’)

plots.render()

179

C. Publications

Upcoming Publications

1. Journal submission to Journal of Optimization Theory and Applications regard-

ing the use of regularizing path constraints using saturation functions (ICRM)

2. Journal submission to JGCD regarding Quasilinear Chebyshev Picard Iteration

3. Journal submission to JSR about Multi-Vehicle Constrained Trajectory Opti-

mization

Relevant Publications

1. Thomas Antony and Michael J. Grant. Path Constraint Regularization in Opti-

mal Control Problems using Saturation Functions. In AIAA Atmospheric Flight

Mechanics Conference, AIAA SciTech 2018. American Institute of Aeronautics

and Astronautics, Jan 2018

2. Thomas Antony and Michael J Grant. Rapid Indirect Trajectory Optimization

on Highly Parallel Computing Architectures. Journal of Spacecraft and Rockets,

54(5):1081–1091

3. Michael J Grant and Thomas Antony. Rapid Indirect Trajectory Optimization

of a Hypothetical Long Range Weapon System. In AIAA Atmospheric Flight

Mechanics Conference, page 0276, Jan 2016

4. Thomas Antony and Michael J. Grant. Rapid Indirect Trajectory Optimization

on Highly Parallel Computing Architectures. AIAA Atmospheric Flight Mechan-

ics Conference, AIAA SciTech Forum 2016. American Institute of Aeronautics

and Astronautics, Jan 2016

180

Additional Publications

1. Thomas Antony, Michael J. Grant, and Michael A. Bolender. Optimization of

Interior Point Cost Functions Using Indirect Methods. AIAA AVIATION Forum

2015. American Institute of Aeronautics and Astronautics, Jun 2015

2. Michael Sparapany, Thomas Antony, Harish Saranathan, Lorenz Klug, Ben

Libben, Eiji Shibata, Joseph Williams, Michael J. Grant, and Sarag J. Saikia.

Enabling Mars Exploration Using inflatable Purdue Aerodynamic Decelerator

with Deployable Entry Systems (iPADDLES) Technology. In 13th International

Planetary Probe Workshop, June 2016.

VITA

181

VITA

Thomas Antony was born in Kochi, India in 1989. He earned a B.Tech in Mechan-

ical Engineering from the Cochin University of Science & Technology in June 2011.

He joined the School of Aeronautics & Astronautics at Purdue University in August

2012, working under the guidance of Prof. Michael J. Grant at the Rapid Design of

Systems Laboratory (RDSL). At RDSL, he developed high performance numerical

algorithms for trajectory optimization as part of a project supported by the Charles

Stark Draper Laboratory (Boston, MA). Thomas earned his Masters in Aeronautics

& Astronautics in December 2014 with the thesis titled, “Rapid Indirect Trajectory

Optimization on Highly Parallel Computing Architectures”.

In May 2015, he continued this work as a summer researcher at the Air Force

Research Laboratory’s Mathematical Modeling and Optimization Institute in Shali-

mar, FL where he developed novel numerical algorithms for trajectory optimization.

Thomas worked on the design and architecture Mars entry systems, particularly Hy-

personic Inflatable Aerodynamic Decelerator(HIAD) systems for the NASA Big Idea

Challenge in 2016. He was part of the team that was a finalist after presenting the

work at NASA Langley Research Center.

Thomas’ research interests include trajectory optimization, high performance com-

puting, guidance and control, autonomous vehicles, sensor fusion, robotics and ma-

chine learning.

	Large Scale Constrained Trajectory Optimization Using Indirect Methods
	Recommended Citation

	10748577.pdf

