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ABSTRACT 

Antony, Thomas PhD, Purdue University, May 2018. Large Scale Constrained Tra-
jectory Optimization using Indirect Methods . Major Professor: Michael J. Grant. 

State-of-the-art direct and indirect methods face significant challenges when solv-

ing large scale constrained trajectory optimization problems. Two main challenges 

when using indirect methods to solve such problems are difficulties in handling path 

inequality constraints, and the exponential increase in computation time as the num-

ber of states and constraints in problem increases. The latter challenge affects both 

direct and indirect methods. 

A methodology called the Integrated Control Regularization Method (ICRM) is 

developed for incorporating path constraints into optimal control problems when 

using indirect methods. ICRM removes the need for multiple constrained and un-

constrained arcs and converts constrained optimal control problems into two-point 

boundary value problems. Furthermore, it also addresses the issue of transcenden-

tal control law equations by re-formulating the problem so that it can be solved by 

existing numerical solvers for two-point boundary value problems (TPBVP). The 

capabilities of ICRM are demonstrated by using it to solve some representative con-

strained trajectory optimization problems as well as a five vehicle problem with path 

constraints. Regularizing path constraints using ICRM represents a first step to-

wards obtaining high quality solutions for highly constrained trajectory optimization 

problems which would generally be considered practically impossible to solve using 

indirect or direct methods. 

The Quasilinear Chebyshev Picard Iteration (QCPI) method builds on prior work 

and uses Chebyshev Polynomial series and the Picard Iteration combined with the 

Modified Quasi-linearization Algorithm. The method is developed specifically to uti-
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lize parallel computational resources for solving large TPBVPs. The capabilities of 

the numerical method are validated by solving some representative nonlinear optimal 

control problems. The performance of QCPI is benchmarked against single shooting 

and parallel shooting methods using a multi-vehicle optimal control problem. The 

results demonstrate that QCPI is capable of leveraging parallel computing architec-

tures and can greatly benefit from implementation on highly parallel architectures 

such as GPUs. 

The capabilities of ICRM and QCPI are explored further using a five-vehicle 

constrained optimal control problem. The scenario models a co-operative, simul-

taneous engagement of two targets by five vehicles. The problem involves 3DOF 

dynamic models, control constraints for each vehicle and a no-fly zone path con-

straint. Trade studies are conducted by varying different parameters in the problem 

to demonstrate smooth transition between constrained and unconstrained arcs. Such 

transitions would be highly impractical to study using existing indirect methods. The 

study serves as a demonstration of the capabilities of ICRM and QCPI for solving 

large-scale trajectory optimization methods. 

An open source, indirect trajectory optimization framework is developed with the 

goal of being a viable contender to state-of-the-art direct solvers such as GPOPS 

and DIDO. The framework, named beluga, leverages ICRM and QCPI along with 

traditional indirect optimal control theory. In its current form, as illustrated by the 

various examples in this dissertation, it has made significant advances in automating 

the use of indirect methods for trajectory optimization. Following on the path of 

popular and widely used scientific software projects such as SciPy [1] and Numpy [2], 

beluga is released under the permissive MIT license [3]. Being an open source project 

allows the community to contribute freely to the framework, further expanding its 

capabilities and allow faster integration of new advances to the state-of-the-art. 
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1. MOTIVATION AND BACKGROUND 

1.1 Motivation 

Trajectory optimization plays a key role in conceptual design and control of com-

plex dynamical systems. Knowledge of how a system behaves under different inputs 

can be used to design not just the ideal control inputs for a given scenario, but the 

systems themselves. Depending on the dynamics of the system being designed for, 

trajectory optimization can be a time-consuming and computationally intensive pro-

cess. There are two main classes of methods that are used for solving trajectory 

optimization problems, namely, direct and indirect methods. Direct methods tran-

scribe these problems into large parameter optimization problems to be solved using a 

non-linear programming method such as Sequential Quadratic Programming (SQP). 

This in contrast to indirect methods that use optimal control theory based on calcu-

lus of variations to convert the optimization problem into a nonlinear boundary value 

problem. These methods are described in detail in Sections 1.2.2 and 1.2.3. 

Modern research in trajectory optimization and mission design has mostly trended 

towards pseudo-spectral and other direct methods [4–8]. They have many advantages 

over indirect methods including ease of use, larger region of convergence, and usu-

ally not requiring an accurate initial guess. Their disadvantages include being highly 

computationally intensive and not guaranteeing optimality. Indirect methods pro-

duce solutions that satisfy the necessary conditions of optimality, guaranteeing a lo-

cal minimum. However, indirect methods are often cited as being too impractical [9] 

or difficult to apply to real-world problems owing to mainly three challenges [10]. 

These challenges, and strategies to overcome them, are examined in more detail in 

Section 1.2.3. One of these three main challenges involves the incorporation of path 

inequality constraints when using indirect methods. When using Pontryagin’s Min-
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imum Principle [11, 12] to incorporate path constraints, the trajectory is split into 

multiple constrained and unconstrained arcs, the sequence of which, has to be known 

a-priori before the problem can be numerically solved. Recent work has made con-

siderable progress [13–15] in overcoming this issue, as discussed in more detail in 

Sections 1.3, 2.8.1 and 2.8.3. Even with these advances, the incorporation of path 

inequality constraints remains non-trivial, particularly when there are multiple con-

straints that may be active and inactive at different points along the trajectory. One 

of the goals of this dissertation is to overcome this challenge and create a systematic 

method for incorporating multiple constraints into optimal control problems when 

using indirect methods. 

In engineering design and in control problems dealing with systems with highly 

nonlinear dynamics, fast numerical methods capable of solving them are extremely 

valuable. For example, in the design of hypersonic entry vehicles, a vehicle shape 

is usually chosen prior to trajectory design. Once the trajectory has been designed 

for the given vehicle, an iterative, time-consuming multidisciplinary design optimiza-

tion (MDO) process is performed to alter the vehicle dimensions and the trajectory 

until it converges to a design that can accomplish the desired mission. In Ref. 16, 

these iterative steps are combined to enable simultaneous design of the vehicle shape 

and its trajectory for a specific mission. In order to achieve this, a new trajectory 

optimization methodology is constructed which uses analytic aerodynamic equations 

along with indirect methods and continuation. This method is shown to out-pace a 

multi-objective particle swarm optimizer by 10×-30× and also converge to more op-

timal results. However, the overall procedure was still very computationally intensive 

and the author suggests the use of more efficient numerical solvers for faster run-time 

performance. 

Model predictive control (MPC), also known as finite-horizon or receding horizon 

control, is another field that can utilize faster numerical methods for trajectory op-

timization. In MPC, the optimal trajectory of a dynamic system for a finite interval 

of time is predicted, and the resulting control is used to actuate the system [17]. 
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MPC has been successfully demonstrated for autonomous/semi-autonomous driv-

ing [18–20]. MPC is very useful because the control it commands is generated based 

on the nonlinear model of the system and obeys any state and input constraints. 

However, in MPC systems that are currently deployed, the dynamic models tend to 

be relatively simple. This is because as the model gets more complex both in terms of 

number of states and nonlinearity, the optimization problem becomes more difficult 

to solve and real-time performance becomes more difficult to achieve. For example, 

Ref. 21 uses a simple bicycle kinematic model for designing controls of an autonomous 

vehicle. Even in case of the Zero Propellant Maneuver [22] on the International Space 

Station, which made history as the first in-flight use of a pseudospectral direct solver, 

the trajectories were solved on ground-based systems and uploaded to the station. 

In advanced aerospace applications, the current state-of-the-art methods are still 

not capable of real-time optimization. Particularly in the case of hypersonic sys-

tems [23], the dynamic models tend to be highly nonlinear which makes the problem 

more difficult. While some model predictive controller implementations using direct 

methods for hypersonic vehicles exist [24–26], they generally use some kind of lin-

earization or simplification of the model to enable real-time computation. One of the 

goals of this dissertation is to advance the state-of-the-art in numerical methods to 

be closer to a real-time optimal solution capability for these kinds of problems using 

indirect methods. State-of-the-art direct and indirect methods are far from being 

capable of real-time trajectory optimization for real-world systems especially when 

run on flight hardware. 

One of the key requirements for creating a fast numerical solver is to leverage 

modern computing architectures which are trending towards highly parallel systems 

in place of large monolithic processors [27–29]. Numerical methods designed with 

characteristics capable of exploiting these parallel processors will be faster than those 

which only utilize a single processor [30–32]. One of the goals of this dissertation is 

to design a numerical method for solving boundary value problems that can exploit 
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these architectures, thereby enabling indirect methods to rapidly solve more complex, 

highly constrained trajectory optimization problems. 

The two advancements described above will form key components of a larger 

generalized rapid trajectory optimization framework that can form a viable alternative 

to popular direct method solvers such as GPOPS [6] and DIDO [7]. All of the optimal 

control problems shown in this dissertation are solved using this framework. 

1.2 Trajectory Optimization Overview 

1.2.1 Introduction 

Trajectory optimization of real-world systems is generally considered to be a diffi-

cult and computationally intensive task. It involves the calculation of the time-history 

of the control variable(s) associated with a system that optimizes a given performance 

index while satisfying problem-specific constraints at the initial point, terminal point, 

and interior points as well as path constraints. Hypersonic trajectory optimization 

refers to specific case of trajectories of vehicles flying at hypersonic velocities through 

an atmosphere. This is generally more complicated than solving pure spaceflight 

trajectories which, in some cases, may have closed-form analytical solutions [33]. 

A trajectory optimization or optimal control problem is generally expressed in 

the form given in Eq. (1.1). J is the cost functional or performance index to be 

optimized. This includes φ, the terminal cost, and 
t

t 

0 

f L(x, u, t) dt, the path cost 

integrated over the entire trajectory. There are also initial and terminal constraints, 

Ψ and Φ respectively, that are to be satisfied simultaneously. The problem may also 

include path inequality constraints such as S as well as control limits such as C that 

have to be satisfied for the solution to be feasible. C− and C+ are the upper and 

lower limits of the constraint respectively. 
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tf 

Min J = φ(x(tf ), tf ) +  L(x,u, t) dt (1.1) 
t0 

Subject to : 

ẋ = f(x,u, t) (1.2) 

Ψ(x(t0), t0) = 0 (1.3) 

Φ(x(tf ), tf ) = 0 (1.4) 

S(x, t) ≤ 0 (1.5) 

C− ≤ C(u, t) ≤ C+ (1.6) 

t0 = 0  

As mentioned in the previous section, there are mainly two classes of methods used 

to solve such problems [10, 34]. Direct methods discretize the problem space into a 

large number of nodes, and transform the problem into a large parameter optimization 

problem, which is then solved using an optimization algorithm. Indirect methods use 

optimal control theory to convert the optimization problem into a boundary value 

problem, which is then solved using a numerical solver [12]. The use of indirect 

methods poses additional challenges such as the introduction of mathematical entities 

called “costates” which complicates the numerical solution process as described later 

in Section 1.2.3. A comparison of the advantages and disadvantages of direct and 

indirect methods is listed in Table. 1.1 [35]. Direct methods tend to be robust to initial 

guess and are applicable to a wide range of problems while indirect methods have 

features that make it suitable for use in applications that require rapid convergence 

to optimal solutions. 
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Table 1.1. Comparison of Direct and Indirect Methods 

Advantages Disadvantages 

Direct methods Large region of convergence 

Easy to setup and use 

Computationally intensive 

Optimality not guaranteed 

Indirect methods Necessary conditions satisfied 

Fast convergence 

Small region of convergence 

Co-states introduced 

1.2.2 Direct Methods 

Introduction 

Direct methods were developed as an alternative to the classical indirect methods 

for solving optimal control problems, and they became more feasible with the advent 

of more powerful computers. Instead of using optimal control theory to derive the 

necessary conditions of optimality, the continuous control history is discretized into 

a finite number of nodes [36,37]. A general numerical optimization algorithm is then 

used to adjust these nodes until an optimal solution is found. One of the simplest 

ways to implement this is to simulate the entire trajectory for the given control history 

during every iteration. However, this can be very computationally intensive and is 

impractical for most real world scenarios. 

More advanced direct methods discretize the control and state more intelligently 

to allow for the use of various quadrature schemes for implicit integration. The use 

of quadrature rules result in the discretized optimization problem being converted 

into a sparse nonlinear programming problem that can be efficiently solved using 

a solver such as SNOPT [38]. Depending on the type of discretization used, there 

are different types of direct methods that have been developed including Collocation 

[39–41], Differential Inclusion [42] and Pseudospectral methods [43, 44]. 
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In some cases, such as in Ref. 45 and 46, optimal control theory is used to derive the 

necessary conditions for a hypersonic trajectory problem. However, the trajectory is 

solved for a simplified problem involving constant altitude flight with either a constant 

velocity or a predefined deceleration profile. This solution is then used to validate 

the results from a direct solver. In other examples, such as in Ref. 47, the solution 

from a direct solver is validated by checking a subset of the necessary conditions of 

optimality. When using direct methods, constraints are adjoined to the underlying 

parameter optimization problem using Lagrange multipliers. The covector mapping 

theorem [48–50] allows the computation of the necessary conditions of optimality from 

these Lagrange multipliers in certain direct solvers such as DIDO. All these cases point 

to the direct optimization being the preferred method in the design community for 

solving non-trivial optimization problems while certain indirect methods may be used 

for validating them. 

Direct Shooting and Global Methods 

Direct shooting is one of the simplest implementations of a direct method. The 

control history is discretized into a finite number of nodes, and the numerical opti-

mizer searches the design space of these discrete control values to optimize the cost 

function. During each evaluation of the cost function, the dynamics of the system are 

repeatedly propagated using some numerical integration scheme. In direct shooting 

methods, the dynamic equations are propagated from different starting conditions, 

and a state transition matrix is used to perform updates. Ref. 51 implements a di-

rect multiple shooting method that is completely derivative-free and is able to solve 

optimal control problems that include free end-time, free parameters as well as dis-

continuous multi-phase trajectories. 

Global optimization methods such as genetic algorithms [52,53] and particle swarm 

optimizers (PSO) [54,55] are suited for integration based optimization as well. These 

methods do not require an accurate initial guess and can explore the design space in 
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an automated manner without performing a full-factorial search. Their disadvantage 

is that the optimizers completely ignore the physics of the problems and there is no 

guarantee that the solution is locally or globally optimal. When using these global 

methods, path constraints may be implemented using penalty functions which may 

require further tuning by the designer before they are appropriately balanced with 

the objective function. Global optimizers can also be used as a starting point to 

generate coarse initial guesses to be used by more precise direct or indirect methods. 

Ref. 56 describes a hybrid method that uses a particle swarm optimizer to generate 

the initial guess for a pseudospectral direct solver. 

Collocation and Differential Inclusion 

Collocation methods discretize the entire solution space including states and con-

trols, and use some implicit integration scheme for more efficient propagation of the 

dynamic system. Early implementations of collocation were developed by Hargraves 

and Paris [57–59] that used piecewise Chebyshev polynomials to represent the states 

and controls. Penalty functions were used to convert problems with path constraints 

into unconstrained parameter optimization problems and solved using a full second-

order modified Newton algorithm. Ref. 39 describes a later work by the same authors, 

where the state and control histories are represented by piecewise cubic polynomials. 

An implicit integration scheme based on Hermite interpolation was used to convert 

the optimal control problem into a nonlinear programming problem. The advantage 

of this method was that it was easier to extend to general problems involving path 

constraints, control inequalities, and discontinuous states. One characteristic of the 

quadrature scheme used in these methods is that it can be shown that the converged 

solution is equivalent to the solution of an explicit fourth-order Runge-Kutta integra-

tion scheme [42]. 

While collocation can handle path constraints by including it directly in the non-

linear programming problem, it comes at the cost of higher dimensionality of design 
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space as the number of nodes increases. One way to overcome this for certain classes 

of problems is to use differential inclusion [60]. Differential inclusion is the process 

of solving for the controls in terms of states and thereby eliminating them from the 

problem [61]. This can help considerably decrease the dimensionality of the problem 

while retaining the advantages of collocation. However, this is only possible for a 

subset of trajectory optimization problems in which the controls can be solved as 

a function of states. Ref. 42 compares the number of NLP parameters required to 

obtain the same accuracy with and without using differential inclusion. The author 

shows the differential inclusion method requires the use of quadrature rules with very 

low accuracy while collocation methods in general may use implicit integration rules 

of very high accuracy and are hence not limited in this manner. 

Pseudospectral Methods 

Direct methods have been used to solve optimal control problems in a wide range 

of applications [22, 62–65]. However, one of their drawbacks compared to indirect 

methods has always been the lack of a guarantee of optimality. Direct methods 

essentially discretize the problem first and then apply the optimality conditions to 

the discrete problem (Karush-Kuhn-Tucker or KKT conditions). In contrast, when 

using indirect methods the necessary conditions of optimality are first derived for the 

continuous problem and then the resulting boundary value problem is solved, typically 

using a numerical method, to obtain the solution. Relating the KKT multipliers in 

direct methods to the costates from indirect methods could help verify the optimality 

of the solution. This was proven difficult until the development of pseudospectral 

methods owing to discrepancies between the KKT multipliers and costates in certain 

problems even when the trajectories and control histories matched. This made it 

difficult to show that direct methods were in fact arriving at the same solution. It 

was discovered that by using specially constructed discretization, the KKT multipliers 

from pseudospectral methods can be mapped to the corresponding costates from 
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indirect methods using the Covector Mapping Theorem [49,66,67]. This can be used 

to validate the results of pseudospectral methods using the necessary conditions of 

optimality from indirect methods. Some of the most widely used design software such 

as GPOPS [6] and DIDO [7] are based on pseudospectral algorithms. 

1.2.3 Indirect Methods 

Calculus of Variations 

Calculus of variations is a branch of mathematics that has applications ranging 

from optics to quantum mechanics to aerospace engineering, and is the progenitor 

of modern optimal control theory. While early descriptions of relevant problems can 

be traced back as far as 300 A.D. [68], the most famous problem associated with 

calculus of variations is the Brachistochrone problem, posed by Johann Bernoulli in 

Acta Eruditorum in 1696 [69]. The word “brachistochrone” originates from the Greek 

words for “shortest” and “time”. Bernoulli’s original problem statement was, 

Given two points A and B in a vertical plane, what is the curve traced 

out by a point acted on only by gravity, which starts at A and reaches B 

in the shortest time? 

This seemingly simple problem attracted the attention of such great minds as New-

ton, Lagrange, and Leibniz and eventually resulted in the rise of a field of mathemat-

ics known as calculus of variations. Lagrange approached the problem by considering 

sub-optimal trajectories close to the optimal path. Euler and Lagrange independently 

developed the differential equation that is now known as the Euler-Lagrange Equa-

tion [70]. By following Lagrange’s technique, a more generalized set of necessary 

conditions of optimality can be formulated, using the Euler-Lagrange theorem [71]. 

This theorem can be applied to solve optimal control problems in which the path and 

optimal control profile that optimizes a cost functional is computed. It forms the 

foundation of indirect trajectory optimization. The classical Brachistochrone prob-
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lem and its variants are used in multiple parts of this dissertation for the validation 

of optimal control algorithms. 

Necessary Conditions of Optimality 

Indirect methods optimize the cost functional J from Eq. (1.1) by formulating a 

two-point or multi-point boundary value problem (BVP) that represents the necessary 

conditions of optimality. If these boundary conditions are satisfied, the solution will 

be locally optimal in the design space. In order to derive the necessary conditions, the 

dynamic equations of the system are augmented with a set of mathematical variables 

called costates. The BVP representing the necessary conditions of optimality is then 

formulated by applying the Euler-Lagrange equation [71]. 

The Hamiltonian is defined as shown in Eq. (1.7), where λ is the costate vector 

with its corresponding dynamic equations defined in Eq. (1.8). The optimal control 

law, u(t), is obtained as a function of the states and costates by solving Eq. (1.9). The 

initial and terminal boundary conditions on the costates are specified in Eqs. (1.10) 

and (1.11), where ν0 and νf are sets of undetermined parameters which are used 

to adjoin the state boundary conditions to the cost functional. If the total-time of 

the trajectory is not specified, it is determined by the free-final time condition in 

Eq. (1.12). The necessary conditions of optimality are defined by Eqs. (1.8–1.12), 

and they form a well-defined Two-Point Boundary Value Problem (TPBVP) that 

can be solved using the shooting method and other numerical solvers as described in 

Section 1.4. 

H = L(x, u, t) +  λT (t)f(x, u, t) (1.7) 

https://1.8�1.12


� �
� �

12 

∂H
λ̇ = − (1.8)

∂x 
∂H 

= 0  (1.9)  
∂u 

λ(t0) =  − ν0 
T ∂Ψ 

(1.10)
∂x(t0) 

∂φ ∂Φ 
λ(tf ) =  + νf 

T (1.11)
∂x(tf ) ∂x(tf ) 

∂φ ∂Φ 
H + + νf 

T = 0 (1.12)
∂t ∂t t=tf 

Path Constraints & Interior Point Constraints 

The presence of path constraints and interior point constraints further complicates 

the boundary conditions by introducing corner conditions in certain costates and 

effectively splitting the trajectory into multiple arcs. This may also introduce corners 

in the control profile at the junction points of these arcs, where the derivative of the 

control is discontinuous. Path constraints are usually of the form shown in Eq. (1.13). 

In order to obtain the control law for the constrained arc, time derivatives of the path 

constraints are taken until the control variable appears explicitly. Assuming that this 

happens with the qth derivative, the Hamiltonian is augmented as shown in Eq. (1.14), 

and the control law for the constraint boundary is obtained by solving S(q) = 0.  

S(x, t) ≤ 0 (1.13) 

H = L + λT f + μT S(q) (1.14) 

The addition of path constraints also modifies the dynamic equations of the 

costates along the constrained arcs as shown in Eq. (1.15), where the multipliers 

μ are calculated by solving Eq. (1.16). 

˙ − μT S(q)λ = − 
∂H 

= −Lx − λT fx (1.15)
∂x x 

∂H 
= Lu + λT fu + μT S(q) = 0 (1.16)

∂u u 
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The states are continuous at the entry (t1) and exit (t2) of the constrained arc as 

shown in Eq. (1.17). Corner conditions on costates are chosen such that the costates 

are continuous at the exit of the constrained arc as shown in Eq. (1.18). The tangency 

conditions described in Eq. (1.19) and corner conditions in Eq. (1.20) and Eq. (1.21) 

apply at the entry point of the constrained arc. 

x(t1
+) =  x(t1 

−) 
(1.17) 

x(t2
+) =  x(t2 

−) 

λ(t2
+) =  λ(t2 

−) 
(1.18) 

H(t2
+) =  H(t2 

−) 

⎤⎡ 

N (x, t) =  

               ⎣ 

S(x, t) 

S(1)(x, t) 

S(2)(x, t) 

· 
· 
· 

S(q−1)(x, t) 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(1.19) 

λ(t1
+) =  λ(t1 

−) +  ΠT Nx (1.20) 

H(t1
+) =  H(t1 

−) +  ΠT Nt (1.21) 

Interior point constraints are very similar to the tangency conditions in a path 

constraint, described in Eq. (1.19). It can be considered to be a case where the 

constrained arc is infinitesimally small. The states remain continuous across the 

“junction”, but the costates and the Hamiltonian may have jump conditions imposed 

on them. An interior point constraint is defined as shown in Eq. (1.22) at some 

interior time, t1. Introducing interior point constraints into the problem results in 
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the continuity and corner conditions in Eq. (1.23), where Π is a vector of unknown 

parameters. 

N (x(t1), t1) = 0 (1.22) 

x(t1 
−) =  x(t1

+) 

λ(t1 
−) =  λ(t1

+) +  ΠT Nx (1.23) 

H(t1 
−) =  H(t1

+) +  ΠT Nt 

The Multi-Point Boundary Value Problem (MPBVP) resulting from applying the 

necessary conditions of optimality discussed above, can be solved using the multiple 

shooting method. The biggest challenge to use this approach for solving constrained 

problems is that the sequence of constrained and unconstrained arcs must be known 

a-priori in order to set up the multi-point boundary value problem. This is usually 

impractical for real-world problems, especially when there are multiple path inequal-

ity constraints which may be active or inactive at multiple points along the trajectory. 

One of the goals of this dissertation is to formulate an alternative method to incorpo-

rate path constraints into optimal control problems without requiring knowledge of 

the arc-sequence while still retaining the ability to use existing numerical BVP solver 

algorithms. 

Recent Advances in Rapid Design using Indirect Methods 

Indirect methods are often cited as impractical for use in complex problems owing 

to three main reasons [10]. 

• Use of indirect methods require knowledge of optimal control theory and deriva-

tion of necessary conditions of optimality 

• It is difficult to ascertain the correct sequence of unconstrained and constrained 

arcs a-priori when the problem includes path inequality constraints in state 

and/or control variables. 
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• Providing a good initial guess to start the numerical solution process is very 

challenging. 

Recent developments in this field has however helped overcome some of these 

challenges to a certain extent. The formulation of the necessary conditions mostly 

involves taking derivatives and some analytical root-solving in the case of deriving 

the optimal control law [12]. While these may be difficult, error-prone, and possibly 

impractical to do by hand [9], the advent of modern symbolic math engines has made 

it so these operations can be completely automated. Symbolic math engines such as 

SymPy [72], Mathematica [73] and the MATLAB Symbolic Math Toolbox [74] allow 

the automatic derivation of the necessary conditions of optimality without requiring 

any knowledge of optimal control theory on the part of the designer. The MATLAB 

symbolic toolbox and Mathematica have been used successfully to derive the necessary 

conditions for real-world nonlinear systems [14,75] including some involving elaborate 

analytical hypersonic aerodynamic equations [16]. Ref. 15 demonstrates how this 

method can be extended to incorporate higher fidelity aerodynamic and atmospheric 

models into optimal control problems while still using indirect methods. In contrast, 

direct methods, especially pseudospectral and collocation methods, are able to handle 

path inequality constraints in optimization problems as part of the NLP formulation 

as described in Section 1.2.2. 

References 13 and 14 illustrate a homotopy continuation method for introducing 

path constraint arcs one at a time which allows the use of indirect methods without 

knowing the sequence of arcs a-priori. While this method can certainly be used to 

solve some non-trivial aerospace problems as demonstrated in the works cited above, 

the handling of path constraints using indirect methods remains a challenging task. 

The continuation methodology only works in those cases where the constrained arcs 

can be introduced one at a time into an unconstrained trajectory. The method be-

comes more difficult to use if the constraints are active at the beginning or end of the 

trajectory or if multiple constraints are active in the same region of the trajectory. 

Optimal control theory requires the trajectory to be split into phases at any point that 
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a constraint becomes active or inactive. This results in what is called a multi-point 

boundary value problem (MPBVP), which has boundary conditions at multiple inte-

rior points along a trajectory. These MPBVPs can be challenging to solve numerically 

as they grow larger. The homotopy approach therefore fails to scale as the number of 

constraints increases, or if one or more constraints are active multiple times. This is 

one of the key motivations for seeking a new way of formulating path constraints in 

indirect methods. One of the goals of this research is to formulate a general method to 

simplify the handling of path constraints when using indirect methods. This is further 

examined in Chapter 2 which describes a new, systematic method for incorporating 

path constraints in optimal control problems – the Integrated Control Regularization 

Method (ICRM). 

The requirement for an accurate initial guess is still a challenge when using indi-

rect methods, especially for sensitive problems. The use of a homotopy continuation 

method can resolve this issue to a certain extent. This process is detailed in Sec-

tion 1.3. 

1.3 Continuation 

One of the major drawbacks of indirect methods mentioned in Section 1.2.3 was 

the requirement for an accurate initial guess for solutions to reliably converge. In 

Ref. 76, a coarse approximation from a particle swarm optimizer is used to generate 

initial guess for costates to be used in an indirect solver. One strategy for generating 

an initial guess is by starting with analytic solutions of a related, but simpler problem. 

Continuation builds on this idea and bypasses the need for an accurate initial guess 

by first solving a trivial problem and then gradually changing it until it becomes the 

desired problem. The solution from the prior step is used as the initial guess for each 

subsequent step. This method relies on the inherent connectedness among families of 

optimal solutions. It is even useful for enhancing direct methods when solving certain 

difficult problems as noted in Ref. 77. 
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In Ref. 14, the maximum terminal energy trajectory for a hypersonic mission 

was calculated using indirect methods and continuation. The problem consisted of 

a hypothetical high-lift hypersonic vehicle with angle-of-attack and bank angle as 

the controls. The hypothetical mission had post-boost/impact geometry constraints 

as well a peak heat-rate path constraint. In order to seed the continuation process, 

it was necessary to supply it with a relatively simple trajectory as an initial guess. 

Since the objective was to maximize the velocity at impact, a simple trajectory that 

could be solved easily was one that flies nearly straight down from the assumed 

post-boost staging condition. The optimal trajectory for reaching a target almost 

directly underneath the staging location, with maximum velocity, would be a near-

ballistic trajectory that minimizes the drag coefficient of the vehicle. Hence, the Allen 

and Eggers trajectory solution [78] for ballistic trajectories was used to construct a 

high quality initial guess to this optimization problem. The costates for this initial 

trajectory were constructed by reverse integration from the terminal point. 

This initial guess trajectory, being very close to the optimum, rapidly converges 

to a solution. Starting with this solution, the targeted location is moved until it 

matches the desired terminal conditions as shown in Figs. 1.1 and 1.2. At the end 

of this process, a maximum terminal velocity trajectory connecting the post-boost 

staging location and the targeted impact location is obtained. 

A similar approach can also be used to introduce path constraints one at a time 

into an unconstrained solution. A new constrained arc is introduced at the point of 

maximum constraint violation and then the constraint limit is changed using con-

tinuation until the desired value is reached. This is a viable strategy for use with 

problems containing one or two constraints and is described in Refs. 13, 14, and 15. 

This strategy is also used later in Sections 2.8.1 and 2.8.3. 

In all of the test cases in the later sections of this dissertation, a continuation 

strategy is used when solving complex optimal control problems. In most of these 

scenarios, the initial guess is created by propagating the dynamic equations of the 

system for a short period of time (typically 0.1 seconds), using a constant initial guess 
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Figure 1.1. Side View of Trajectory during Continuation Process [79] 

Figure 1.2. Full Extension of Trajectory to Final Target [79] 
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for the costates. The boundary conditions are then changed gradually in a series of 

steps until the desired solution is obtained. Ref. 80 shows a more advanced method of 

performing continuation by using a graph-search methodology. Such methods allow 

for further automation of continuation requiring even lesser intervention from the 

designer. 

1.4 Overview of Numerical Methods for Boundary Value Problems 

1.4.1 Introduction 

Most real-world trajectory optimization problems involve nonlinear dynamic equa-

tions for which closed-form analytical solutions cannot be found. Both direct and indi-

rect methods face challenges when the number of states and constraints in a problem 

increase beyond a certain limit. Direct pseudospectral methods rely on nonlinear 

programming solvers such as SNOPT [38]. Trajectory problems with a large number 

of states and constraints are very difficult to solve using direct methods because the 

underlying parameter optimization methods often experience a significant increase in 

computation time as the problem grows larger. When using direct methods, it is of-

ten required that certain workarounds be used to decrease the dimensionality of large 

scale optimization problems to a manageable level. One example of this can be seen 

in Ref. 81 where the covariance matrix is propagated separately during the evaluation 

of the cost function in order to make the problem computationally feasible. 

In case of the indirect methods, the ability to rapidly and reliably solve nonlinear 

boundary value problems is very important. Though there is a large body of work in 

the literature about numerical methods for solving boundary value problems, there 

still exist challenges and a need for improvement of current methods. Some of these 

issues are: 

• Significantly reducing the computational intensity of the algorithms 
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• Designing the algorithms to leverage emerging parallel computing architectures 
especially when solving large dimensional problems 

Even if multiple path constraints can be addressed in indirect methods (Chap-

ter 2), the ability to efficiently solve these large nonlinear boundary value problems 

in a reasonable amount of time is still very important. While a two-point boundary 

value problem is certainly easier to solve than a multi-point boundary value problem, 

they still pose a significant challenge once they become sufficiently large. Leveraging 

highly parallel computing resources such as Graphics Processing Units (GPUs) and 

multi-core processors could be crucial in rapidly solving these large boundary value 

problems. 

The computational speeds of monolithic CPU processors have plateaued in the last 

decade. The technology is trending towards highly parallel architectures [82]. Hence 

it would be prudent for new computational methods to be designed to take advantage 

of highly parallel computational architectures such as GPUs and multi-core CPUs. 

The computational architecture of a GPU is significantly different from a conventional 

CPU processor. Adapting an algorithm to run on a GPU or on multiple CPUs requires 

careful design of operations and data structures to fully leverage the architecture. 

There are many factors to consider, the key among which, is the inherent parallelism 

of an algorithm. Parallel processors are best used for algorithms that involve large 

numbers of independent compute-intensive operations, without requiring much cross-

communication. As such, the design of an inherently parallel numerical method for 

solving boundary value problems is detailed in Chapter 3. 

The two main classes of numerical methods for solving boundary value problems 

are shooting methods and collocation methods. 
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1.4.2 Single Shooting Method 

If X is the augmented state vector consisting of both the states and costates as 

shown in Eq. (1.24a), a TPBVP resulting from a trajectory optimization problem 

takes the form described by Eqs. 1.24b–1.24c. ⎡ ⎤ 
x ⎣ ⎦X = (1.24a) 
λ 

b(X0,Xf ) = 0 (1.24b) 

Ẋ(t) =  f(X, t) (1.24c) 

where X0 and Xf are the values of X at the times t0 and tf respectively. 

The single shooting method root-solves for the values of X0 and Xf that satisfy 

these conditions. In order to do so, an initial guess for X0 is used to propagate the 

dynamic equations of the system (Ẋ ). Along with the dynamic equations we also 

propagate equations describing the sensitivity of the system which form the state 

transition matrix (STM), Φ. Φ(tf ) and  Xf are obtained by propagating Eqs. (1.24c) 

and (1.25) and are used to evaluate the residual error ( ) in the boundary conditions, 

i.e., the value of b(X0,Xf ). 

∂f
Φ̇ =  F · Φ, F  = , Φ(t0) =  IN (1.25)

∂X 

This residual is used to compute a correction (ΔX0) which is then used to update 

the initial guess, as shown in Eqs. (1.26a–1.26e). If the initial guess is sufficiently 

close to the solution, a series of such updates will drive the residual error to zero 

leading to a converged solution. 
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b(X0, Xf ) =  (1.26a) 

b(X0 +ΔX0, Xf ) = 0 (1.26b) 

=⇒ b(X0 +ΔX0, Xf ) − b(X0, Xf ) =  − (1.26c) 

Using a first-order expansion of the above expression, 

db 
b(X0, Xf ) +  ΔX0 − b(X0, Xf ) =  − 

dX0 
(1.26d) 

∂b ∂b ∂Xf 
=⇒ + ΔX0 = − (1.26e)

∂X0 ∂Xf ∂X0 

The correction vector ΔX0 is obtained by solving the linear system in Eq. (1.27). 

(M + NΦ) ΔX0 = − (1.27) 

where M and N are the Jacobian matrices, obtained by taking partial derivatives 

of the boundary conditions b with respect to X0 and Xf respectively, and Φ is the 

sensitivity matrix of the system. This is called the single shooting method. 

1.4.3 Multiple Shooting Method 

When a trajectory optimization problem contains path inequality or interior point 

constraints, the trajectory is split into multiple arcs, with the possibility of discon-

tinuities at the junctions. These boundary value problems are called multi-point 

boundary value problems (MPBVP). The problem may also contain scalar parame-

ters such as the Lagrange multipliers, ν0, νf , and  π, that have to be solved along 

with the state and costate trajectories. In such cases, the correction vector is com-

puted using an extension of the single shooting method, called the multiple shooting 

method. The general form of a MPBVP is as follows: 
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s11 

Arc 1 

s2 
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Figure 1.3. A Multi-Point Boundary Value Problem. 

b(s1, sf1, s2, sf2 . . . sn, sfn,p) = 0  

ṡ = 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

f1(t, s) if  t0 ≤ t ≤ t1 

f2(t, s) if  t1 ≤ t ≤ t2 

. . . 

fn(t, s) if  tn−1 ≤ t ≤ tn 

where s1, s2, . . ., sn are the values at the left endpoints of the arcs, sf1, sf2,  . . . ,  sfn  

are the values at the right endpoints of the arcs as shown in Fig. 1.3, and p is the set 

of scalar parameters. 

To solve this problem, we first compute a Jacobian matrix J , which is of the form: 

J = · · ·  M + N (1.28)M1 + N1Φ1 M2 + N2Φ2 n nΦn Jp 
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∂b ∂b ∂b 
M1 = ,M2 = , · · ·  Mn = ,

∂s1 ∂s2 ∂sn 

∂b ∂b ∂b 
N1 = , N2 = · · ·  Nn = , (1.29)

∂sf1 ∂sf2 ∂sfn  

∂b 
Jp = 

∂p 

The sensitivity matrices for each arc is computed separately as Φ1,Φ2, . . . Φn. The  

correction vector Δs will consist of corrections to s1, s2,  . . . ,  sn and p, and it is 

computed by solving the following linear system. 

JΔs = − (1.30) 

Prior work has shown that it is possible to accelerate the multiple shooting method 

by leveraging GPUs [30] or multi-core processors [32]. However, the fundamentally 

sequential nature of the shooting method limits the degree to which it can be paral-

lelized. This motivates the need for the development of better numerical algorithms 

which are implicitly parallel in nature and can hence better leverage parallel proces-

sors. 

1.4.4 Collocation 

Collocation methods that use piecewise polynomials, similar to the ones used for 

direct optimization, can also used for solving boundary value problems [83–86]. One 

of the most widely used versions of collocation is implemented in MATLABś bvp4c 

and bvp5c solvers, based on work by Shampine [87–89]. 

The collocation method implemented in bvp4c was originally designed to solve 

two-point boundary value problems of the form: 

y = f(x,y,p), a ≤ x ≤ b (1.31a) 

b(y(a),y(b),p) = 0 (1.31b) 
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where x is the independent variable, y the vector of dynamic states, and p a vector 

of unknown parameters. The method was later expanded to also solve multi-point 

boundary value problems. 

The approximate solution S(x) is expressed as a continuous function consisting of 

piecewise polynomials defined on a discrete mesh. It satisfies the boundary conditions, 

b(S(a), S(b), p) = 0, and satisfies the differential equations of the system at both ends 

and mid point of each sub-interval. These conditions are defined mathematically as: 

S (xn) =  f(xn, S(xn)) (1.32a) 

S ((xn + xn+1) /2) = f(((xn + xn+1) /2, S((xn + xn+1) /2)) (1.32b) 

S (xn+1) =  f(xn+1, S(xn+1)) (1.32c) 

Eqs. (1.32) define a set of nonlinear algebraic equations that can be solved to 

obtain the coefficients of S(x). The residual error in the differential equations is then 

defined as 

r(x) =  S (x) − f (x, S(x), p) (1.33) 

and the residual error in boundary conditions as b (S(a), S(b), p). The size of 

the residual error is used to control the mesh size depending on the error tolerance 

specified by the user. Ref. 90 describes an adaptive mesh selection strategy that 

be used to control the true error, e(x) =  S(x) − y(x), allowing the use for tighter 

tolerances on coarser grids. This strategy is used by MATLAB’s bvp5c solver for 

mesh refinement. 

Unlike shooting methods, when using collocation the solution is approximated over 

the whole interval [a, b]. The nonlinear algebraic equations are solved iteratively after 

linearization. In certain problems, this results in more numerical stability for solving 

sensitive problems. However, bvp4c and associated methods still suffer the same 

drawbacks as direct collocation when solving large-dimensional problems with highly 

nonlinear dynamics. The collocation method as it currently exists is not inherently 
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parallel and therefore is not able to effectively leverage parallel processors. Some prior 

work has shown that a GPU implementation of multiple shooting offers a speed-up 

of 2x-4x over bvp4c for relatively small optimization problems [30]. 

Another class of boundary value solvers exist that are very similar to collocation 

methods in terms of how they discretize the solution space. These are the Chebyshev-

Picard Iteration algorithms [31,91,92] further described in Chapter 3. These methods 

approximate the solution using Chebyshev polynomials and use the Picard-Lindelöf 

Theorem [93] to perform solution updates that do not require partial derivative infor-

mation. The numerical operations in these algorithms mainly consist of matrix-vector 

operations which are highly parallelizable. The new parallel numerical method devel-

oped in Chapter 3 is based on this class of methods. 

1.5 Trajectory Optimization Frameworks 

Many trajectory optimization tools exist that use direct methods such as GPOPS 

[6], DIDO [7], the Optimal Trajectories by Implicit Simulation Tool (OTIS) [94], and 

the Program to Optimize Simulated Trajectories (POST) [95]. DIDO uses a Legendre-

Gauss-Lobatto mesh for discretization while GPOPS uses a Legendre-Gauss mesh. 

Both methods are implemented in MATLAB [96] and have been used to solve a wide 

range of trajectory optimization problems. DIDO has been used to solve trajectory 

and maneuver problems for both aircraft [97] and spacecraft [63, 98, 99], reusable 

launch vehicles [62], and many other real-world problems [64]. It also made history 

from a mathematical perspective as it was the first ever use in-flight of Pseudospectral 

optimal control theory when the Zero Propellant Maneuver (ZPM) experiment was 

successfully deployed on the International Space Station (ISS) in 2006 [22]. However, 

it is to be noted that the trajectory for the ZPM was computed on the ground 

and uploaded to the ISS where it was tracked using traditional controllers. The 

pseudospectral method was not adopted for real-time computation on flight hardware. 

Similarly, GPOPS has been applied to a wide variety of optimal control problems [100– 
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102] as well. There are also open-source tools such as PSOPT [103] which implements 

pseudospectral methods, sparse nonlinear programming, automatic differentiation, 

and incorporates automatic scaling and mesh refinement facilities. 

There are no similar generalized trajectory optimization frameworks that are 

based on indirect methods, primarily due the challenges in using indirect methods. 

In Ref. 104, a prototype indirect trajectory optimization framework was developed 

in MATLAB that used MATLAB’s Symbolic Computing Toolbox for deriving the 

necessary conditions of optimality and bvp4c as the numerical BVP solver. This 

framework was further expanded in Ref. 30 to include a GPU-accelerated multiple 

shooting solver. These works form the starting point for the development of a gener-

alized rapid trajectory optimization framework that leverages indirect methods. The 

fourth contribution in this dissertation is the development of an open source, expand-

able trajectory optimization framework with the goal of making indirect methods as 

accessible and easy-to-use as direct methods. This is discussed further in Chapter 5. 

1.6 Outline 

Chapter 2 explains the development of the Integrated Control Regularization 

Method (ICRM) for incorporating path constraints in optimal control problems when 

using indirect methods. This method is based on the regularization of path inequality 

constraints using saturation functions to convert them into equality constraints. The 

results of this method are validated using known optimal control problems by compar-

ing them against the results obtained using either the Euler-Lagrange equations [12] 

or GPOPS [6]. ICRM is then used to perform some trade studies and analysis of a 

two-vehicle co-operative engagement scenario. 

Chapter 3 details a new numerical method for solving two-point boundary value 

problems, called the Quasilinear Chebyshev Picard Iteration (QCPI). The algorithm 

is inherently parallel and is hence capable of leveraging parallel computing resources 

such as multi-core CPUs. The algorithm is implemented in the Python [105] pro-
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gramming language and accelerated using the Numba [106] Just-In-Time compiler to 

automatically parallelize the code and enable it to utilize multiple-core processors. 

The results are validated using some known optimal control problems. The perfor-

mance of the solver is also benchmarked against the multiple shooting algorithm for 

a multi-vehicle trajectory optimization problem. 

Chapter 4 uses the methods developed in the previous chapters to solve a repre-

sentative large problem consisting of multiple vehicles and constraints. The scenario 

is based on the relatively simple kinematic model used in Ref. [107] and showcases 

some of the complex interactions and cross-coupling effects that appear in optimal 

trajectories of multiple vehicles. This chapter also demonstrates the capabilities of 

QCPI in solving large-dimensional nonlinear boundary value problems. 

Chapter 5 describes the design and usage of an open source rapid trajectory op-

timization framework which uses indirect methods. The framework includes multiple 

numerical solvers and optimal control strategies and also has the potential for expan-

sion by providing a flexible API. Initially implemented with a single shooting based 

solver and conventional optimal control theory, the framework is further expanded to 

include support for ICRM and QCPI detailed in the preceding chapters. All of the 

examples described in this dissertation are implemented using this framework. 

Chapter 6 summarizes the contributions of this dissertation and details future 

work for improving QCPI, ICRM, and possible additions to the indirect trajectory 

optimization framework. 

1.7 Contributions of Thesis 

The goal of this dissertation is to advance the state-of-the-art in rapid trajectory 

optimization methods for the purpose of addressing large-scale optimal control prob-

lems using indirect methods. This section lists out the specific contributions made in 

this work. 
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A new method of handling path constraints in indirect methods using 

saturation functions and posing the BVP as a semi-explicit DAE is devel-

oped. The addition of path constraints to optimal control problems is considered a 

challenging task when using indirect methods. When deriving the necessary condi-

tions of optimality, path constraints cause the trajectory to be split into a sequence 

of constrained and unconstrained. The order of these arcs have to be known a-priori 

for numerical solution of these multi-point boundary value problems. While using a 

continuation method to introduce constrained arcs one at a time is possible, it does 

not scale if the constraint is active multiple times or if there are multiple constraints. 

The Integrated Control Regularization Method (ICRM) allows the addition of one or 

more path constraints to an optimal control problem while maintaining the solution 

as a single arc. The method is designed so that the resulting BVP can be solved 

using existing numerical BVP solvers. The capabilities of ICRM are demonstrated 

by using it to analyze a constrained, two-vehicle optimal control problem. 

A new numerical method for solving two-point boundary value prob-

lems is developed that is inherently parallel and is capable of leverag-

ing parallel computing architectures. The new method, called the Quasilinear 

Chebyshev Picard Iteration (QCPI), uses Chebyshev polynomials for global approx-

imation of the solution and can be applied to a wide range of nonlinear two-point 

boundary value problems. This is an expansion of the Modified Chebyshev Picard 

Iteration [31] algorithm which was only capable of addressing a limited class of BVPs. 

By using the Picard Iteration and the Modified Quasi-linearization Algorithm [108], 

the explicit computation of the sensitivity matrix is avoided. Only the partial deriva-

tives of the boundary condition functions are computed while that of the dynamic 

equations are not required. The algorithm consists mostly of matrix-vector multipli-

cation operations which can be parallelized very effectively. The performance of the 

algorithm is benchmarked against existing numerical methods using a multi-vehicle 

trajectory optimization problem. 
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The two methods developed in this dissertation is applied to a large constrained 

multi-vehicle problem. Trade studies are performed to analyze the effects of chang-

ing various problem parameters and constraints to illustrate the cross-coupled dynam-

ics and non-intuitive trajectory changes that occur in such problems. 

A generalized open source, rapid trajectory optimization framework 

using indirect methods is the third contribution of this dissertation. The  

optimization framework is capable of automatically deriving the necessary conditions 

of optimality without requiring any knowledge of optimal control theory on the part 

of the designer. The framework is also designed with a rich API that allows expansion 

with new optimal control algorithms and numerical methods and even allows imple-

mentation of direct methods, if required. The various features and design elements 

of this framework are discussed in detail. 
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2. INTEGRATED CONTROL REGULARIZATION 

METHOD (ICRM) 

2.1 Overview 

Handling of path-inequality constraints via optimal control theory is, in general, 

non-trivial. This is mitigated to a certain extent by using continuation and introduc-

ing constraints into the unconstrained problem one at a time [13]. Ref. 109 shows a 

method of regularizing bang-bang control problems with singular arcs into a two-point 

boundary value problem. Ref. 110 expands this concept further to apply to general 

optimal control problems with bounded control variables. However, this method 

based on trigonometry is not able to address path inequality constraints containing 

state variables. A more generalized method is presented in Ref. 111 by which state 

and control inequality constraints can be systematically incorporated into an optimal 

control problem while using indirect methods. Unlike in conventional optimal control 

theory, this method retains the trajectory as a single arc in the presence of multiple 

path constraints. This original formulation of regularized path constraints resulted 

in a semi-explicit differential algebraic equation formulation of the boundary value 

problem. This DAE-BVP required the use of a custom numerical solver due to extra 

algebraic equations adjoined to the BVP that do not have closed form solutions. In 

Ref. 111 a numerical solver based on collocation was developed in order to address 

this problem. This solver, as it is based on collocation, may not be suitable for 

parallelization and likely suffers from scalability issues as the problem size grows. 

To overcome these challenges, a new way of formulating optimal control problems 

is proposed. In this method, the optimal control law is obtained, not by analytically 

solving algebraic equations in the traditional manner, but by adjoining the algebraic 

equations to the BVP to form an extended BVP with extra differential equations rep-
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resenting the controls. This allows the control variables to be numerically integrated 

rather than directly obtained from closed form control laws. This is also called index-

reduction of differential algebraic equations [112,113] and it comes with its own set of 

challenges such as some numerical difficulties as described in Section 2.3. However, 

as illustrated in the later parts of this chapter, the method is still capable of solving 

non-trivial constrained optimal control problems including some hypersonic trajec-

tory problems. While differentiating an existing control equation and numerically 

integrating it may seem counter-intuitive, it greatly simplifies the process of solving 

complicated optimal control problems as described in later sections. 

The use of saturation functions to regularize path constraints and numerically 

integrating the control greatly changes and simplifies the general approach to solving 

large-scale trajectory optimization problems with path constraints. This method is 

termed the Integrated Control Regularization Method (ICRM). 

2.2 Regularization of Path Inequality and Control Constraints 

In the original work, it was shown that path constraints can be regularized by 

representing them as smooth saturation functions. While this method is closely re-

lated to how a path constraint can be implemented using a penalty function, Ref. 111 

shows that by using saturation functions it is possible to ensure that the constraints 

are never violated during the numerical solution process. This intrinsic property of 

the saturation function method guarantees that the numerical solver is never work-

ing with an infeasible solution. As an example, consider a general optimal control 

problem with a path constraint as follows: 

T 

Min J = φ(x(T ), T ) +  L(t,x,u) dt 
0 

(2.1)ẋ = f(t,x,u), Φ(x(0),x(T )) = 0 

Si(x) ∈ [Si 
−, Si 

+], i = 1  . . . p  
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where Si(x) represents the path constraints in the problem. The constraint is 

replaced by a suitable saturation function, ψ: 

Si(x) =  ψ(ξi,1), i = 1  . . . p  (2.2) 

Eq. (2.2) is successively differentiated w.r.t time, and new coordinates, ξ̇ 
i,j = ξi,j+1, 

are introduced, until a control variable appears. For example, if Si(x) is of order 2:  

(1)
Si (x) =  ψ ξ̇ 

i,1 := h1, ξ̇ 
i,1 = ξi,2 

(2.3) 
S
(2)
(x) =  ψ ξi, 

2
2 + ψ ξ̇ 

i,2 := h2, ξ̇ 
i,2 = ueii 

Finally, an equality constraint, Si 
(q)
(x)−hq = 0 is also added to the problem along 

2with an added term 
0 
T 
�ueidt to the path cost, where uei is a new control variable, 

ξi,j are new state variables, and q is the order of the constraint. 

The resulting extended optimal control problem (OCP) which incorporates the 

path constraints is stated as: 

T 

Min J = Φ(x(T ), T  ) +  L(t, x, u) +  �u 2 
eidt (2.4a) 

0 

ẋ = f(t, x, u) (2.4b) 

ξ̇ 
i,1 = ξi,2 (2.4c) 

ξ̇ 
i,2 = uei (2.4d) 

h2(t) − Si 
(2)
(x(t)) = 0 (2.4e) 

Φ(x(0), x(T )) = 0 (2.4f) 

Si (0, x(0)) − ψ(ξ(0)) = 0 (2.4g) 

Si 
(1) 
(0, x(0)) − h1(0) = 0 (2.4h) 

Applying optimal control theory to the extended OCP in Eq. (2.4), the Hamilto-

nian is defined as: 

2 (2)
H = λT f + L + �uei + ηi,1ξi, ˙ 1 + ηi,2ξi, ˙ 2 + μi,1 h2 − Si (x) (2.5) 
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where λ is the vector of costates corresponding to the states x, ηi,1 and ηi,2 are 

the costates corresponding to ξi,1 and ξi,2, and  μi,1 is the Lagrange multiplier used 

to adjoin the equality constraint to the Hamiltonian. The extended boundary value 

problem is then formulated, consisting of the differential equations in Eq. (2.6), the 

boundary conditions in Eq. (2.7), and the algebraic conditions in Eq. (2.8). Combined, 

these three sets of equations constitute a differential algebraic equation boundary 

value problem (DAE-BVP). 

ẋ = f(t, x, u) (2.6a) 

ξ̇ 
i,1 = ξi,2 (2.6b) 

ξ̇ 
i,2 = uei (2.6c) 

∂H
λ̇ = − (2.6d)

∂x 
∂H 

η̇i,1 = − (2.6e)
∂ξi,1 

∂H 
η̇i,2 = − (2.6f) 

∂ξi,2 

Φ(x(0),x(T )) = 0 (2.7a) 

∂Φ 
λ(T ) =  (2.7b)

∂x 

ηi,1(T ) = 0 (2.7c) 

ηi,2(T ) = 0 (2.7d) 

Si (x(0)) − ψ(ξ(0)) = 0 (2.7e) 

Si 
(1)
(x(0)) − h1 = 0  (2.7f)  

∂H ∂H ∂H 
= 0, = 0, = 0  (2.8)  

∂u ∂uei ∂μi,2 

The process described above is repeated and extra states, controls, and Lagrange 

multipliers are added for each constraint Si(x). It is to be noted that the process of 
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taking derivatives of the constraint until the control appears (Eq. (2.3)) closely mirrors 

the procedure in optimal control theory as detailed in Section 1.2.3. However, instead 

of inserting a new arc with boundary conditions for every instance of a constraint, 

the BVP is extended with extra states and controls. 

In conventional optimal control theory, especially for unconstrained problems, the 

algebraic control equations are usually invertible and can be solved for the control 

variables, u, thereby eliminating them from the problem. There are cases where 

this is not possible in which case a computationally intensive numerical root-solving 

method may be attempted [15]. The resulting ODE-BVP is then solved using numer-

ical methods such as shooting or collocation. In the case of ICRM, the presence of 

saturation functions renders some of these algebraic equations transcendental making 

a closed-form solution impossible. In Ref. 111, a special numerical solver based on 

collocation was designed to solve these kinds of DAE-BVPs. In this dissertation, a 

method for converting these DAE-BVPs into ODE-BVPs is pursued in order to be 

able to solve these problems using existing numerical methods. This is especially 

important for scaling as it will then be possible to leverage existing parallel numerical 

solvers for this purpose. 

2.3 Differential Algebraic Equations 

Differential algebraic equations are equations of the following form: 

f(x , x, t) = 0 (2.9) 

If ∂F/∂x is non-singular, the DAE can be converted into an explicit ODE function 

that can be solved using ODE solvers. In this case, Eq (2.9) is defined as having an 

index of zero and can be called an implicit ODE. If ∂F/∂x is singular, F can be 

differentiated w.r.t t until it is possible to find a solution for x as a function of x and 

t. The number of derivatives required to obtain such a solution is called the index of 
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the DAE. Solving DAEs of high index is a non-trivial task and has been extensively 

examined in the literature [114–119]. 

In optimal control problems, a special form of DAEs are encountered: 

ẋ = f(x,u, t) (2.10a) 

0 =  g(x,u, t) (2.10b) 

n1 n2where x ∈ R and u ∈ R and are called the differential variable and the 

algebraic variable of the DAE respectively. This is called the semi-explicit form 

of DAEs [120]. Semi-explicit DAEs show up in many engineering models with ap-

plications ranging from process engineering and mechanical engineering to electrical 

engineering. f may denote the differential equations for the dynamics of the system 

while g may denote system invariants such as conservation of energy, charge, etc. In 

the case of optimal control problems, f will consist of the dynamic equations for the 

states and costates while g represents the control laws and equality constraints. 

References 121, 122, and 123 discuss numerical methods for solving semi-explicit 

DAEs. In some cases, g can be analytically inverted in order to eliminate u from 

the system (DAE of index 0). However, when there are custom numerical functions 

involved in the problem definition or if g(x,u, t) = 0 contains transcendental equa-

tions, a closed form solution is no longer possible. This means that the DAE then 

has an index greater than zero. In fact, this usually happens when ICRM is applied 

to an optimal control problem with path constraints. 

The index of the DAE in Eq. (2.10) can be reduced by one by differentiating it 

w.r.t t [120]. This is a method that is often used for solving problems of this form. 

gx(x,u, t)ẋ+ gu(x,u, t)u̇+ gt = 0 (2.11) 

If gu is non-singular, it is possible to obtain a closed form solution for u̇ , and  the  

DAE system is converted into an explicit ODE system. The caveat here is that this 

system requires consistent initial values for u for the numerical solution process to be 
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stable. Ref. 117 details a method for maintaining the consistency of the solution while 

using a Backward Differentiation Formula (BDF) method to solve the DAE. Ref. 112 

examines the numerical difficulties that may be encountered when this strategy is 

used for solving DAEs. Some of the main challenges cited in Ref. 112 are when the 

problem is of nearly higher index, i.e, when g is sometimes singular and when there 

are fast-changing transients in g. Some strategies for overcoming these challenges 

for certain types of DAEs are detailed in Refs 117, 124–126. These strategies involve 

using known system invariants as a way to stabilize the numerical method and may 

not be applicable as a universal answer to these issues. 

From the point of view of the numerical solution, it is desirable for the DAE to 

have an index which is as small as possible. As we have seen, a reduction of the index 

can be achieved by differentiating the constraints. As such, in this dissertation we 

use index-reduction by differentiation as described by Gear [120] to convert the DAEs 

into explicit ODEs which can be solved using existing numerical solvers. As shown 

in the later sections in this chapter, even with the possible numerical difficulties, this 

method is capable of solving complex optimal control problems. 

2.4 Numerically Integrated Optimal Control Law 

As described in the previous sections, when using indirect methods, an optimal 

control problem is first converted into a DAE-BVP. This boundary value problem has 

differential and algebraic conditions of the form in Eq. (2.12) where the control law 

equations, ∂H = 0 form the g function.
∂u 

ẋ = f(x,u, t) (2.12a) 

0 =  g(x,u, t) (2.12b) 

0 =  b(x(0),x(T )) (2.12c) 
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A closed-form solution for the control variables, u, is then obtained, if possible, 

by solving this equation, thereby eliminating them from the overall problem to obtain 

a BVP of the form shown in Eq. (2.13). However, the control law equation may have 

multiple solutions, requiring further effort to determine which option is the optimal 

one. In such a scenario, Pontryagin’s Minimum Principle [11] can be used to select 

the solution that minimizes the Hamiltonian. 

dx 
= f(t, x), b(x(0), x(T )) = 0 (2.13)

dt 

The application of saturation functions for regularization of path constraints results 

in a control law consisting of transcendental equations that generally have no closed 

form solution. The index-reduction strategy described in Eq. (2.11) is then used to 

formulate a new BVP in which dynamic equations are derived for the control variables. 

This process is detailed in Eq. (2.14). 

0 =  ∂xg(t, x, u)ẋ+ ∂ug(t, x, u)u̇+ ∂tg(t, x, u) 
(2.14) 

=⇒ ∂ug(t, x, u)u̇ = −∂xg(t, x, u)ẋ − ∂tg(t, x, u) 

The original algebraic constraint in Eq. (2.12b) is then added as a boundary 

condition at either the initial or terminal point to obtain a well-formed two-point 

boundary value problem in Eq. (2.15). It is very important when using this method 

that the initial values chosen for the control variables are consistent and satisfy the 

original control law. Starting with inconsistent values for the control variables can 

result in significant numerical instabilities when solving the BVP. 

dx 
dt 
= f(t, x, u) (2.15a) 

∂ug(t, x, u) u̇ = −∂xg(t, x, u) ẋ − ∂tg(t, x, u) (2.15b) 

g(t0, x(t0), u(t0)) = 0 (2.15c) 

b(x(0), x(T )) = 0 (2.15d) 
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It is assumed that Oug(t, x, u) is always non-singular for the entirety of the optimal 

trajectory. ICRM in its current form can only be applied for problems in which this 

condition holds. If Oug(t, x, u) is singular, the DAE is of a higher index and requires 

more sophisticated numerical methods for obtaining a solution. 

2.5 Candidate Saturation Functions 

There are many functions that can be used as saturation functions for path con

straint regularization. Some of the common examples are the sigmoid, arc-tangent, 

and hyperbolic tangent functions. Ref. 111 suggests the following saturation functions 

as candidates for path constraint regularization depending on the type of constraint. 

For one-sided constraints with an upper bound (S (x) ::; s+) or a lower bound 

(S(x) ~ s-), Eqs. (2.16) or (2.17) respectively may be used as saturation functions. 

These one-sided saturation functions are illustrated in Figure 2.1. 

1/J(~) = s+ - exp(-~) (2.16) 

1/J(~) = s- + exp(~) (2.17) 

c-' ------' --1. 

6 - One-sided SatFcn - Upper 
---- Upper limit 

4 - - One-sided SatFcn - Lower f-+--+---+-1 

---- Lower limit 
2 

-2 

-4 

-2 -1 0 
X 

1 2 

Figure 2.1. One-sided Saturation Functions 

For two-sided constraint, such as s- ::; S(x) ::; s+ , the following function based 

on the sigmoid function is suggested by the authors of Ref. 111. 
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s+-s- 4 
(2.18)1/J(~) = s+ - l + exp(m~)' m = s+ - s-

Eq. (2.18) is formulated so that the resulting function has a slope of one at~= 0. 

The two-sided saturation function is illustrated in Figure 2.2. From further analysis, 

it was found that these saturation functions are well behaved only if the constraint 

functions are normalized to have limits of ±1 as discussed in the next section. 

1.00 

0.75 +-+---+----+---~ ----+-I 

0.50 ➔--+-----+----+--/--+-

0.25 ➔--+-----+----+--✓---+----+-I 

0.00 

-0.25 

-0.50 
- Two-sided 5atFcn 

-0.75 ---- Lower limit 
-1.oo _ _________ 

1 
_________ _;: --- u~limit 

-2 -1 0 1 2 
X 

Figure 2.2. Two-sided Saturation Functions 

2.6 Constraint Normalization 

The nature of the saturation functions used requires that the constraint functions 

be normalized to have limits of ±1 before they can be regularized. If the constraints 

are not normalized, the saturation functions have to be modified on a case-by-case 

basis to change their rate of "switching" to achieve consistent results during regular

ization. 

For one-sided constraints and two-sided constraints with symmetric limits , nor

malization can be easily accomplished by dividing the constraint expression by the 

constraint limit as shown in Eqs. (2.19). Two-sided constraints with asymmetric lim

its will have to be split into separate one-sided constraints and normalized before 

regularization can be applied. 
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S(x)
S(x) ≤ S+ ⇒ ≤ 1 (2.19a)

S+ 

S(x) ≥ S− ⇒ 
S

S 
( 
− 

x) ≥ 1 (2.19b) 

S(x)−S ≤ S(x) ≤ S ⇒ −1 ≤ ≤ 1 (2.19c)
S 

2.7 Regularization Parameter, , and the Push-Off Factor 

As discussed before in Section 2.2, the regularization parameter, , is used to 

append an extra term to the path-cost for each path constraint added to the prob-

lem. This term, �u2 
e dt, converts the original problem into a multi-objective optimal 

control problem. forms the weighting factor in the objective functional for the mag-

nitude of the extra control variable, ue, added during constraint regularization. De-

pending on the order of the constraint, this control variable either directly influences 

the value of the saturation function representing the constraint or affects a derivative 

of the saturation function. For larger values of , reduction of ue will have a higher 

weightage in the path-cost, and therefore the optimal solution will have a smaller 

value for ue. This causes peak-value of the saturation function to be pushed further 

from its asymptotes, and therefore the effective constraint limit becomes smaller than 

its desired value. This creates a push-off factor between the optimal trajectory and 

the constraint. The relationship between the magnitude of this push-off factor and 

is highly problem dependent based on the relative magnitudes of the path constraint 

and the original cost functional. It is to be noted that this “push-off factor” is not a 

tunable parameter, but rather, an outcome of using ICRM. 

As is made smaller, the optimal solution generates larger values for the aug-

mented control, ue, which results in the saturation function getting closer to its 

asymptotic limits. If is reduced to zero, ue tends to infinity which corresponds 

to the multi-arc solution from conventional optimal control theory. While decreasing 
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ue allows the solution to very closely approach the constraint, this comes with the 

additional challenge of vanishing gradients as the saturation function approaches its 

limit. This also makes the problem numerically sensitive at the points where the con-

straint is active leading to difficulties when solving the BVP. The addition of extra 

nodes at these locations may significantly increase the computation time even in the 

case of BVP solvers capable of handling such numerically sensitive regions. 

In many of the examples that follow in this dissertation, a constrained optimal 

control problem is initially solved with a relatively large value of , followed by a 

reduction in using a continuation methodology. The push-off factor causes the 

constraints to be more restrictive initially and decreasing results in a “relaxation” 

of these constraints. For example, in the case of a control constraint, a larger value 

of restricts the effective control authority available resulting in sub-optimal results. 

Decreasing releases this artificial restriction allowing the solution to more closely 

approach the desired constraints. 

When a problem has multiple constraints, changing the value of for one con-

straint may affect the push-off factors for the other constraints simultaneously. This 

is because the relative magnitudes of the terms of the cost functional changes when 

one is modified, thereby changing the optimal value of ue for every constraint. An 

example of this phenomenon can be seen in Section 2.8.4. 

Choosing a feasible value for for each constraint is required in order to use ICRM. 

If the chosen value of is too large, the effective “cushion” around the constraint limit 

might make the problem infeasible. Conversely, if the initial value of is too small, 

the problem may become too numerically sensitive and difficult to solve. The value 

of is currently chosen by trial and error because its effect on the solution is highly 

problem-specific. A possible strategy for automatic selection of is discussed in 

Section 6.2.1. 
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2.8 Validation 

Some representative constrained trajectory optimization problems were solved us-

ing ICRM, and the results were validated by solving the same using conventional 

optimal control theory or using GPOPS. The necessary conditions of optimality for a 

modified version of the Brachistochrone problem with a path constraint are derived 

for both ICRM as well as conventional optimal control theory to demonstrate the 

simplification of the process. The control histories and trajectories are compared to 

validate that the ICRM solution is very close to the optimal solution. The same is 

done for some other representative problems, namely the one-dimensional free-flight 

problem with a control constraint and a hypersonic trajectory problem with a heat-

rate and control constraint. 

2.8.1 Constrained Brachistochrone Problem 

The first validation problem is a modified version of the classical Brachistochrone 

problem with a linear path constraint. The constraint is positioned such that the 

optimal trajectory is restricted from going as far down the y direction as it does in 

the unconstrained case. The optimal constrained trajectory follows the constraint 

where required and then goes back to a time-optimal path. The results are validated 

by solving the same problem using conventional optimal control theory formulating 

it as a multi-point boundary value problem and comparing the solutions. 
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Problem Statement: 

Min T (2.20a) 

Subject to : 

ẋ = v cos θ (2.20b) 

ẏ = v sin θ (2.20c) 

v̇ = g sin θ (2.20d) 

x(0) = y(0) = 0, x(T ) =  −y(T ) = 10 (2.20e) 

g = −9.81 (2.20f) 

x+ y ≥ −1.0 (2.20g) 

where θ is the control. 

Necessary Conditions of Optimality - MPBVP 

Applying conventional optimal control theory (Section 1.2.3), the constrained op-

timal control problem is posed as a multi-point boundary value problem (MPBVP). 

The necessary conditions of optimality have to be derived for two cases – when the 

constraint is inactive (x+y > −1.0) and when the constraint is active (x+y = −1.0). 
When the constraint is inactive, the Hamiltonian is defined as: 

H = λxv cos θ + λyv sin θ + λvg sin θ + 1.0 (2.21) 
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where λx, λy and λv are costates. The dynamic equations for the costates are defined 

as 

λ̇ 
x = − 

∂H 
= 0 (2.22a)

∂x 
∂H 

λ̇ 
y = − = 0 (2.22b)

∂x 
∂H 

λ̇ 
v = − 

∂x 
= −λx cos θ − λy sin θ (2.22c) 

(2.22d) 

The control law is found by solving the following equation: 

∂H 
= gλv cos θ − λxv sin θ + λyv cos θ = 0 (2.23a)

∂θ 
1 

2λ2 2 + λ2 2=⇒ θ = −2 atan  λxv ± g + 2gλvλyv + λ2 v v (2.23b)
gλv + λyv v x y 

Since there are two control options, the optimal value is found by evaluating the 

Hamiltonian and choosing the one which gives the minimum value (Pontryagin’s 

Minimum Principle). The only added boundary conditions are λv(T ) = 0, since v(T ) 

is unconstrained and H(T ) = 0 since the T is unconstrained. 

When the constraint is active, the Hamiltonian is different, and, consequently, the 

costates have different dynamics and the control law is different. In order to derive 

these conditions, first, the path constraint is differentiated w.r.t time until the control 

variable θ appears. 

d x + y − 1.0) dx dy 
= + = v cos θ + v sin θ (2.24)

dt dt dt 

In the case of Eq. (2.20g), the control appears when the expression is differentiated 

once, making it a path constraint of order 1. The Hamiltonian is augmented with this 

differentiated constraint using a Lagrange multiplier, μ1, to obtain the Hamiltonian 

for the constrained arc, Hc. 

Hc = λxv cos θ + λyv sin θ + λvg sin θ + 1.0 +  μ1 (v cos θ + v sin θ) (2.25) 
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The costate equations for the constrained arc are obtained as: 

λ̇x = 0 (2.26a) 

λ̇y = 0 (2.26b) 

λ̇ 
v = −λx cos θ − λy sin θ − μ1 (sin θ + cos  θ) (2.26c) 

(2.26d) 

The constrained control law includes expressions for both θ and the Lagrange 

multiplier, μ1. The constrained control law is found to have two solutions as well. 

The optimal value of θ is found to be equivalent to the slope of the constraint function. 

π π 
θ = ± (2.27a)

4 2 
1 

μ1 = − (gλv + v (λx + λy)) (2.27b)
2v 

The entry and exit conditions for the constrained arc referenced in Eqs (1.17)-

(1.21) are calculated as shown below. t1 refers to the junction at the end of the 

constrained arc. π0 is a Lagrange multiplier used to adjoin the costate corner con-

ditions as discussed in the previous chapter in Eq. (1.23). It becomes an extra free 

parameter that is to be solved for along with the BVP. 

− + − + − + x(t ) =  x(t ), y(t ) =  y(t ), v(t ) =  v(t ) (2.28a)1 1 1 1 1 1 

x(t+1 ) +  y(t+1 ) + 1.0 = 0 (2.28b) 

− + − + − +λx(t1 ) =  λx(t1 ) +  π0, λy(t1 ) =  λy(t1 ) +  π0, λv(t1 ) =  λv(t1 ) (2.28c) 

H(t− 
1 ) =  Hc(t

+
1 ) (2.28d) 

− + − + − + x(t ) =  x(t ), y(t ) =  y(t ), v(t ) =  v(t ) (2.28e)2 2 2 2 2 2 

− + − + − +λx(t2 ) =  λx(t2 ), λy(t2 ) =  λy(t2 ), λv(t2 ) =  λv(t2 ) (2.28f) 

Hc(t
− 
2 ) =  H(t+2 ) (2.28g) 
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This Multi-Point Boundary Value Problem (MPBVP) is solved using the multi-

ple shooting method. The result is compared to that obtained using ICRM in the 

upcoming sections. It is to be noted that in this particular problem, the constraint is 

only active once, leading to a single constrained arc bookended by two unconstrained 

arcs. However, in more general problems, the constraint may be active more than 

once, leading to the conditions such as the ones in Eq. (2.28) being repeated at every 

entry/exit junction to each constrained arc and making the MPBVP larger and more 

difficult to solve. 

Necessary Conditions of Optimality - ICRM 

By applying ICRM, the path constraint was incorporated into the problem without 

the complexities mentioned in Section 1.2.3. Following the steps in Section 2.2, the 

optimal control problem is augmented with an extra state, ξ1 and one extra control, 

ue1. The dynamics of this new state is defined as: 

ξ̇  
1 = ue1 (2.29) 

Using the one-sided saturated function from Eq. (2.17) and the smoothing factor 

1 the Hamiltonian is defined as follows 

H = 1u 2 
e1 + gλv sin θ + λxv cos θ + λξ1 ue1 + λyv sin θ 

+ μ1 (− exp (ξ1) ue1 + v sin θ + v cos θ) + 1 (2.30) 

From this augmented Hamiltonian, the costate dynamics are derived as: 

λ̇ 
x = 0 (2.31a) 

λ̇ 
y = 0 (2.31b) 

λ̇ 
v = −λx cos θ − λy sin θ − μ1 (− sin θ − cos θ) (2.31c) 

λ˙ ξ1 = μ1ue1 exp ξ1 (2.31d) 

The differential equations for the control variables are derived as shown in Sec-

tion 2.4. The actual equations are not listed here for brevity. The boundary conditions 
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for the system including the new state, costates, and the control variable ‘states’ are 

defined as: 

x(0) = y(0) = 0 (2.32a) 

λξ1 (0) = 0 (2.32b) 

x(T ) =  −y(T ) = 10 (2.32c) 

λv(T ) = 0 (2.32d) 

exp ξ1 + 1.0 +  x(T ) +  y(T ) = 0 (2.32e) 

H(T ) = 0 (2.32f) 

gλv cos (θ) − λxv sin (θ) +  λyv cos (θ) +  μ1 (−v sin (θ) +  v cos (θ)) 
t=T 

= 0 (2.32g) 

2 1ue1 + λξ1 − μ1 exp ξ1 t=T 
= 0 (2.32h) 

− exp ξ1 ue1 + v sin (θ) +  v cos (θ) 
t=T 

= 0 (2.32i) 

The boundary conditions and the differential equations derived above are the only 

ones that are required to enforce the linear path constraint of the problem, regardless 

of how many times the constraint is active or inactive throughout the trajectory. 

Analysis 

The constrained Brachistochrone problem is solved using both the MPBVP and 

ICRM methods using a multiple-shooting algorithm, and the results are compared in 

this section. The homotopy continuation method described in Ref. 13 is used to solve 

the MPBVP version of the problem. First, the Brachistochrone problem is solved 

without any path constraints. After this, a short constrained arc is introduced at 

the point with the highest constraint violation by adjusting the constraint limit. The 

constraint limit is then changed back to its original value in a series of continuation 

steps to obtain the final solution. This results of this process is illustrated in Fig-

ures 2.3 and 2.4. It can be seen from the control history plot that the constrained 

arc is a distinctly separate horizontal line compared to the two unconstrained arcs at 

the beginning and end of the trajectory. 
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Figure 2.3. Constrained Brachistochrone - MPBVP Continuation - Trajectory 
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Figure 2.4. Constrained Brachistochrone - MPBVP Continuation - Control History 
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Unlike the MPBVP solution, when using ICRM, the trajectory remains a single 

arc that never violates the path constraint. The solution obtained using ICRM with 

E1 = 10-5 is shown in Figure 2.5 and the corresponding optimal control is shown in 

Figure 2.6. Both figures also show how the ICRM solution compares to the MPBVP 

solution. It can be seen that the actual trajectories practically overlap, while the 

control history is very close to what the MPBVP method predicts . 

..L 

0 - ICRM Solution 
- MPBVP Solution 
- Unconstrained Solution 

-2 -- x+y+l=O 

-4 

E 
~ 

-6,:: 

-8 

-10 

0 2 4 6 8 10 
x{t) [m] 

Figure 2.5. Constrained Brachistochrone Solution - Trajectory 

The results in Figures 2.5 and 2.6 show that ICRM gives a solution that is very 

close to the optimal solution while avoiding the difficulties of solving multi-point 

boundary value problems. ICRM also retains the structure of a general two-point 

boundary value problem which can be solved by most numerical BVP solvers without 

requiring any special modifications for processing extra algebraic constraints. 
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Figure 2.6. Constrained Brachistochrone Solution - Control History 

Costate Discrepancies 

When a constrained optimal control problem is solved using the MPBVP method, 

the costates may have jump conditions in them at the entry and/or exit junctions of 

the constrained arcs (Eq. (1.20)). In case of the constrained Brachistochrone problem, 

these jump conditions appear in Ax and Ay· From the costate profiles in Figure 2.7, 

it can be seen that these jump conditions do not appear when using ICRM. Even 

so, the control and the state trajectories still closely match the MPBVP solution as 

shown in Figures 2.5 and 2.6. The discrepancy is due to the fact that the control law 

equation is different in the case of ICRM and incorporates more variables , ue1 , 6 , E1 

and µ 1 . 

For additional validation that the costates are correct , the regularized optimal 

control problem with the added state variable 6 and control, U ei is solved using the 

direct solver GPOPS [6]. GPOPS is able to estimate the costates corresponding to 

the states using the Covector Mapping Theorem [48]. These results are compared 
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Figure 2. 7. Constrained Brachistochrone Solution - Costates 

to the costate trajectories from ICRM in Fig 2.8. It can be seen that the costates 

estimated by GPOPS matches very well to the results obtained using ICRM. 
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Figure 2.8. Constrained Brachistochrone - Costate Comparison with GPOPS 

2.8.2 One-Dimensional Free-Flight Problem with Control Constraint 

This problem scenario consists of a point-mass with a single thruster t hat can 

provide a specific amount of acceleration. The motion of t he body is constrained 

to be along a single axis. The t hrust has a finite magnitude and is implemented as 

a control limit using ICRM. The objective is to move the body from one point to 

another in the minimum t ime possible using the t hruster. The dynamics model of 

this problem is a simple double integrator for which a closed-form analytical solut ion 

can be found as demonstrated in the next section. 
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Problem Statement: 

Min T (2.33a) 

Subject to : 

ẋ = v (2.33b) 

v̇ = u (2.33c) 

x(0) = v(0) = v(1) = 0 (2.33d) 

x(1) = 1 (2.33e) 

|u| ≤ l (2.33f) 

where u is the control. 

Analytical Solution 

The Hamiltonian can be defined as H = λxv + λvu + 1, and the costate rates are 

defined as: 

λ̇ 
x = − 

∂H 
= 0 (2.34)

∂x 

λ̇ 
v = − 

∂H 
= −λx (2.35)

∂v 

Since the problem is linear in control, the optimal solution is a bang-bang control 

according to Pontryagin’s Minimum Principle(PMP) [11]. According to PMP, the 

∂Hcontrol law in such a problem is dictated by a switching function, 
∂u . The control 

law is defined as: ⎧ ⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

−1 ∂H > 0
∂u 

∂Hu = +1 < 0
∂u 

∂Hundefined = 0
∂u 

For the one-dimensional free-flight problem, the switching function is defined in 

Eq. (2.36) and the corresponding control law in Eq. (2.37). 

∂H 
= λv (2.36)

∂u 
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−1 λv > 0 

⎧ ⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

u = +1 λv < 0 (2.37) 

undefined λv = 0  

The dynamic equations for the costates can be analytically solved as: 

λ̇x = 0  =⇒ λx(t) =  C1 

λ̇v = −λx = −C1 =⇒ λv(t) =  −C1t+ C2 

Since the switching function is linear, there is exactly one switch in the control. 

Common-sense dictates that the acceleration should be positive at the initial point 

for the particle to move towards the destination, i.e, u(0) = +1. Similarly it should 

be negative when arriving at the destination, or u(T ) =  −1. From the free-final time 

condition and because time does not appear explicitly in the Hamiltonian, 

H(t) = 0  =⇒ H(0) = C2u(0) + 1 = 0  =⇒ C2 = −1 
2 

H(T ) = 0  =⇒ C1 v(T )+(−C1T+−1)u(T )+1 = 0 =⇒ C1T+2 = 0  =⇒ C1 = − 
T 

Therefore the switching function is λv = (2/T )t−1, which crosses zero at t = T/2. 

The velocity profile is then given by: 

v(t) =  

⎧ ⎪⎨ 

⎪⎩ 

t 0 ≤ t ≤ T/2 

T − t T/2 ≤ t ≤ T 

Applying the boundary condition on x, 

T/2 T 

x(T ) =  t dt+ (T − t) dt 
0 T/2 

T 2 T 2 T 2 T 2 

= + T 2 − − + = 1  
8 2 2 8 (2.38) 

T 2 

=⇒ = 1  
4 

T = 2.0 
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Therefore the analytical solution for x(t) is  ⎧ ⎪⎨ 

⎪⎩ 

t2/2 0 ≤ t ≤ T/2 
x(t) =  (2.39) 

− T 2 
Tt  − t 

2 

2 

4 T/2 ≤ t ≤ T 

Regularized Optimal Control Formulation 

Since the path constraint in this problem is a control bound, it is a zero-order 

constraint. Therefore the only extra variable to be added to the optimal control 

problem is the new control, ue1. The two-sided saturation function from Eq. (2.18) is 

used to regularize the control bound. The new Hamiltonian is then defined as: 

H = λxv + λvu + 1 +  �u e 
2
1 + μ (u − ψ(ue1)) (2.40) 

where ψ is defined in Eq. (2.18). 

The extended two-point DAE-BVP is then obtained as: 

ẋ = v, v̇ = u (2.41a) 

λ̇ 
x = 0, λ̇ 

v = u (2.41b) 

x(0) = v(0) = v(1) = 0 (2.41c) 

x(1) = 1 (2.41d) 

∂H 
= λv + μ = 0  (2.41e)  

∂u 
∂H 

= ψ ue1μ + 2  �u e1 = 0 (2.41f) 
∂ue1 

∂H 
= u − ψ(ue1) = 0 (2.41g) 

∂μ 
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Initial Guess and Solution Strategy 

The DAE-BVP in Eq. (2.41) is first converted into an explicit ODE by differenti

ating the algebraic conditions as described in Section 2.4. After trial and error, the 

initial guess for the costates was chosen as Ax = -0.2 and Av = -0.4, integrated 

until T = 10. The states were set to zeros as in the actual initial conditions in the 

problem statement. Homotopy continuation was performed on the terminal position 

and velocity until the problem requirements were satisfied as shown in Fig 2.9. The 

dark blue line represents the initial guess and the red line is the final case where the 

boundary conditions in the problem statement for x and v are satisfied. The regular

ization parameter, E was initially set to 2. It was later brought down to 10-3 using 

continuation in a later step as discussed in the next section. Constraint normalization 

is not required in this problem as the constraint limit is already equal to one. 

40 

30 

E 
~ 20 

0 2 4 6 8 10 12 
t [s] 

Figure 2.9. One-Dimensional Free Flight - Initial Continuation 

Analysis 

The evolution of the trajectory as E is decreased from 10-1 to 10-3 during contin

uation is shown in Figure 2.10. The line in dark blue with an E of 10-1 has a larger 

T, i.e, a less optimal result. As E gets smaller, the trajectory approaches the optimal 
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solution while still keeping the state and controls a single smooth arc. The actual 

closed-form optimal solution has a discontinuity as shown in Eq. (2.39). 

0.0 0.5 1.0 1.5 2.0 
t [s] 

Figure 2.10. One-Dimensional Free Flight - Evolution of Regularized Solution 

The trajectories for x and v, obtained using ICRM with 1:=10-3 is compared to the 

analytical solution in Figure 2.11 , and the corresponding control history can be seen 

in Figure 2.12. The control histories and the trajectories obtained using ICRM are 

seen to match very closely with the analytical solution. The optimal control computed 

using ICRM very closely approaches the bang-bang solution, and the corner in v at 

T /2 is modeled as closely as possible. This example demonstrates that ICRM is 

capable of solving problems that have a bang-bang optimal control solution in the 

presence of control bounds. 
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Figure 2.11. One-Dimensional Free Flight - Trajectory 
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Figure 2.12. One-Dimensional Free Flight - Control History 
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2.8.3 Maximum Terminal Energy Hypersonic Trajectory with Heat Rate 

Constraint 

To demonstrate that ICRM can be applied to more complex aerospace problems, 

a scenario involving maximum terminal energy trajectories of a slender hypersonic 

vehicle is examined. The vehicle is assumed to be capable of angle-of-attack (AoA) 

control and having a peak L/D of around 2.4. The boundary conditions and the 

environment parameters are listed in Tables 2.1 and 2.2 respectively. The same dy-

namic model and parameters are also used in the next section where an additional 

constraint is added to the problem. 

Table 2.1. Boundary Conditions. 

State h v γ θ 

Staging (t=0) 80,000 m 5000 m/s -60 deg 0 deg 

Terminal (t=T) 15,000 m free free 1 deg 

Table 2.2. Environment Parameters. 

Parameter Value 

μ 

RE 

ρ0 

hs 

23.986 × 1014 m3/s

6.3781 × 106 m 

31.2 kg/m

7500 m 
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The problem is defined as follows: 

Max v(T )2 (2.42a) 

Subject to : 

ḣ = v sin γ (2.42b) 
v cos γ 

θ̇ = (2.42c) 
r 

−D μ sin(γ) 
v̇ = − (2.42d)

2m r 
L v μ 

γ̇ = + − cos(γ) (2.42e)
2mv r vr 

r = RE + h 

D = qCDAref 

L = qCLAref 

q =
1 
ρv2 

2 

ρ = ρ0 exp(−h/hs) 

CL = CL1  + CL0 

CD = CD2 
2 + CD1  + CD0 

(2.42f) 

In this section the problem is solved with a single path constraint, and the result 

is validated using the MPBVP formulation of the necessary conditions. A stagnation 

point heat rate constraint is applied to the problem defined in Eqs. (2.42). The heat 

rate is computed using the Sutton-Graves convective heating equations [127] as shown 

in Eq. (2.43). 

Q̇ = k 
ρ
v 3, k  = 1.74153 × 10−4 for Earth (2.43) 

rn 
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Necessary Conditions of Optimality – MPBVP 

The necessary conditions of optimality is derived for both the constrained and 

unconstrained versions of the problem. The continuation methodology described in 

Chapter 1 is used to solve the problem starting with a trivial initial guess. 

For the unconstrained problem, the Hamiltonian is defined as: 

v cos γ −D μ sin γ 
H = λT f =λhv sin γ + λθ + λv − 

2r m r 
(2.44)

L v μ 
+ λγ + − cos γ 

mv r vr2 

The two point boundary value problem is defined as: 

ḣ = v sin γ (2.45a) 
v cos γ

θ̇ = (2.45b) 
r 

−D μ sin γ 
v̇ = − 

2 
(2.45c) 

m r 
L v μ 

γ̇ = + − cos γ (2.45d) 
mv r vr2 

λ̇ 
h = − 

∂H 
(2.45e)

∂h 

λ̇ 
θ = − 

∂H 
(2.45f) 

∂θ 

λ̇ 
v = − 

∂H 
(2.45g) 

∂v 

λ̇ 
γ = − 

∂H 
(2.45h)

∂γ 

with the algebraic condition for the optimal control law being defined as: 

∂H 
= 0 (2.46a)

∂  

(2.46b) 

The boundary conditions on the states are given in Table 2.1, and the boundary 

conditions on the costates and the free-final time condition are defined as follows: 

λv(T ) =  −2v(T ) (2.47a) 

λγ (T ) = 0 (2.47b) 

H(T ) = 0 (2.47c) 
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When solving the constrained problem, the assumption is that there is one con-

strained arc in the solution at the point where the heat rate peaks. The trajectory 

is split at this point and a new arc is inserted into the unconstrained problem. New 

boundary conditions are required at this boundary point along with different dynamic 

equations for costates and a new control law. The heat rate constraint is found to be 

of order 1 since it has to be differentiated once before the control variable,   appears. 

S(x) =  k 
ρ
v 3 (2.48a) 

rn 

μ sin γρ D ρ sin γ 
S(1) = 3kv2 r− − 

2 − kv4 (2.48b) 
rn m ˙ rn ˙Qmax 2 hs Qmax 

S(1) is adjoined to the Hamiltonian using a Lagrange multiplier μ1 to form the 

new Hamiltonian, Hc. 

μ sin γρ D ρ sin γ rHc = H + μ1 3kv2 − − 
2 − kv4 (2.49) 

m ˙ ˙rn Qmax rn 2 hs Qmax 

The constrained costate rates and control laws are computed based on Hc as shown 

below: 

λ̇  
h = − 

∂Hc 
(2.50a)

∂h 

λ̇ 
θ = − 

∂Hc 
(2.50b)

∂θ 

λ̇ 
v = − 

∂Hc 
(2.50c)

∂v 
∂Hc

λ̇ 
γ = − (2.50d)

∂γ 

The Lagrange multiplier μ1 is a time-varying quantity which is zero for the un-

constrained trajectory and is computed simultaneously with the control   for the 

constrained arc. 

∂Hc ∂Hc
= 0, = 0 (2.51)

∂  ∂μ1 
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At the entry to the constrained arc, the following corner conditions apply. 

x(t1 
−) =  x(t1

+) (2.52a) 

λ(t− 
1 ) − λ(t1

+) +  ΠT Nx = 0 (2.52b) 

H(t− 
1 ) =  Hc(t

+
1 ) (2.52c) 

∂S(x)
where Nx = (2.52d)

∂x 

  is an unknown parameter to be estimated during the numerical solution process, 

and t1 represents the entry-junction for the constrained arc. At the exit junction 

t2, the states, costates, and Hamiltonian are assumed to be continuous as shown in 

Eq. (2.53). These conditions together form a multi-point boundary value problem 

with three arcs that is solved using a multiple shooting algorithm. 

x(t2 
−) =  x(t2

+) (2.53a) 

λ(t2 
−) =  λ(t2

+) (2.53b) 

Hc(t
− 
2 ) =  H(t+2 ) (2.53c) 

(2.53d) 

Necessary Conditions of Optimality – ICRM 

Before regularizing using saturation functions, the constraint is normalized and 

stated as: 
Q̇ ≤ 1 (2.54)

Q̇max 

Since the heat-rate constraint is of order 1, only one extra state variable, ξ, and  

one control, ue1, need to be added to the system. The dynamic equation for the new 

state is defined as ξ̇ = ue1. The one-sided saturation function from Eq. (2.16) is used 

to regularize the path constraint. 
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S = k 
ρ
v 3 = 1  − exp (−ξ) 

rn 
(2.55) 

=⇒ k 
ρ
v 3 − (1 − exp (−ξ)) = 0 

rn 

S(1) =exp  (−ξ) ue1 

=⇒ S(1) − exp (−ξ) ue1 = 0  

μ sin γ (2.56)ρ D ρ sin γ r =⇒ 3kv2 − − 
2 − kv4 

rn m ˙ rn ˙Qmax 2 hs Qmax 

− exp (−ξ) ue1 = 0  

Eq. (2.55) forms the initial condition on the new state variable ξ. Eq. (2.56) is 

added as an equality constraint to the problem. The path cost of the problem is 

2changed to L = 
0 
T 
�ue1dt where is the regularization parameter. The necessary 

conditions of optimality for the extended optimal control problem were derived using 

Euler-Lagrange equations, and the control dynamic equations were calculated as de-

scribed in Section 2.4. The resulting two-point boundary value problem was solved 

using a shooting method. 

Solution Strategy - MPBVP 

The initial guess for the numerical solver is created by integrating the dynamic 

equations forward from the entry interface conditions except for the flight-path angle 

γ which is set to -90 degrees. The costates are all set to 0.1 and the trajectory was 

integrated for 0.1 seconds. When solving using conventional optimal control, initially 

the unconstrained problem is solved in this manner. The constrained arc is then 

introduced at the point with maximum constraint violation. In subsequent steps, 

this constraint violation is reduced down to zero to obtain the solution to the original 

constrained problem. This continuation process is illustrated in Figure 2.13. The 

˙lines transitioning from red to blue denotes a change in Qmax from its value in the 
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unconstrained solut ion to the required value of 1200 W /cm2
. As expected, a penalty 

in cost v(T) can be observed as a lower peak heat-rate is enforced. The final solution 

obtained using MPBVP is compared to that obtained using ICRM in t he next section. 
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Figure 2.13. Heat Rate Constraint - MPBVP Continuation in C2max 
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Solution Strategy - ICRM 

The same initial guess that was used for the MPBVP solution was used with 

ICRM. When using ICRM, the regularization parameter, E for the heat-rate constraint 

is initially set to 10- 2 and CJmax is set to 10,000 W/cm2 in order to ensure that the 

constraint does not impede with the solution process especially at lower altitudes. 

Continuation in terminal altitude is used to extend the trajectory towards the ground. 

Once the trajectory reaches the targeted altitude (15 km) , a continuation is performed 

on the initial flight-path angle to -60 deg and the terminal downrange distance to 55 

km as shown in Figure 2.14. Further continuation is performed on 0(T) to extend it 

to out to 110 km. 

70 

60 
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~ 

,<: 
40 
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(a) Altitude-Downrange (b) Flight-Path Angle Profile 

Figure 2.14. Heat Rate Constraint - ICRM Continuation in 1 (0) and 0(T) 

After the boundary conditions in altitude and downrange distance were matched 

with the problem statement, continuation is performed on the heat-rate limit, Qmax, 

and then on the regularization parameter, E. This is performed in multiple steps some 

of which are shown in Figures 2.15 and 2.16. 

Figure 2.15 plot shows the effect on the trajectory as the constraint limit, Qmax is 

changed from 10,000 W/cm2 down to the design limit of 1,200 W/cm2 
. It can be seen 

that through the entire process, the actual peak heat rate does not exactly reach the 
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constraint. This is due to the effect of E which is still relatively large enough at 10-4 

to cause this "push-off" factor. As seen in Fig 2.14(a), the vehicle is forced to climb 

higher to avoid the higher heat-rate that is encountered in the lower atmosphere. 
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Figure 2.15. Heat Rate Constraint - ICRM Continuation in Qmax 

from 2500 W /cm2 (red) to 1200 W /cm2 (blue) with E = 10-4 

Once CJmax is at the desired design value of 1200 W / cm2
, the next step is to reduce 

the regularization parameter to bring the trajectory closer to the optimal solution. 

This process is illustrated in Figure 2.16 where E is reduced from 10-2 to 10-6 . As 

discussed before in Section 2.7, reducing E makes the constraint less restrictive and 

a slightly higher peak-heat rate is allowed once E equals 10-5 . This is reflected in 

the energy plot (Fig 2.16(b)) as well with the vehicle diving slightly deeper into the 

atmosphere to attain a slightly more optimal solution at the cost of more heating. 

Analysis 

The constrained heat-rate solution obtained using ICRM is compared to that 

obtained using MPBVP for validation in Figure 2.17. With E = 10-5 , the two trajec

tories can be seen to match very well. The trajectory touches the constraint and is 
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Figure 2.16. Heat Rate Constraint - ICRM Continuation in E from 
410- (red) to 10- 5 (blue) 

on it for 8 seconds while remaining a single continuous curve. The cost function (the 

terminal velocity) also matches that which was obtained using the MPBVP method. 
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2.8.4 Maximum Terminal Energy Hypersonic Trajectory with Heat Rate 

and Angle-of-Attack Constraints 

When the hypersonic trajectory problem is formulated as in the last section, there 

is a side effect that there is no actual bound on the angle-of-attack. For a maximum 

terminal energy problem, this is not a significant issue as the optimal solution tends 

to minimize the angle-of-attack. 

Figure 2.18 shows the control history for the heat-rate constrained trajectory from 

the last section. It can be seen that initially, the angle of attack has very high and 

unrealistic values of close to 80 degrees. This is not too critical as this happens in a 

phase of the trajectory where there is hardly any atmosphere. However , this can be 

mitigated by adding a constraint on the angle-of-attack. 
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Figure 2.18. Control History for Heat Rate Constrained Trajectory 

In order to demonstrate the handling of multiple path constraints using ICRM, 

a new problem is set up where an angle-of-attack constraint can be enforced in the 

problem simultaneously with the heat rate constraint, and both constraints are sat

isfied at all points. Since this is a two-sided constraint, the saturation function from 

Eq. (2.18) is used to implement this constraint in ICRM. D'.max is set to 40°. 

The normalized angle-of-attack constraint is defined as: 

a
-1 :S; -- :S; 1 (2.57) 

O'.max 
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A continuation methodology similar to that used in the previous section is used 

to build up the trajectory from a trivial initial guess. The regularization parameter 

for both the heat-rate (E1) and the angle-of-attack (E2) constraints, are initially set 

to 10- 4 _ Figure 2.19 shows the continuation in CJmax with both constraints enforced 

simultaneously. The push-off factor due to the relatively high values or E can be seen 

in both the heat-rate and the angle-of-attack profiles in Figures 2.19(a) and 2.19(b), 

respectively. The control effort increases as the vehicle is forced to fly at a higher 

altitude in order to maintain a lower heat-flux as required by the heat-rate constraint. 
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Figure 2.19. Heat Rate & AoA Constraint - Evolution in Qmax from 
10,000 W/cm2 to 1200 W/cm2 

In the next continuation step, the regularization parameter for the heat-rate con

straint, E1 is reduced from 10-4 to 10-6 , bringing the trajectory closer to the heat-rate 

constraint. This evolution is shown in Figure 2.20. Changing E1 also affects control 

profile as seen in Fig 2.20(b), reducing the peak value of a. This is a side -effect of 

the change in relative weights of different terms of the cost functional as discussed 

before in Section 2. 7. As E1 is brought down to 10- 6 , the heat-rate profile can be seen 

to change so that it touches the constraint as shown in Fig 2.20(a). 

The final step in the process is to reduce E2 from 10- 4 to 10-5 so that the control 

profile also follows the constraint as shown in Figure 2.21. The change in the heat-rate 
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profile is almost imperceptible at this point as seen in Figure 2.21(a) since the peak 

value for the angle-of-attack happens high in the atmosphere where it is not able to 

impact the trajectory of the vehicle in a significant manner. However, by enforcing 

the control constraint , it is possible to ensure that the optimal solution obtained is 

satisfying all the design constraints in the original problem. 
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Adding the control constraint does not influence the trajectory much, as the con

trol saturation occurs in a region wit h very little dynamic pressure. However , adding 

this const raint demonst rates t hat ICRM is capable of solving problems in which more 

than one path constraint is enforced. The final solut ion obtained using ICRM is com

pared to that obtained using the direct solver GPOPS in Figures 2.22. 
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Figure 2.22. Heat Rate & AoA Constraint - ICRM vs GPOPS 
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2.9 Application Problem 

2.9.1 Problem Statement 

The capabilities of ICRM are demonstrated in this section by applying it to a 

problem with multiple constraints. The problem consists of a co-operative engage-

ment scenario with multiple vehicles in the terminal guidance phase. It is based on 

prior work in Ref. 107, which addresses optimal guidance laws for nonlinear missile 

models with impact time and angle constraints for a single vehicle. The same dy-

namic model is used, and the scenario is extended to be a three-dimensional model 

that includes multiple vehicles engaging a target simultaneously with impact angle 

and time constraints along with a keep-out zone path constraint. The objective is to 

minimize total control effort expended by all vehicles. 

The dynamic model for each vehicle is defined as follows: 

ẋ = V cos ψ cos γ (2.58a) 

ẏ = V sin ψ cos γ (2.58b) 

ż = −V sin γ (2.58c) 

ψ̇ = a/V (2.58d) 

where x, y and ψ are the position and heading angle of the missile respectively. 

The missile is assumed to be capable of maintaining a constant velocity V , and  

commanding any flight-path angle (glide slope) with negligible delay. The missile is 

assumed to start at some initial position (X0,Y0,Z0) with the target at the origin. 

The initial and/or terminal headings may also be constrained based on the scenario 

being examined. 

As in Ref. 107, the problem is non-dimensionalized so that it does not depend on 

the constant missile velocity or impact time. If tf is the reference impact time and V 

is the reference speed, the non-dimensional state and control variables are defined as: 
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x 
x̄ = (2.59a)

V tf 

y 
ȳ  = (2.59b)

V tf 

z 
z̄  = (2.59c)

V tf 

t 
τ̄  = (2.59d)

tf 

Since there are multiple vehicles in the problem, each flying at a constant velocity, 

the speed of the first vehicle is chosen as the reference value and those of the remaining 

vehicles are added as free states (with constant values) that can optimized. The non-

dimensional optimal control problem for n vehicles is then stated as: 

T n 
2 + γ2Min J = ū i i (2.60a) 

0 i=1 

Subject to: (2.60b) 

ẋ̄ i = v̄i cos ψi cos γ (2.60c) 

ẏ̄i = v̄i sin ψi cos γ (2.60d) 

ż̄i = −v̄ i sin γ (2.60e) 

v̇̄i = 0 (2.60f) 

ψ̇i = ūmaxū i (2.60g) 

¯ ¯ ¯ x̄ i(0) = Xi0, ȳ  i(0) = Yi0, z̄  i(0) = Zi0 (2.60h) 

v̄ 0(0) = 1 (2.60i) 

ψi(T ) =  ψif (2.60j) 

|ū i| ≤ 1 (2.60k) 

(x̄i − xc1)2 + (ȳi − yc1)2 ≥ rc1 (2.60l) 

(x̄i − xc2)2 + (ȳi − yc2)2 ≥ rc2 (2.60m) 
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where the control variables are ū i and γi, the turn rate and flight-path angle of the 

i-th vehicle, respectively. ū max is a scaling factor representing the magnitude of the 

acceleration command. The path constraints in Eqs. (2.60l) and (2.60m) and the 

control limits in Eq. (2.60k) are enforced on all vehicles simultaneously. The nominal 

scaling values used for non-dimensionalizing the problem are defined in Eq. (2.61). 

The regularization parameter, , for all path constraints is set to 10−6 in all the 

scenarios in this section. 

Vref = 300 m/s (2.61a) 

Tref = 50 s (2.61b) 

2.9.2 Nominal Solution 

The path constraints are initially positioned so that only one of them is active 

on the trajectory. The boundary conditions applied to the vehicle states are shown 

in Table 2.3. These values are scaled using the scale factors defined from Eq. (2.61) 

to get the boundary conditions for the non-dimensional state variables. The nominal 

path constraint parameters are shown in Table 2.4, and these values are also scaled 

in the same manner. 

Table 2.3. Nominal Boundary Conditions 

Xi(0) Yi(0) Zi(0) ψi(T ) 

Vehicle-1 -12 km 0.0 km 1.5 km -15 deg 

Vehicle-2 -12 km 1.5 km 1.5 km 15 deg 

The trajectory solutions for the nominal problem conditions with and without the 

no-fly zones are shown in shown in Figure 2.23. In this 2D plot and other similar 
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Table 2.4. Path Constraint Parameters – One Active Constraint 

xc yc rc 

Zone-1 -9.0 km 0.0 km 1.5 km 

Zone-2 -3.0 km 4.5 km 3.0 km 

plots that follow in this section, the trajectories of Vehicles 1 and 2 will be marked 

as “V-1” and “V-2”, respectively. Figure 2.23(c) shows a 3D view of the trajectories 

showing the significant variation in the first vehicle’s trajectory due to the no-fly zone. 

The control histories of the two vehicles are shown in Figure 2.23(b). The control has 

corners where the trajectory intersects with the constraint as expected from optimal 

control theory (Section 1.2.3). The more advantageous starting position of the second 

vehicle makes it so that it barely touches the first constraint while maintaining an 

optimal trajectory, leading to a less drastic change in its control. 
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Figure 2.23. Two-Vehicle Co-operative Engagement - One Active Constraint 
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2.9.3 No-Fly Zone Position 

In this section, the effect of changing the position of the no-fly zones is studied. 

The starting condition of the scenario is modified from that in the previous section 

to match those given in Table 2.5. In this case, both constraints are active in the 

trajectory of at least one of the two vehicles as shown in Fig. 2.24. 

Table 2.5. Path Constraint Parameters - Two Active Constraints 

Ye 

Zone-1 -9.0 km 0.0 km 1.5 km 

Zone-2 -3. 75 km 3.325 km 3.0 km 

- Vehiclel 

6 ~- Vehicle 2 
--- Zone 1 

--- Zone 2 

-12 -10 -8 -6 -4 -2 
x(t) [km] 

Figure 2.24. Two-Vehicle Co-operative Engagement - Two Active Constraints 

In the next step, Zone-2 is moved further South so that it significantly affects the 

trajectory of Vehicle-2. The effects of this change in Yc2 is shown in Fig. 2.25. Moving 

Zone-2 in this manner does not have any significant effect on the altitude profile of the 

trajectory as seen in Fig 2.25(b). However , the presence of the constraint does affect 

the constant speed, v2 of Vehicle-2 as shown in Fig. 2.26(a). v2 remains unchanged 

with change in Yc2 until the constraint becomes active as part of the continuation 

process. As the no-fly zone is moved further South, v2 , though constant for each 



80 

individual solution, is different for the different solutions in the trade-study as Yc2 

changes. This happens in order for Vehicle-2 to match the impact time with Vehicle-

1 which remains unaffected by Zone-2. The control history also drastically changes 

as the constraint becomes active. It can be inferred from these plots that the optimal 

way to go around these no-fly zones is to touch them at a single point when possible 

rather than following the curve. This is also illustrated in the sharp corners that show 

up in the control history (Fig. 2.26(b)) as the no-fly zone is moved South. 
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Figure 2.25. Two-Vehicle Co-operative Engagement - Zone-2 - Trajectories 

2.9.4 Terminal Impact Angle Constraints 

The problem defined in Eq. (2.60) is solved for different values of terminal head

ings for Vehicle-2, and the effects on the trajectory is examined. Starting with the 

condition in Figure 2.23(a) , the terminal heading of Vehicle-2 is changed from -15 

deg using a continuation process (Section 5.6.3). The resulting change in the vehicle 

trajectories are shown in Fig 2.27(c). The problem becomes extremely difficult to 

solve once 1/J2 (T) is increased beyond 110 deg. This could be because the solution 

is very close to being infeasible. This is also reflected in Vehicle-2's optimal control 

profile shown in Fig 2.27(b ). The control is saturated at the end of the trajectory and 
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Figure 2.26. Two-Vehicle Co-operative Engagement - Moving Zone-2 
- Velocity and Control History 

the vehicle is unable to turn any sharper to arrive at the destination from further to 

the right without violating other constraints such as impact-time and the keep-out 

zone path constraints. The steeper the arrival heading, the closer this control gets 

to a bang-bang style control. The Zone-2 constraint is also seen to be active for a 

significant amount of time as the terminal heading is increased. This is reflected in 

the sudden switch in u2 at the 30 second mark. 

A 3D view of the evolution of Vehicle-2's trajectory is shown in Fig 2.28. The 

steeper arrival heading constraint causes Vehicle-2 to stay higher in the atmosphere 

and then suddenly dive down at the end as opposed to flying in a straight line. This is 

for increasing the distance flown, and thereby allowing flexibility in the time of flight 

to match impact time with Vehicle-1. The altitude profile forms an extra degree of 

freedom that is leveraged for avoiding the no-fly zones while obeying other geometry 

and timing constraints. 

The velocity of Vehicle-2, while constant for each individual trajectory, is a free 

parameter that can be optimized. The initial heading of both vehicles are also free 

parameters. Fig. 2.29 shows the variation in the free initial heading of Vehicle-1 and 

the speed of Vehicle-2 as the constrained arrival heading of Vehicle-2 is changed. v2 
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Figure 2.28. Two-Vehicle Co-operative Engagement - Evolution of 
3D Trajectory of Vehicle-2 with Change in 'I/J2 (T) 

is initially 287 m/s when 'ljJ2 (T) = 15 deg. As this terminal boundary condition 

changes, the speed increases given that Vehicle-2 now has to travel a longer distance 

in the same amount of time. This is because the impact time of both vehicles is 

constrained to be the same. However, close to the maximum value of 'I/J 2 (T) , there 

is sudden reversal and a decrease in v2 . The reason for this can be seen in the 

corresponding profile of the free initial heading of Vehicle-1. While it initially stays 

close to constant, as 'ljJ2 (T) crosses -100 deg, it is seen to rapidly decrease. This 

corresponds to the non-intuitive side-effect that can be seen in this scenario where 

Vehicle-1 actually starts flying further south and away from Zone-1 as 'I/J2 (t) is made 

steeper. With these combination of constraints, it is more optimal for Vehicle-1 

to stay further away from Zone-1 so that Vehicle-2 has more time to perform its 

maneuvers. This is one example of non-intuitive cross-coupling effects that appear 

when optimizing trajectories of multiple vehicles simultaneously. 
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Another notable effect seen in the optimal path for Vehicle-2 is that the Zone-

1 constraint, while initially active, becomes inactive as the arrival heading, ?j!2 (T) , 

turns further North. However, further changes in ?j!2 (T) reverses this trend, and the 

constraint becomes active again in order reduce the distance to target. 

This scenario is one example whereby using ICRM, a smooth transition from 

unconstrained arcs to constrained arcs and vice versa can be achieved, facilitating 

the study of non-intuitive cross-coupling effects such as the ones described in this 

section. Performing this same trade study would be a non-trivial task if the trajectory 

was split into multiple arcs for handling path constraints as is the norm when using 

indirect methods. 

2.10 Summary 

The Integrated Control Regularization Method (ICRM) has been shown to be a 

viable process for incorporating path constraints into optimal control problems when 

using indirect methods. ICRM converts constrained optimal control problems into 

two-point boundary value problems with a few extra states for each constraint effec-
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tively making the BVP bigger. However, this is a reasonable trade-off considering 

that the alternative is a huge multi-point boundary problem that grows in size with 

the number of times each constraint is active and quickly becomes highly impractical 

at scale. ICRM helps avoid the challenges conventionally associated with path con-

straints in indirect methods, such as finding the right sequence of constrained and 

unconstrained arcs and providing initial guesses for interior boundary conditions. As 

shown in one of the scenarios in Section 2.9, keeping the solution as a single arc allows 

trades to be performed where path constraints smoothly change from being active to 

inactive and vice-versa. This is something that cannot be done with the MPBVP 

formulation of constrained optimal control problems. 

Another possible application for ICRM is for incorporating high-fidelity models 

when using indirect methods. These models may be expressed as black-box functions 

for which analytic derivatives may not be available. This makes it very difficult to 

obtain a control law when using conventional optimal control theory. For example, 

Ref. 15 used high-fidelity atmosphere and aerodynamic models while numerically 

solving the optimal control law every time the system dynamics was evaluated. This 

resulted in very long computation times while solving the BVP. ICRM avoids this 

problem by folding in the control law computation into the overall root-solving process 

of solving the BVP. While this may lead to some numerical stability issues in some 

cases, it is still better than embedding a numerical root-solving process inside of the 

numerical integration process. 

Regularizing path constraints using ICRM represents a first step towards obtain-

ing high quality solutions for highly constrained trajectory optimization problems 

which would generally be considered practically impossible to solve using indirect or 

direct methods. It forms a key component of the general indirect trajectory opti-

mization framework detailed in Chapter 5. However, ICRM also adds extra states 

for every constraint that is added, resulting in larger BVPs that are to be numeri-

cally solved. As the number of vehicles and the number of constraints increase, the 

computation time can get prohibitively large when using existing numerical methods 
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such as multiple shooting. In order to address this, a new numerical method is devel-

oped specifically to exploit parallel computing architectures, as detailed in the next 

chapter. 
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3. QUASILINEAR CHEBYSHEV-PICARD ITERATION 

(QCPI) 

3.1 Background 

3.1.1 Prior Work 

The use of emerging parallel computational architectures is one way to acceler-

ate numerical solution of large boundary value problems. There have been different 

approaches for parallelizing the numerical methods underlying indirect [30], [32] as 

well as direct methods [128], with varying degrees of success. Past work [79] showed 

that while it is indeed possible to accelerate the numerical methods used for solving 

BVPs associated with indirect methods, there are challenges once the problems get 

larger. This points to a need to develop a BVP solver that is inherently parallel and 

can efficiently exploit parallel computational resources for solving large-dimensional 

problems. 

Graphics processing units (GPUs) were originally designed to be used as dedicated 

processors for rendering three-dimensional graphics on computers. Therefore GPUs 

are specialized in efficiently running compute-intensive, highly parallel operations 

especially matrix operations that are required for rendering 3D graphics. CPUs were 

designed with more transistors dedicated to data caching and flow control, leading to 

very small latencies as opposed to high throughput. GPUs, in contrast have slower 

memory access and allows parallel execution of thousands of threads of execution, 

with some limitations. Hence, a GPU is especially suited to problems which can 

be expressed as large numbers of data-parallel computations [129], with a high ratio 

of arithmetic operations to memory operations. These operations should ideally be 

independent of each other and require very little cross-communication. 
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In a prior work, a highly parallel indirect optimization strategy for the rapid de-

sign of optimal trajectories was developed [79]. The multiple shooting method was 

used to develop this custom algorithm, bvpgpu, that ran very efficiently on a GPU. 

It was demonstrated that indirect optimization methods can be used to rapidly solve 

complex optimization problems by utilizing this GPU-accelerated multiple shooting 

method as shown by the benchmarks in Fig. 3.1. The benchmarks involved solving 

maximum terminal energy trajectories for a hypersonic vehicle with varying combi-

nations of initial and terminal point constraints as well as path constraints. The 

test problem in this case was relatively small in terms of number of dimensions (6-24 

states). These benchmarks showed a speedup of 2x-4x by using a GPU-based shooting 

method instead of bvp4c. 

The multiple shooting algorithm, while not very parallel in its original formulation, 

has several elements in it that could be modified to make it run fast on a GPU. 

The computation of the State Transition Matrix (STM) is the most computationally 

intensive part of the multiple shooting method. At the most basic level, computing 

the STM involves propagating N2 extra differential equations for a dynamic system 

of N equations. On a CPU, algorithms can be parallelized by delegating independent 

parts of the code to separate threads of execution. GPU computation also involves 

threads that are conceptually similar, but drastically different in implementation. The 

naive way of porting the multiple shooting algorithm over to a GPU would involve 

assigning each equation (from both the original system of equations as well as the 

STM) to a separate thread on the GPU. While this is very simple to implement, it is 

also very inefficient. In fact, benchmarking showed that this made the process twice 

as slow as performing the same operation on a CPU. In order to optimize the code for 

maximum performance on the GPU, it is necessary to understand how the threads are 

scheduled and executed by CUDA (NVIDIA’s GPU computing library). The various 

algorithmic optimizations that help maximize GPU performance by accounting for 

GPU processor occupancy, memory access coalescing, and parallel matrix operations 

were examined and implemented in our prior work [30], as well as the manner in which 
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the problem is structured is crucial to obtaining optimum performance on a GPU. 

The methodology was shown to provide significant speedups over using a CPU-based 

solution method such as MATLAB’s bvp4c to solve trajectory optimization problems. 

However, the multiple shooting method is still not “parallel enough” to scale well 

as the BVPs become large as in the case of multi-vehicle problems. This is partly 

because the method was not originally formulated with the express purpose of utiliz-

ing parallel computational architectures. In order to obtain the 2x-4x speed-up seen 

in the benchmarks, the multiple shooting method had to be reformulated to make it 

more parallel in nature. This motivates the need for developing a numerical method 

that is inherently parallel and is designed specifically to exploit parallel computing 

architectures. This chapter will describe the design of a new, scalable, highly paral-

lel numerical method which advances the state-of-the-art for solving large nonlinear 

boundary value problems. 
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3.1.2 Picard Iteration 

The starting point for the numerical method developed in this dissertation is the 

Picard iteration, also known as the Picard–Lindelöf theorem [93]. It is a method that 

was originally used to prove the existence and uniqueness of solutions to first-order 

differential equations with a given set of initial conditions. 

y = f(t, y(t)), y(t0) =  y0 

φ0 = y0 
(3.1)

t 

φk+1 = y0 + f(s, φk(s))ds, for iteration k 

t0 

The Picard-Lindelöf Theorem shows that this series summation (φn) in Eq. (3.1) 

converges to y(t) at the limit [93]. An example of the application of this theorem is 

shown in Eq. (3.2) for a simple first-order initial value problem (IVP), y = f(t, y(t)) = 

−y; y(t0) = 1.0. 

y = f(t, y(t)) = −y (3.2a) 

φ0 = y0 = 1.0 (3.2b) 
t 

φ1 = y0 + −1 ds = 1  − t (3.2c) 

t0 

t 
t2 

φ2 = y0 + (−1 +  s) ds = 1  − t + (3.2d)
2 

t0 

t 
t2 3t3 

φ3 = y0 + (−1 +  s) ds = 1  − t + − (3.2e)
2 6 

t0 

It can be seen that this series converges to the analytical solution of the system 

− 3t
3 

at the limit as: y(t) = 1  − t + t 
2 

2 

6 + ... = exp  (−y). This iteration forms the core 

of the Modified Chebyshev Picard Iteration algorithm. 
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3.1.3 Chebyshev Polynomials 

Chebyshev polynomials [130] are a complete set of orthogonal polynomials that 

are commonly used for function approximation. There are two kinds of Chebyshev 

polynomials. For convenience, Chebyshev polynomials of the first kind are referred 

to as simply Chebyshev polynomials in this work. These polynomials are defined 

through a recurrence relation: 

To(x) = 1 (3.3) 

T1 (x) = x (3.4) 

Tk+1(x) = 2TTk(x) - Tk-1(x) (3.5) 

where Tk represents the k-th order Chebyshev polynomial. They may also be com

puted using a trigonometric relation, Tk (x) = cos (k arccos x) where x E [-1, 1]. 

Chebyshev polynomials Tk(x) up to k = 5 are shown in Figure 3.2. 
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Figure 3.2. Chebyshev Polynomials up to k = 5 

The zeros of these polynomials are called Chebyshev-Gauss-Lobatto (CGL) nodes. 

The N+l CGL nodes for an Nth order Chebyshev Polynomial can be calculated as: 
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kπ 
xk = cos  , k = 0, 1, 2, ..., N + 1  (3.6)  

n 

When these nodes are used for polynomial interpolation, Runge’s phenomenon 

is minimized, and the best function approximation under the minimax norm can be 

obtained [131, 132]. Ref. 131 shows that if a smooth function f(τ) is approximated 
N 

by an N-th order Chebyshev polynomials as f(τ) ≈  kTk(τ), the coefficients 
k=0 

 k can be computed as: 

N 
2 

 k = 
N 

f(τj )Tk(τj ), k = 0, 1, ..., N (3.7) 
j=0 

The ” in the summation denotes that the first and the last terms in the summation 

are to be halved. The integral of Chebyshev polynomials is defined by: 

1 Tk+1 Tk−1
Tk(x) =  − (3.8)

2 k + 1  k − 1 

The relation in Eq. (3.8) forms the basis for numerical methods that use Chebyshev 

polynomials to solve differential equations. There are many past works describing 

such methods that solve initial value problems and boundary value problems [133– 

139]. There are also some direct methods for solving optimal control problems using 

Chebyshev polynomials [43,140,141]. In the next section, some of these methods that 

combine the Picard Iteration with Chebyshev polynomials to solve IVPs and BVPs 

are examined. 

3.1.4 Chebyshev-Picard Methods 

Clenshaw’s work in Ref. 134 is one of the first works where the Picard iteration 

was combined with Chebyshev polynomials to create a practical numerical method 

for solving IVPs and BVPs. This method was later applied to several astrodynamics 

problems involving interplanetary trajectories by Feagin [142]. The suitability of 

this Chebyshev-Picard method for efficient implementation on parallel processors was 

examined by Shaver [143] by using it to create a parallel orbit propagation algorithm 
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and a parallel orbit estimation algorithm. A vector-matrix formulation of the same 

algorithm was designed by Feagin in Ref. 144 but no experimental results were shown. 

This was the precursor to the method used in MCPI which forms part of the numerical 

method developed in this dissertation. Ref. 145 shows an implementation of the 

Chebyshev-Picard method on a vector computer. However, this implementation was 

in some cases slower than the scalar version of the code owing to some overheads and 

inefficiencies. The Modified Chebyshev Picard Iteration algorithm [31] built on these 

existing works and created a unified matrix-vector method for solving both IVPs and 

certain classes of BVPs. MCPI was shown to be capable of solving several important 

celestial mechanics problems. The original work also showed techniques for improving 

the convergence domain of Chebyshev-Picard methods. 

Modified Chebyshev-Picard Iteration Method 

The Modified Chebyshev Picard Iteration (MCPI) method is a numerical method 

for solving Initial Value Problems (IVPs) and certain classes of Boundary Value Prob-

lems (BVPs) without directly propagating the equations of motion or evaluating gra-

dients [31]. MCPI is based on the Picard iteration method described in Section 3.1.2. 

The algorithm represents the integrand in Eq. (3.1) as a weighted sum of Chebyshev 

polynomials of sufficiently high order. The integration step of Picard iteration is 

performed using the quadrature rule in Eq. (3.8). The coefficients of the Chebyshev 

polynomials representing the solution is solved for based on the boundary conditions 

of the problem. 

While this iteration can also be implemented using other orthogonal polynomial 

sets such as Legendre polynomials, this particular formulation of Chebyshev polyno-

mials was chosen because it is possible to fit a function to these polynomials without 

solving a linear algebra problem [131]. As shown before in Eq. (3.7), the calcula-

tion of polynomial coefficients on a Chebyshev mesh for a given function is a long 
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summation operation which can be reformulated into a simple matrix multiplication 

operation [31]. 

The MCPI algorithms for initial value problems (MCPI-IVP) and boundary value 

problems (MCPI-BVP) are very similar in their implementation. The simpler of the 

two, MCPI-IVP, using Chebyshev polynomial series of order N , is summarized below. 

For a given dynamic system, 

ẏ = Φ(y, t) y(0) = y0 (3.9) 

a scaled version, φ, is formulated which can be evaluated between -1 and 1. 

T T T 
φ(y, t) =  Φ(y, τ + ) (3.10)

2 2 2 

The solution is evaluated over Chebyshev-Gauss-Lobatto (CGL) mesh points of a 

given order, N , that are defined by: 

τj = cos  (jπ/N), j = 0, 1, ..., N (3.11) 

The main steps in the algorithm are as follows. First, the dynamic equations are 

evaluated over the CGL mesh, and the coefficients for the Chebyshev polynomials, 

Fk, corresponding to these equations are calculated. 

N 
2 

Fk = φ(t, yk) Tk(τj ) (3.12)
N 

j=0 

Each coefficient Fk is obtained through the summation of N + 1 terms, each in-

volving the product of the scaled dynamic equations φ and the Chebyshev polynomial 

Tk evaluated at node τj . By applying the Picard iteration and the integration rule 

from Eq. (3.8) to Eq. (3.12), the dynamic equations are integrated to obtain the 

coefficients, βk (k = 0, 1, 2..., N), corresponding to the solution. 
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1 
βr = (Fr−1 − Fr+1) , r = 1, 2, ..., N − 1 (3.13)

2r 
FN−1

βN = (3.14)
N 

N 

β0 = 2y0 + (−1)j+1βj (3.15) 
j=1 

N 

yk+1(τ) =  βj Tj (τ) (3.16) 
j=0 

The algorithm starts with an initial guess for the entire solution expressed on 

a Chebyshev-Gauss-Lobatto grid and continues until the change in yk is less than 

a desired tolerance. The original author showed that the operations involved in 

calculating βk, as well as computing the solution from βk in each iteration can be 

expressed as a series of matrix-vector operations [31]. The steps in Eqs. (3.12)-(3.16) 

then condense to the following form: 

β = Cαφ(yk, τ) +  y0 (3.17) 

yk+1 = Cxβ (3.18) 

Cx and Cα are constant matrices for a given order of Chebyshev polynomials. The 

overall structure of these matrices are given in Appendix A. These matrices can be 

computed and cached before the iteration process begins, and hence the “integration” 

consists entirely of matrix-vector multiplication operations. Such operations are ideal 

for parallel implementation such as on a GPU or multi-core CPUs for accelerated 

processing. A GPU implementation of MCPI-IVP is shown in Ref. 146, where it was 

used for high-precision parallel orbit propagation. 

The BVP version of the algorithm specifies a different update equation for each 

state depending on whether it is constrained at the initial point, terminal point, or 

https://3.12)-(3.16
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both [91]. If both the initial and terminal values are given for a state, the update 

equations for β are changed as shown below: 

1 
βr = (Fr−1 − Fr+1) , r  = 2, 3, ..., N − 1 (3.19a)

2r 
FN−1

βN = (3.19b)
N 

β0 = y0 + yf − 2 (β2 + β4 + β6 + ...) (3.19c) 
yf − y0

β1 = − (β3 + β5 + β7 + ...) (3.19d)
2 

An astrodynamics trajectory problem was solved in the original work using this 

method, and its performance and solution quality were compared to a direct pseu-

dospectral method. Significant speedups were obtained over direct methods, and it 

was also shown that the method can derive huge benefits from implementation on 

GPU computing architectures. 

However, there is a significant drawback when it comes to using this algorithm for 

solving BVPs arising in trajectory optimization problems. The MCPI-BVP formu-

lation assumes that every state in the problem has at least one boundary condition 

defined for it. If the BVP does not define a boundary condition for a particular 

state, a boundary condition has to be derived for it from other domain-specific in-

formation available in the problem, if any. This is only possible for a limited class 

of problems such as the astrodynamics problems demonstrated in the original imple-

mentation [31]. The algorithm also assumes that the boundary conditions are simple 

equality constraints at the initial and terminal points. This was the motivation for the 

development of a more generalized MCPI-BVP algorithm that is capable of handling 

general nonlinear boundary conditions such as those encountered in optimal control 

problems. 

3.1.5 A Generalized MCPI-BVP Algorithm 

A more generalized formulation of the MCPI-BVP method will enable the fast 

computation of optimal trajectories for large dimensional problems. Initially, a version 
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of MCPI was created which linearized the boundary conditions and tried to solve the 

polynomial coefficients by solving a linear system [147]. The original MCPI algorithm 

was formulated by assuming a set of fixed boundary conditions of the form shown in 

Eq. (3.20) and solving a linear system analytically to obtain the expressions for the 

Chebyshev coefficients βk. 

y(t0) =  y0,� y(tf ) =  yf (3.20) 

In order to formulate a more generalized version of this method, it is necessary to 

start with a more generic boundary condition function such as the one described by 

Eq. (3.21) for a two-point boundary value problem. 

b (y(t0), �y(tf )) = 0 
(3.21)d�y 

Subject to: = f(t, y(t))
dt 

The boundary conditions are linearized in Eq. (3.22) and combined with the ex-

pressions for initial and terminal states, Eq. (3.23), in order to obtain the Chebyshev 

coefficients (βk) of the solution as shown in Eq. (3.24). 

b ≈ M× (y(t0) − y0) +  N × (y(tf ) − yf ) +  b(y0, �yf ) 
(3.22)∂b ∂b 

where M = , N = 
∂�y0 ∂�yf 

β0 
x(t0) =  − β1 + 

2 

N 
k+1(−1) βk 

k=2 
(3.23)

N
β0 

x(tf ) =  + β1 + βk
2 

k=2 
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N −  
x(τ) ≈ β kTk(τ), where 

k=0 

1 
βr = (Fr−1 + Fr+1), r  = 1, 2, ..., N − 1 

2r 
FN−1

βN = 
2N (3.24)⎛ ⎞ − NM+ N β0 k+1 ⎝, N −M  ⎠ = M× (y0 − (−1) βk)− 2 β1 k=2 

N 

+ N × (yf − βk) − b(y0, �yf ) 
k=2 

Eq. (3.24) outlines one way to incorporate non-linear boundary conditions into the 

MCPI algorithm. In Ref. 147, this algorithm was demonstrated using the Brachis-

tochrone problem. However, it was found that it was not capable of solving problems 

with more numerical sensitivity such as hypersonic optimal control problems. This 

prompted the search for a different approach to solving boundary value problems 

that complements the drawbacks of MCPI-BVP and can be combined with MCPI to 

create a more general numerical method. 

Modified Quasi-Linearization Algorithm 

The method of particular solutions for solving linear two-point boundary value 

problems is described by Miele in Ref. 148. The boundary-value problem is solved 

by linearly combining several particular solutions of the original differential system. 

This method was further expanded to include some classes of nonlinear problems in 

Ref. 149 with nonlinear dynamic equations. The modified quasi-linearization algo-

rithm (MQA) [108, 150] is a further refinement of the method of particular solutions 

that allows nonlinear boundary conditions at the terminal point. Ref. 151 explores the 

use of MQA for solving optimal control problems. In the modified quasi-linearization 

algorithm, the known initial conditions and guesses for the unknown initial states 

are used to generate a reference solution using numerical integration. Then, small, 
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linearly independent perturbations of the unknown states are also propagated using 

a numerical integrator. The resulting perturbations at the terminal point are used 

to compute corrections for the for the entire state history until all the boundary 

conditions are satisfied. 

Consider a nonlinear dynamic system with n states as follows: 

ẏ = φ(y, t), 0 ≤ t ≤ tf (3.25) 

with the initial conditions, 

b0j(y(t0)) = 0 j = 1, 2, ..., p (3.26) 

and terminal conditions, 

bfj(y(tf )) = 0 j = 1, 2, ..., q (3.27) 

Taking a first order approximation of bf , 

∂bf (y(tf ))
Δy(tf ) +  bf (y(tf )) = 0 (3.28)

∂y 

Let Aj(t) denote the perturbations from the reference solution for a small pertur-

bation in a free initial state. Aj(tf ) is computed for q + 1 perturbed initial conditions 

to form the linear combination: 

q+1 

A(t) =  kjAj(t) (3.29) 

j=1 

Ref. 149 shows that this linear combination satisfies the system in Eq. (3.28). 

Therefore the coefficients kj can be computed by solving the following linear system: 

q+1 q+1 

kj = 1  ψy(y(tf )) kjAj(t) +  ψ(y(tf )) = 0 (3.30) 
j=1j=1 

The correction for the solution is computed as shown in Eq. (3.31). This correction 

is applied not just to the initial state, but to the entire state history. This feature 
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makes it apt for inclusion into a method like MCPI where unlike a shooting method, 

the entire trajectory is approximated at all times. 

q+1 

Δy(t) =   kj Aj (t) where 0 ≤   ≤ 1 (3.31) 
j=1 

The step-size,   can be determined by a one-dimensional line-search of the per-

formance index, P, defined in Eq. (3.32), the cumulative error in the differential 

equations and the boundary conditions. Ref. 149 proves the use of this performance 

index gives the algorithm its descent property : If the step-size,  , is sufficiently small, 

the reduction in P is guaranteed. The search is started with   = 1.0 and continues 

until P ( ) < P  (0). 

T 

P ( ) =  (ẏ − φ)T (ẏ − φ) dt + bTf bf + bT 
0 b0 (3.32) 

0 

A recent work [92] examined the use of the method of particular solutions (MPS) 

[149] along with MCPI for computing perturbed orbits of orbital debris by solving 

Lambert’s problem. The current work is focused on expanding this to include the 

ability to solve optimal control problems using a hybrid method that uses both MCPI 

and MQA, called the Quasi-Linear Chebyshev-Picard Iteration (QCPI) algorithm. 

3.2 QCPI Algorithm Implementation 

The Quasi-Linear Chebyshev-Picard Iteration (QCPI) method leverages MCPI 

and the modified quasi-linearization algorithm to solve nonlinear two-point bound-

ary value problems such as those arising in trajectory optimization. It incorporates 

MCPI as the IVP integrator and uses MQA to perform solution updates for the free 

parameters in the problem. 

The algorithm is designed to solve a general nonlinear two-point boundary value 

problem of the following form: 
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ẋ = φ(t, x) (3.33a) 

b0(x(0), 0) = 0 (3.33b) 

bf (x(T ), T  ) = 0 (3.33c) 

The solution is approximated using a Chebyshev Polynomial series of order N , 

with separate coefficients for each state. The algorithm consists of the following steps. 

1. Define the matrices Ca and Cx as well as the independent variable mesh τ ∈ 

[−1, 1] for the given value of N . The structure of Ca and Cx are detailed in 

Appendix A. 

2. For the initial state, x0 , The perturbed initial states, xp are initialized as: 

Aj = δij Δxi, for i, j = 1, 2..., n (3.34) 

0 0 0 xp(0) = [x + A0, x + A1, ..., x + An] (3.35) 

where δij is the Kronecker delta function, and n is the number of ODEs in the 

BVP. xp, is a row vector of size n2 . 

3. The initial guess matrix, xguess, is initialized. This is either using the value from 

a previous iteration or by calling a separate MCPI-IVP integrator to propagate 

the equations of motion with the actual initial state, x0 , along with the per-

turbed states, xp(0), to generate xguess for the given value of N . This combined 

state vector will now be denoted as X and contains the original state vector 

followed by state vectors with each state perturbed one at a time. 

X(0) = x(0) x(0) + A0 x(0) + A1 ... x(0) + An (3.36) 
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4. Evaluate the dynamic equations of the BVP at every point of the CGL mesh, 

for both the original and the perturbed initial conditions. The results are stored 

in the matrix Φ which has the same dimension as xguess. 

⎤⎡ 

Φ =  w1 

      ⎣ 

φ(τ0,x(τ0)) 

φ(τ1,x(τ1)) 
. . . 

φ(τN ,x(τN )) 

⎥⎥⎥⎥⎥⎥⎦ 

where w1 = T/2 (3.37) 

n2×(N+1) 

The above computation assumes that the function φ(τ, x) returns a row vector 

of length n. 

5. The derivative information in Φ is fit to a Chebyshev polynomial series of order 

N . By using the Matrix-Vector form described by Feagin [31,144] and Bai [31], 

the computation of the polynomial coefficients representing the solution, β, is  

done with a simple matrix multiplication operation: 

⎤⎡ 

β = 2χ0 + Ca × Φi where χ0 = 

         ⎣ 

X(0) 

0 

0 
. . . 

0 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(3.38) 

(N+1)×1 

6. The solution and the guess for the next iteration, xnew, is obtained as: 

xnew = Cx × β (3.39) 

7. The change in x is calculated as e = xnew − xguess. If  the  L2-norm  of  e is greater 

that the required tolerance, skip to step 13. 

https://xguess.If
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8. Once e is under the required tolerance, the integration is complete, and xnew 

contains dynamically feasible unperturbed and perturbed trajectories. The per-

turbations due to the change in each state is used to update the solution to sat-

isfy the nonlinear boundary conditions. The Jacobian matrices for the initial 

and terminal boundary conditions are calculated using finite-difference meth-

ods. The residual error in the boundary conditions are also evaluated. 

r0 = b0(0, x(0)) (3.40) 

rf = bf (T,  x(T )) (3.41) 

∂b0
b0x = |x=x(0) (3.42)

∂x 
∂bf

bfx  = |x=x(T ) (3.43)
∂x 

9. If the L2-norms of residual errors rg and rf are below the desired tolerance, the 

solution for the BVP has converged and the iteration process can be stopped. 

10. The required correction for the solution to reduce the residual errors to zero is 

assumed to be a linear combination of all the initial perturbations in state, or 
n+1Δx = j=0 Kj Aj (T ), where Aj (t) is the perturbation at t when starting with a 

perturbation in the j-th state. It is to be noted that A0 is a zero-vector which is 

used to add an additional constraint on the coefficients Kj that 
n+1 Kj = 1.  j=0 

The coefficients of this linear combination, K, are calculated by solving the 

following linear system. 

⎤⎡ ⎤⎡ K1 
⎤⎡ 

1 .... 1       ⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

= 

1    ⎣ 

⎥⎥⎥⎦ 

K2 

. . . 

   ⎣ 

⎥⎥⎥⎦ 
(3.44)b0x × Aj (0) −r0 

bfx  × Aj (T ) −rf 
Kn+1 

K 
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n+111. The direction of the state-correction vector is given by Δx(t) =  j=0 Kj Aj (t). 

Ref. 148 shows that a sufficiently small step-size  applied to this direction vec-

tor will reduce the residual error, leading to convergence.  is found by perform-

ing a line-search on the performance index, P ( ) =  ||bf (x(T ) +   Δx(T ))||2 + 

||b0(x(0) +  Δx(0))||2, to find a value of  such that P ( ) < P (0). This value 

is then selected as the step-size for the iteration. 

12. The solution is updated using the correction vector as x(t) =   Δx(t). 

13. xguess is replaced with xnew. Repeat from Step 4 until convergence criteria is 

satisfied or maximum number of iterations exceeded. 

The algorithm is summarized in the flowchart in Figure 3.3. 

Figure 3.3. QCPI Algorithm Implementation – Flowchart 
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3.3 Acceleration using Numba Just-In-Time (JIT) Compiler 

Parallelization of computational methods is generally a very time-consuming task 

that requires careful organization of data-parallel operations and creation of special 

data-structures required for exploiting parallel computation architecture. Prior work 

[30] explored in detail an efficient GPU implementation of the multiple shooting 

method in MATLAB. In contrast, QCPI is parallelized in a more automated manner 

using the JIT compiler Numba [106]. Numba helps speed up computation-heavy code 

written in Python by compiling it to high-performance native machine code with 

speeds comparable to C/FORTRAN without having to switch languages or Python 

interpreters. Numba is based on the LLVM (Low-Level Virtual Machine) compiler 

which can inspect and analyze code on-the-fly and generate optimized native machine 

code. It is designed to work with multi-core CPUs or GPUs and can integrate directly 

with the Python scientific software stack such as NumPy and SciPy. 

Numba supports three different compiler modes: 

• Python JIT mode which allows the use of Python data structures such as dic-

tionaries and objects and is the slowest of all three. This option includes a 

compilation overhead the first time the code is executed. 

• nopython JIT mode – this restricts the types of variables that can be included 

in a function. This mode can achieve performance close to C or FORTRAN 

native code. Since it is “just-in-time” compiled, there is an added overhead the 

first time the code is executed. 

• Ahead-Of-Time mode – This compiles code into machine-specific binary ahead 

of time and can be used later without Numba. 

For QCPI, the nopython JIT mode was used. Both of the JIT compilation modes 

also support automatic parallelization of certain types of loops, as long as the loop 

does not have cross-iteration dependencies (with some exceptions). This is an ex-

tremely useful feature when calculating Jacobian matrices and when evaluating equa-



107 

tions with multiple sets of perturbed states. Each individual iteration is run on 

separate CPUs in parallel at close to C/FORTRAN speeds by just adding some an-

notations to the Python code. In one case, the use of nopython JIT mode gave a  

speed up of nearly 60x over pure Python code. 

3.4 Validation 

The QCPI solver is validated by testing it on some representative optimal control 

problems with known solutions. The results are compared to those obtained using a 

multiple shooting algorithm. 

3.4.1 Classical Brachistochrone Problem 

The classical Brachistochrone problem is the minimum-time problem described in 

Section 2.8.1 but without the path constraint. It is used for validation as it is one of 

the simplest nonlinear optimal control problems with a known solution. 

Min T (3.45a) 

Subject to : 

ẋ = v cos θ (3.45b) 

ẏ = v sin θ (3.45c) 

v̇ = g sin θ (3.45d) 

x(0) = y(0) = 0, x(T ) =  −y(T ) = 1 (3.45e) 

g = −9.81 (3.45f) 

where θ is the control. 

The initial guess was created by propagating the equations of motion form the 

initial conditions with a fixed initial values (=-0.1) for the costates for 0.1 seconds. 
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-10 

The terminal conditions were updated to the design value of (x, y) = (10, -10) over 

11 continuation steps. The converged trajectory and control history are shown in 

Fig 3.4. The optimality of the solution is verified in Fig 3.5. The costate profiles 

in Figure 3.5(a) match the necessary conditions of optimality with Ax and Ay being 

constant, and Av(T) being equal to zero as v(T) is unconstrained. Fig 3.5(b) shows 

that the Hamiltonian remains very close to zero as it should for the optimal solution. 

3.4.2 Constrained Brachistochrone Problem 

The same problem described in Section 2.8.1 is solved using QCPI after regular

izing the constraint using ICRM. The initial guess was generated in a similar manner 

to how it was done in Section 2.8.1. However, a key difference in this case was that 

QCPI is able to solve the constrained problem starting with a low value of E = 10-4 

for the regularization parameter. The shooting method required that E be defined as 

one in the beginning and then reduced later using a continuation strategy. This factor 

also contributed to the fast convergence time for QCPI. The result is compared to 

that obtained using ICRM and the shooting method in Figure 3.6 in order to validate 

it. 
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Figure 3.6. QCPI Validation - Constrained Brachistochrone Problem with E = 10-4 
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3.4.3 Unconstrained Maximum Terminal Energy Hypersonic Trajectory 

In this scenario, a modified version of the hypersonic trajectory problem from 

Section 2.8.3 is solved using QCPI. All the staging conditions are the same as those 

specified in Table 2.1 from Chapter 2 except for the flight-path angle which is left 

unconstrained. The terminal boundary condition was changed to have the vehicle fly 

a longer distance of 566 km downrange, corresponding to a longitude of 5 degrees. 

The same problem was also solved using the shooting method. This is a particular 

example where QCPI in its current form performs worse than the shooting method 

even after parallelization. The reason for this is that in its current form, QCPI uses 

a CGL mesh of a fixed size and structure that is set before starting the solution pro-

cess. The shooting method on the other hand, uses an adaptive numerical integrator 

method, Runge-Kutta-Fehlberg-45, which is able to adaptively select the mesh size 

based on the sensitivity of the dynamic equations. Due to this reason, regions of high 

numerical sensitivity towards the middle of the trajectory tends to cause the solver 

to diverge. Therefore, while both methods required the use of continuation, starting 

with a trivial initial guess, it is to be noted that the continuation strategy used for 

QCPI was different from that used for the shooting algorithm. 

In case of the shooting algorithm, continuation was performed only on the bound-

ary conditions of the problem as described in Section 1.3. However, for QCPI the 

problem initially had to be solved with the atmospheric density parameter, ρ0, set to 

a very low value of 0.0012 kg/m3 (0.1% of the actual value). Once the near-ballistic 

trajectory connecting the starting and ending points is solved, ρ0 was increased up 

to its actual value of 1.2 kg/m3 . The majority of the time of the solution process 

is spent on changing ρ0 to its actual value. This extra step is required due to the 

limitation of QCPI when dealing with problems with high-sensitivity regions near the 

middle of the trajectory as described in Section 3.6.1. By solving the trajectory first 

with very low atmospheric density, it is possible to avoid intermediate trajectories 

with high sensitivity regions. It is in fact, possible to solve such problems with the 
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current implementation of QCPI if the number of nodes are significantly increased, 

at the cost of very high computation time. This is address further in the next chapter 

in Section 4.3.4. 

The evolution of the trajectory and control history with changing p0 is shown in 

Figure 3.7. The control effort increases as the atmospheric density increases so that 

the vehicle can utilize lift to fly higher. There is also a significant decrease in the 

terminal velocity due to atmospheric drag. 
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Figure 3.8. QCPI Validation - Unconstrained Hypersonic Trajectory Problem 

3 .5 Benchmark Problem and Performance Comparison 

3.5.1 Problem Definition 

A large multi-vehicle problem is set up for testing the performance of QCPI against 

that of shooting methods. The problem is based on the application problem detailed 

in Chapter 2, but uses a two-dimensional model in place of the 3-DOF syst em. There 

are also no path const raints enforced in the problem, and instead the number of 

vehicles are increased from 2 to 25. The motivation for doing this is to demonst rate 

scalability of this method as the number of dynamic variables in the BVP increases. 

The initial positions of the vehicles are linearly spaced out between ±2.25 km and 

the impact heading are linearly distributed between ±45 degrees. 

3 .5.2 Test Setup 

The benchmarking was performed on a computer with the specifications given in 

Table 3.1. The performance of QCPI is compared against three separate implemen

t ations of the shooting method. 
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1. A single shooting method, with automatic parallelization and code-acceleration 

using the Numba Just-In-Time compiler. 

2. A parallel shooting solver with an explicit multi-core implementation. Python’s 

built-in parallel computing primitives are used to propagate each trajectory 

arc and its sensitivity matrix in parallel on separate CPU cores. The dynamic 

equations are still compiled to binary using Numba in this implementation. 

3. A parallel shooting solver, with automatic parallelization and code-acceleration 

using the Numba Just-In-Time compiler. 

Both the single and multiple shooting solvers use an explicit Runge-Kutta 4(5) 

adaptive integration algorithm based on the DOPRI5 code described in Ref. 152. 

A 21-st order Chebyshev Polynomial Series was used for function approximation in 

QCPI. All the four solvers being tested used an integration tolerance of 10−6 and a 

convergence tolerance of 10−4 . 

The general multi-vehicle problem is solved for different values of n and the run-

time is recorded. It is to be noted that the run-time values described in the bench-

marks do not include the time taken by Numba for compiling the functions to efficient 

parallel binary code. In order to ensure that the compilation time is accounted for, 

the solver was run twice for each test case. Since the compilation always happens 

the first time that the dynamic equations are evaluated, the second run gives pure 

run-time statistics. 

Table 3.1. Benchmarking Hardware & Software Specifications 

Processor AMD FX-8320 Eight-core @ 3.5 GHz 

Memory 8 GB DDR3 - 2400 MHz 

OS Ubuntu Linux 17.04 

Python v3.6.1 
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3.5.3 Solution 

The solution for the problem with n = 10 is shown in Fig. 3.9 with the trajectories 

in Fig. 3.9(a) and the corresponding control profiles in Fig. 3.9(b). Since there are no 

path constraints, the optimal trajectory mainly involves a smooth turn with gradually 

increasing turn-rate that allows the vehicles to reach their target with the desired 

impact headings. 

(a) Planar View (b) Control History 

Figure 3.9. QCPI Benchmark Problem – Optimal Solution 

3.5.4 Performance Benchmarks 

The number of vehicles in the problem, n, is varied and the time taken for solving 

the problem is measured. Figure 3.10 compares the run-time performance of QCPI 

against the single and parallel shooting solvers for solving the candidate problem in 

Section 3.5.1. The runtime performance is also tabulated in Table 3.2. 

The number of arcs used by the parallel shooting solvers is also varied between 4 

and 8 arcs. It is important to note that the convergence characteristics of the parallel 

shooting solver changes with the number of arcs. While a larger number of arcs may 
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require fewer iterations to converge, the linear system to be solved in each iteration 

grows progressively larger with the number of arcs. 

An interesting result here is that the Numba version of parallel shooting is signifi-

cantly faster than the explicit parallel shooting implementation. The explicit parallel 

version starts to achieve similar performance to the Numba version once n = 25. This 

could be due to significant overheads when the parallelization is implemented at a 

high-level in the Python language. The Numba version analyzes code and parallelizes 

the code automatically where possible. For example, Numba unrolls iterations of 

loops that can be run independently and executes them in parallel. This happens 

transparently wherever such loops are present and therefore can significantly boost 

performance. Also, all the parallel code exists at the binary level as opposed to in 

interpreted Python code, which leads to very low overhead. 

The relative magnitudes of the run-times of the different implementations remain 

the same going from two vehicles to 10. However, once the number of vehicles in-

creases from 10 to 25, these values change radically. One factor that could be causing 

this drastic increase is the size of the state-transition matrix (STM) in the shooting 

methods. With double-precision floating point numbers, the memory used by the 

STM goes from around 64 kilobytes for 10 vehicles to 403 kilobytes for 25 vehicles. A 

matrix of this size gets initialized and multiplied during every time-step of integration 

when evaluating the dynamic equations corresponding to the STM. This is in addition 

the state vector and other intermediate variables which will themselves be of similar 

sizes. The size of the L1 cache and L2 cache in the processor used for the benchmarks 

is 384 KB and 8 MB, respectively. With the larger sized matrices, there is a higher 

probability of the matrices not fitting in the cache, therefore requiring more expensive 

RAM access. In the case of QCPI, while a similar number of ODEs are integrated, 

such large matrices are only operated on as part of the MCPI integration process 

rather than when evaluating the dynamic equations. 

Profiling the code also revealed that the number of times the dynamic equations 

are evaluated is approximately 8× more for the single shooting method as compared 
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to QCPI. This further contributes to higher run-time as the number of vehicles is 

increased. This particularly affects single shooting more due to the more parallel 

nature of multiple-shooting as well as the fixed overhead associated with parallel 

processing that may not change much with size of the problem. 

It can be seen that the QCPI implementation obtains a consistent 3.5× to 4.5× 

speed-up over the fastest parallel shooting implementation for values of n ranging from 

1 to 25. It is to be noted that these speed-ups were obtained using only automated 

parallelization by Numba and no explicitly parallel optimized code was developed for 

QCPI. This highlights to a certain extent the potential of QCPI for huge performance 

benefits with custom parallel implementations, particularly those targeting architec-

tures such as GPUs. However, given the trends in the benchmarks discussed above, 

further analysis is needed to exactly quantify the degree of parallelism in the algo-

rithm. It would also be beneficial to establish a lower bound on problem size that is 

required to efficiently exploit parallel architectures using QCPI. 

Table 3.2. QCPI Benchmarks – Runtime vs. Number of Vehicles 

Solver n = 1  n = 2  n = 5  n = 10  n = 25  

QCPI 0.02 0.05 0.15 0.43 2.86 

Single Shooting 0.19 0.37 1.29 3.65 26.91 

Parallel Shooting Explicit (8 arcs) 2.92 3.07 5.05 6.88 15.73 

Parallel Shooting Explicit (4 arcs) 3.89 4.29 6.29 7.71 15.11 

Parallel Shooting Numba (8 arcs) 0.08 0.16 0.659 2.233 14.12 

Parallel Shooting Numba (4 arcs) 0.07 0.16 0.595 1.952 11.14 
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3.6 Limitations 

3.6.1 Numerical Instability due to Fixed Mesh Size 

The Quasilinear Chebyshev Picard Iteration algorithm has much in common with 

collocation methods. Like some collocation-based methods, QCPI represents the so

lution using an orthogonal polynomial series and uses quadrature rules to integrate 

the dynamic equations in the problem. This causes QCPI to have some of the same 

drawbacks as collocation based methods. The solution is represented on an uneven 

mesh of Chebyshev-Gauss-Lobatto (CGL) nodes as shown in Fig. 3.11. In this mesh, 

the nodes are clustered at the beginning and end of the trajectory with fewer nodes in 

the middle. This causes numerical instabilities when solving problems with dynami

cally sensitive regions in the middle of the trajectory. In shooting methods, the use 

of adaptive numerical integrators help avoid this issue. In collocation-based solvers 

such as GPOPS, adaptive mesh refinement methods [153,154] are used to dynami

cally change the node positions, usually by concatenating meshes of different sizes. 

This allows the solver to add extra nodes in regions where the trajectory is highly 

sensitive, thereby improving the numerical stability of the solver. 
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QCPI in its current implementation, uses a fixed size grid that is specified a-priori. 

While it is still applicable to many nonlinear optimal control problems as illustrated 

in this chapter, this limits its use for problems with numerically sensitive regions in 

the middle of the trajectory. As such, the multi-vehicle application problem detailed 

in the next chapter is chosen such that the numerically sensitive regions appear in 

the beginning and/or end of the trajectory. The challenges posed by this limitation 

and some strategies for mitigating them are explored further in Section 4.3.4 and 

Section 6.2.4, respectively. 

3.6.2 Compilation Delays from Numba 

One of the drawbacks of using Numba is the relatively long compilation stage 

the first time that the accelerated code is executed. Though Numba was used for 

accelerating both QCPI and the shooting solver (where possible) for this benchmark, 

the compilation time required by the two methods are starkly different as shown in 

Fig. 3.12. In the shooting solver, the only part that is parallelized using Numba is the 

computation of the Jacobian matrix used for generating the State Transition Matrix 

(STM). The fraction of code that can be parallelized using Numba in  the case of the  

shooting solver is much smaller than in the case of QCPI. Consequently, this results 

in the compilation of QCPI code taking much longer to compile than the shooting 

solver. 

Another reason for this compilation overhead is that the every state of every 

vehicle in the problem are treated as having unique equations of motion even if 

that is not the case in a particular problem. This is especially true in the case of 

multi-vehicle systems. Numba performs in-depth automated analysis of the code to 

perform its parallelization, and the increase in number of equations to be analyzed 

further increases the compilation time. Explicit parallelization of the code, such 

as what Ref. 30 does for shooting methods, would significantly improve the run-

time performance as well as the compile-time performance of the numerical method. 
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Special handling of repeated equations in the problem can help significantly speed up 

the algorithm for multi-vehicle systems. 
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Figure 3.12. Benchmark - Compilation Time for QCPI and Shooting Methods 

3.7 Summary 

The Quasilinear Chebyshev Picard Iteration (QCPI) method builds on prior work 

utilizing a Chebyshev Polynomial series and the Picard Iteration combined with the 

Modified Quasi-linearization Algorithm. The capabilities of the numerical method 

are validated by solving some representative nonlinear optimal control problems. The 

performance of the solver is benchmarked against existing numerical solvers using a 

large multi-vehicle optimal control problem. QCPI is shown to obtain speedups in 

the range of 3.5x-4.5x when compared to a parallel shooting solver for solving the 

same boundary value problems when running on an 8-core processor. The results 

demonstrate that QCPI has a lot of potential for leveraging parallel computing archi-

https://3.5x-4.5x
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tectures and can greatly benefit from implementation on highly parallel architectures 

such as GPUs. 

Even with the limitations of its current implementation, QCPI has been demon-

strated to be a viable, fast numerical method for solving large nonlinear boundary 

value problems. It advances the state-of-the-art in using indirect methods for solving 

large scale trajectory optimization problems. This is further illustrated in the next 

chapter where QCPI is combined with ICRM to solve a large multi-vehicle constrained 

trajectory optimization problem. 
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4. MULTI-VEHICLE CONSTRAINED TRAJECTORY 

OPTIMIZATION 

4.1 Problem Statement 

A constrained multi-vehicle trajectory optimization problem is posed in this Chap-

ter to demonstrate the combined application of the ICRM and QCPI algorithms de-

scribed in this dissertation. This problem is an extension of the application problem 

in Section 2.9 and the benchmark problem in Section 3.5.1. It consists of five vehicles 

each with a control constraint along with a path-constraint that enforces a keep-out 

zone. The scenario models a co-operative, simultaneous engagement of two targets 

by five vehicles and is shown in Fig 4.1. The objective is to minimize total control 

effort. The full optimal control problem is stated in Eq. (4.1). The various problem 

parameters and boundary conditions are listed out in Table 4.1 and Table 4.2 respec-

tively. In Section 4.3, these conditions are modified in order to study the evolution 

of optimal trajectories for varying terminal geometry conditions. All the coordinates 

are specified in terms of a flat Cartesian coordinate system centered around the first 

target with the Y-axis pointing North and the X-axis pointing East. It is to be noted 

that unlike the benchmark problem used in the previous chapter, the current problem 

uses a three-dimensional model. 

Table 4.1. Multi-Vehicle Trajectory Optimization – Problem Parameters 

xc yc rc 

Zone 1 -9.0 km 0.0 km 1.5 km 
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Figure 4.1. Multi-Vehicle Trajectory Optimization - Scenario Overview 

Table 4.2. Multi-Vehicle Trajectory Optimization – Boundary Conditions 

Vehicle Xi(0) Yi(0) Zi(0) Xi(T ) Yi(T ) Zi(T ) ψi(T ) 

Vehicle-1 -12.0 km -0.750 km 1.5 km 0.0 km 0.0 km 0.0 km +15 deg 

Vehicle-2 -12.0 km +1.500 km 1.5 km 0.0 km 0.0 km 0.0 km -15 deg 

Vehicle-3 -12.0 km +2.250 km 1.5 km 0.0 km 0.0 km 0.0 km -30 deg 

Vehicle-4 -12.0 km -1.500 km 1.5 km 0.0 km 0.75 km 0.0 km +30 deg 

Vehicle-5 -12.0 km -2.250 km 1.5 km 0.0 km 0.75 km 0.0 km +45 deg 
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T n 

Min J = ū2 
i + γi 

2 (4.1a) 
0 i=1 

Subject to: (4.1b) 

ẋ̄ i = v̄i cos ψi cos γ (4.1c) 

ẏ̄i = v̄i sin ψi cos γ (4.1d) 

ż̄i = −v̄ i sin γ (4.1e) 

v̇̄i = 0  (4.1f)  

ψ̇i = ūmaxū i (4.1g) 

¯ ¯ ¯ x̄ i(0) = Xi0, ȳ  i(0) = Yi0, z̄  i(0) = Zi0 (4.1h) 

v̄ 0(0) = 1 (4.1i) 

ψi(T ) =  ψif (4.1j) 

|ū i| ≤ 1 (4.1k) 

(x̄i − xc)2 + (ȳi − yc)2 ≥ rc (4.1l) 

where i = 1, 2, ..., 5 

This multi-vehicle constrained trajectory optimization problem, as defined above, 

consists of 24 state variables, 10 control variables, 5 path constraints and 5 control 

constraints. On using ICRM to compute the necessary conditions of optimality, it 

is converted into a two-point boundary value problem with 89 ODEs. This number 

includes the original state variables, the extra states added by ICRM to incorporate 

the path constraints, the corresponding costates, the original control variables, the 

ICRM regularization controls, and the free final time. The Quasilinear Chebyshev 

Picard Iteration algorithm developed in this dissertation is used to numerically solve 

this nonlinear two-point boundary value problem and obtain the optimal solution. 
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4.2 Nominal Solution 

As in the examples in the prior chapters, the variables were scaled based on a 

reference velocity of ¼eJ = 300 m/s and reference flight-time of Tref = 50 sec. 

A continuation strategy consisting of two steps was used to evolve the trajectory 

starting from a trivial initial guess to the solution for the actual problem. The first 

stage of this progression with the intermediate targets is shown in Fig 4.2(a), and 

the solution obtained at the second step, where the trajectories are extended to the 

desired targets, is shown in Fig 4.2(b). Using the intermediate target allowed the 

continuation methodology (Section 5.6) to skip over any possible continuation steps 

that could have landed inside the no-fly zone. 

t-----t--------t--~r-:,,,.,-------t------1 - Vehicle 1 

- Vehicle2 
- Vehicle3 
- Vehicle4 

t-----t--------+l--f-----t------1- Vehicle 5 r-
- No-Fly Zone 

0 -

-4 

-14 -12 -10 -8 -6 -4 

--+-----+----+-----+- - Vehicle 1 
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-2 +-t-------"'-....::,f---=""- .........- ---i=---+----=-.-<:t-:;>"'---+-1 
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(a) Intermediate Solution (b) Nominal Solution 

Figure 4.2. Multi Vehicle Problem - Construction of Nominal Solution 

The optimal trajectory for the nominal problem setup as defined in the last sec

tion is shown in Fig 4.2(b). ICRM is used to regularize the path constraints and 

incorporate them into the problem. The regularization parameter E is set to 10-4
_ 

This relatively high value of E results in a push off factor for the path constraint as 

seen by the trajectory of Vehicle-1 which is the closest to the no-fly zone constraint. 

Making E smaller caused numerical instabilities when using QCPI to solve the bound

ary value problem. This is one of the limitations of QCPI as discussed before in 
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Section 3.6. This effectively increases the radius of the no-fly zone that is enforced 

on the trajectory and decreases the control authority available, as discussed before 

in Section 2.7. A specific case where for the no-fly zone is decreased to 10−6 is 

examined in Section 4.3.4. 

4.3 Analysis 

Starting with the nominal problem as shown in the previous section, boundary 

conditions and problem parameters are changed using homotopy continuation in order 

to obtain families of optimal trajectories for these conditions and illustrating the 

cross-coupling of dynamics in multi-vehicle systems. 

4.3.1 Changing the Location of the Keep-Out Zone 

The location of the no-fly zone constraint is changed in this section using a con-

tinuation method, and the evolution of the optimal trajectories are examined in this 

section. The constraint is implemented as a circle positioned at (xc, yc) with a radius, 

rc. 

The position of the zone is changed by increasing yc, pushing the constraint further 

North 2.25 km. The resulting change in the trajectories of all five vehicles are shown 

in Fig 4.3. As the constraint moves up, it becomes inactive in Vehicle-1’s trajectory. 

This has the compound effect of also moving the trajectories of vehicles 2 and 3 

further North as seen in Fig. 4.3(b). Since the speed of all vehicles except Vehicle-1 

are free states, these values also change as the constraint limit is varied. Fig 4.4(a) 

shows the variation in vehicle speed as yc is changed from 0 km to 2.25 km. 

Vehicles 4 and 5, though initially the faster due to the placement of the path 

constraint, only gets slightly faster and the effect on their velocity diminishes as the 

path constraint gets further away from their trajectories. On the other hand, Vehicle-

2 transitions from being the slowest of all when yc = 0 to being the fastest when 

yc = 2.25km. This is because the constraint and the arrival heading make the distance 
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it has to travel longer than that of the other vehicles. Vehicle-3’s optimal speed is 

significantly higher due to being pushed North in order to avoid the constraint. This 

is also reflected in the final control profile in Fig. 4.4(b), where ū 2 and ū 3 shows 

higher magnitudes of control effort compared to that of the other vehicles. The total 

distance flown by Vehicle-2 is the highest because there it’s trajectory also has a 3D 

component to it and flies slightly below Vehicle-3 to arrive at the target with the 

right impact heading as shown in Fig. 4.5. 

Figure 4.5. Multi Vehicle Problem – Moving Path Constraint – 3D 
Trajectory Profiles 

4.3.2 Changing the Impact Heading of Vehicle-3 

In this section, the constrained impact heading of Vehicle-3 is changed, and the 

effect on the overall solution structure is examined. First, the terminal heading 

constraint on Vehicle-3, ψ3(T ), is changed from its nominal value of -30 deg to -179 

deg. This limit was chosen as this approach heading would be almost directly opposite 

to the starting position of Vehicle-3. Changing the heading any further would result 

in the optimal solution changing to loop around the south of the trajectory, which 
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causes the continuation strategy to fail. The evolution of both the trajectories are 

shown both 2D and 3D in Fig. 4.6. There is a significant 3D component to the change 

in the trajectory of Vehicle-3 as seen in Fig. 4.6(b). As heading angle turns further 

East, the vehicle stays higher for longer before turning around. 

This scenario is one case where additional constraints are needed to ensure that 

the trajectory is feasible. Unlike in Section 2.9, because there is no second constraint 

restricting the motion of Vehicle-3, the maximum allowed velocity is the limiting 

factor that determines how much the impact heading can be changed. The longer 

flight path of Vehicle-3 results in an increase in speed as shown in the velocity profile 

in Fig. 4.7(a). The altitude profile, the vehicle speed, and turns are all timed so that 

all the vehicles reach their respective targets at the same time while satisfying all the 

other geometry and path constraints. 

In fact, due to the significantly longer trajectory, the speed required is around 

700 m/s. This shows that in this particular scenario, if all the other constraints 

remain the same, one of the vehicles need to be significantly different and capable 

of flying near two and half times as fast as the others in order to satisfy the impact 

heading constraint. Since the velocity is implemented as a constant value (v̇3 = 0)  

in this particular model, enforcing it as a path constraint is not possible. This is 

one of the limitations of the current approach. Further analysis in the next section 

proceeds assuming that Vehicle-3 is capable of achieving the required speed. The 

final trajectories of all 5 vehicles are shown in Fig. 4.7(b). This is the starting point 

for the analysis in the next section. 
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(a) Planar trajectories (b) 3D view 

Figure 4.6. Multi Vehicle Problem – Vehicle-3 Impact Heading – 
Evolution of Trajectories 

(a) vi vs ψ3(T ) (b) Final 3D Trajectory 

Figure 4.7. Multi Vehicle Problem – Vehicle-3 Impact Heading – 
Velocity Profile and Final Trajectory 
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4.3.3 Changing the Impact Heading of Vehicle-5 

Starting with the final trajectory in the previous section (Fig. 4.7(b)), the con-

strained impact heading of Vehicle-5 is changed from +45 deg to +125 deg. The 

evolution of the vehicle trajectories are shown in Fig.4.8. The evolution of Vehicle-5’s 

trajectory shows a similar profile to that of Vehicle-3 in the previous section. A new 

change in this case is that the trajectory of vehicle 1 (the “reference” vehicle) is also 

affected in this case. In fact as seen in the final trajectories in Fig. 4.9, this change also 

results in a collision between Vehicle-1 and Vehicle-4. The collision could be avoided 

by adding a separation distance constraint between every vehicle pair in the problem. 

Limitations in the current implementation makes the addition of these constraints 

prohibitively time-consuming. Some possible improvements to the implementation of 

QCPI and ICRM that can overcome these challenges are explored in the Section 6.2. 

(a) Planar View (b) 3D view 

Figure 4.8. Multi Vehicle Problem – Vehicle-5 Impact Heading – 
Evolution of Trajectories 

4.3.4 Improving Accuracy by Reducing �i 

As mentioned earlier in this chapter, all of the results shown so far for this five-

vehicle problem, were solved with all the regularization parameters, �i, set to 10−4 , 
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(a) Planar View (b) 3D view 

Figure 4.9. Multi Vehicle Problem – Vehicle-5 Impact Heading – Final 
Trajectory for ψ5(T ) = 125 deg 

for the no-fly zone constraint. It is to be noted that each vehicle has a separate 

parameter, �i for its no-fly zone constraint as well as a different parameter for the 

control limit constraint. Therefore, in the context of this section, changing �i refers 

to � for the no-fly zone constraint for all five vehicles in the problem. While lower 

values of �i would reduce the push-off factor around the constraint, it would also make 

the BVP significantly more difficult to solve. This is a side-effect of the numerical 

sensitivity issue outlined before in Section 2.7 as well as QCPI’s fixed mesh spacing 

(Section 3.6.1) in its current implementation. 

One way to allow for smaller values of �i is to increase the number of nodes used 

by QCPI to discretize the problem space, at the cost of increased computation time. 

In this section, the number of nodes, N , used by QCPI is increased to 151 to facilitate 

a continuation process on �i, reducing it down to 10−6 . This is done to demonstrate 

that QCPI is indeed capable of closely tracking path constraints albeit at a significant 

computational cost. The trajectory obtained for �i = 10−6 starting with the nominal 

solution from Section 4.2 is shown in Fig. 4.10. It can be seen that the push-off factor 

around the no-fly zone that appeared in the previous trajectories in this Chapter 

has practically vanished with trajectories closely following the boundary of the no-fly 
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zone. It is to be noted that when N was increased to 151, the computation time 

increased significantly, with the continuation process from Ei = 10-4 to Ei = 10-5 

taking almost 4 hours on a MacBook Pro with a quad-core processor. 

E 
=-

-4 -t-+----t-------,,-------+----+-----+----+----< 

-4 -2 0 

Figure 4.10. Multi Vehicle Problem - Trajectory for E = 10-5 

A rough analysis of the relation between the value of Ei and the number of QCPI 

nodes required is also performed and the results are shown in Fig. 4.11. The con

tinuation process for decreasing Ei was repeated for different values of N until the 

process fully converged to a solution. If the number of nodes is too low to capture 

the dynamics at the middle of the trajectory, the residual error in boundary condi

tions plateaus at a valuer higher than convergence tolerance. The emerging trend 

in Fig. 4.11 shows that QCPI's numerical sensitivity issue is not intractable. Such 

highly sensitive problems can indeed be solved using QCPI by adding extra nodes 

at the affected areas of the trajectory. However , the method for adding such nodes 

is highly inefficient in the current implementation of QCPI, owing to the fixed mesh 

spacing. Some strategies for making QCPI more efficient in this aspect are outlined 

later in Section 6.2.4. 
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Figure 4.11. Multi Vehicle Problem - Number of QCPI Nodes Re
quired for Different Values of Ei 

4.4 Summary 

A multi-vehicle trajectory problem with path constraints was solved using a com

bination of the ICRM and QCPI methods developed in this dissertation. The scenario 

was set up to serve as a demonstration of the capabilities of these methods for solv

ing large-scale trajectory optimization methods. Analysis in this chapter, along with 

that in Section 2.9 demonstrated some of the cross-coupling effects that appear when 

the optimal trajectories of multiple vehicles are simultaneously solved for while ac

counting for various geometry and path constraints. This is a type of problem that 

would be considered infeasible to solve using traditional implementations of indirect 

methods due to the challenges conventionally associated with these methods [8] . 

The scenario described in this chapter as well as the ones used for validation of 

the methods presented in this dissertation were solved using an open source, indirect 

trajectory optimization framework - beluga. ICRM and QCPI form integral parts 

of this framework that automates the construction of the necessary conditions of 

optimality and includes automated continuation strategies for numerically solving 
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boundary value problems. The design and architecture of this framework is described 

in the next chapter. 
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5. BELUGA — AN INDRECT TRAJECTORY 

OPTIMIZATION FRAMEWORK 

5.1 Introduction 

The methods developed in this dissertation as described in the previous chap-

ters form the key components of a generalized, open source trajectory optimiza-

tion framework. In its current nascent form, the framework only supports indirect 

methods. However, the longer term goal of this framework is to become a viable 

alternative to state-of-the-art direct solvers such as GPOPS [6] and DIDO [7], by 

supporting a wide variety of direct and indirect methods for solving real-world op-

timal control problems. This chapter describes the design and overall structure 

of this framework and demonstrates some of its use cases. This trajectory opti-

mization framework with full source code can be obtained at https://github.com/ 

Rapid-Design-Of-Systems-Laboratory/beluga/tree/tantony-phdthesis. 

A prototype of this rapid trajectory optimization framework was originally devel-

oped using MATLAB [96] as described in Ref. 155. It was used as a foundation for 

implementing a “mathematically unified design environment that is capable of per-

forming rapid simultaneous hypersonic aerodynamic and trajectory optimization”. 

The prototype framework was very specific to the application that it was created for 

and had limited options for the numerical solvers and symbolic engines it could use. 

Mathematica [73] and MATLAB Symbolic Toolbox [74] were used for symbolic com-

putation, and the bvp4c [88] numerical solver was used for solving boundary value 

problems. In Ref. 79 and 30, this framework was further extended to be a more gen-

eralized framework for solving optimal control problems capable of leveraging GPUs 

for accelerated computation. The capabilities of this framework was demonstrated in 

a range of aerospace applications [14, 15, 110,156–161]. 

https://github.com
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Owing to licensing limitations in MATLAB as well as performance issues, the 

framework, now code-named beluga1 , was redesigned from scratch using the Python 

[105] programming language. Python’s powerful object oriented and functional pro-

gramming capabilities and close integration with C/C++ and FORTRAN [162] has 

made it an ideal candidate for the implementation of scientific computing libraries 

[163]. In the recent years, the availability of fast scientific computing and visualiza-

tion libraries such as NumPy [2], SciPy [1, 163], and Matplotlib [164, 165] coupled 

with the huge open source community around it has led to Python emerging as one 

of the most favored platforms for scientific computing. Python has been used in a 

wide range of scientific fields such as astronomy [166], astrodynamics [167], parti-

cle physics [168], quantum mechanics [169] and biotechnology [170]. Several popular 

linear algebra, numerical integration, and optimization codes written in FORTRAN 

such as LAPACK [171] and ODEPACK [172] have been linked to Python. By lever-

aging these tools, it is possible write programs that utilize these really fast methods 

while retaining the flexibility of a high-level language like Python. All these features 

makes Python an ideal platform for the development of an open-source computation 

framework like beluga. 

All of the optimal control problems shown in this dissertation were solved using 

the beluga optimal control framework. This chapter highlights some of the features 

of the framework as well as some guidelines on how to use it. 

5.2 Problem Definition 

As mentioned before, one of the major drawbacks of using indirect methods is 

the derivation of the necessary conditions of optimality. beluga simplifies this by 

automating the derivation of these conditions. However, this requires that all the 

components of the optimal control problem be defined. This section describes some 

of the major components of a problem definition file used for solving an optimal 

1beluga is not an acronym. The name was chosen because we think beluga whales are interesting 
creature and we wanted a simple, easy-to-remember name like many other open source projects 
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control problem in beluga. Many of these variables have units associated with them 

which are used for dynamic scaling as described in Section 5.3. In this section, the 

constrained brachistochrone problem from Section 2.8.1 will be used as the example 

and different sections of the input file will be shown. The complete input file is shown 

in Appendix B.2. 

State and Control Variables 

State variables are the mathematical variables that define the state of the dy-

namic system being optimized. Each state variable has a dynamic equation and a 

unit associated with it while the control variable has just a name and a unit. The 

following code-block shows state and control variable definitions for the constrained 

Brachistochrone problem. The independent variable in the problem (usually time), 

and it’s unit is also defined in the input file. 

# Define independent variables 

ocp.independent(’t’, ’s’) 

# Define equations of motion 

ocp.state(’x’, ’v*cos(theta)’, ’m’)\ 

.state(’y’, ’v*sin(theta)’,’m’)\ 

.state(’v’, ’g*sin(theta)’,’m/s’) 

# Define controls 

ocp.control(’theta’,’rad’) 

Constants 

Constants are usually used to define model parameters such as gravity, atmo-

spheric density, etc. While these are constant while the problem is being solved, it is 
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possible to vary these values using continuation over a series of steps. One application 

of this would be to solve a trajectory problem without an atmosphere and then gradu-

ally increasing the constant corresponding to surface atmospheric density to examine 

the effect of accounting for drag. In case of the constrained brachistochrone problem, 

the only constant is the acceleration due to gravity and it is defined as shown below: 

# Define constants 

ocp.constant(’g’,-9.81,’m/s^2’) 

Cost Functionals 

beluga allows for two kinds of objective functions to be defined – path costs and 

terminal-point costs. For path costs of the form J = 
0 
T 
L dt, the integrand L is 

defined in the input file. In case of the constrained brachistochrone problem, since 

the objective is to minimize the total-time, the cost functional is defined as: 

# Define costs 

ocp.path_cost(’1’,’s’) 

Constraints 

Three kinds of constraints can be defined in the input file – initial point con-

straints, terminal point constraints, and path inequality constraints. The initial and 

terminal point constraints form the boundary conditions on the state variables in the 

problem. Any state variable that is not included in these definitions is assumed to 

be unconstrained at either end of the trajectory. In case of the constrained brachis-

tochrone problem, these are defined as: 

ocp.constraints() \ 

.initial(’x-x_0’,’m’) \ 

.initial(’y-y_0’,’m’) \ 

.initial(’v-v_0’,’m/s’)\ 

.terminal(’x-x_f’,’m’) \ 
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.terminal(’y-y_f’,’m’) 

In the case of path constraints, additional specifiers are required to define if the 

path constraint is an upper bound, lower bound, or a two-sided constraint. In case 

of the constrained brachistochrone problem, the path constraint is defined as: 

ocp.constraints() \ 

.path(’constraint1’,’y+x’,’>’,-1.0,’m’,start_eps=1e-4) 

The above definition enforces the path constraint y + x >  −1. Since the problem 

is to be solved using ICRM, a starting value for the regularization parameter, , is  

also specified (in this case as 10−4). An upper bound path constraint would similarly 

be defined as: 

ocp.constraints() \ 

.path(’constraint1’,’x+1’,’<’,1,’m’,start_eps=1e-4) 

A two-sided constraint such as a control bound would be defined as : 

ocp.constraints().path(’ulim’,’u’,’<>’,1,’rad/s’,start_eps=1e-4) 

Sub-expressions 

Sub-expressions are optional definitions that may help simplify equations in the 

input file. For example, in a hypersonic trajectory problem, the atmospheric density 

ρ is a variable that may appear multiple times in different state equations. When 

using an exponential atmospheric model, it may be expanded to ρ = ρ0 exp (−h/H) 
where h is the altitude, H is the scale-height of the atmospheric model and ρ0 is the 

surface atmospheric density. In order to avoid repetition, beluga offers the provision 

of defining “quantities” that get automatically substituted into all equations before 

the necessary conditions are derived. So in case of the hypersonic problem, some 

common quantities such as density and dynamic pressure may be defined as: 

ocp.quantity(’rho’,’rho0*exp(-h/H)’) 

ocp.quantity(’q’,’0.5*rho*v^2’) 
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These variables, ‘rho’ and ‘q’ can then be used in place of these expressions in 

other equations in the problem. This helps significantly improve the readability of 

the input file. 

5.3 Dynamic Scaling 

The different states and costates in the BVP resulting from using indirect methods 

can vary from each other by several orders of magnitude. This presents a challenge 

while solving the BVP using numerical methods. For example, it may be impractical 

to enforce a tight error tolerance (e.g., 10−10), on a state that has values on the order 

of 109 . In order to mitigate this issue, the states, costates, constants, parameters, 

constraints, and the independent variable (time) are dynamically scaled during every 

iteration of the continuation method. It is generally difficult to identify scaling factors 

for all these parameters for complex, hypersonic problems. By starting with a simple 

problem and evolving it into more complex problems, it is possible to evolve the scaling 

factors based on the solution history of the past iterations during the continuation 

process. This scaling methodology is fully automated and the designer only has to 

specify the scaling factor associated with each of the fundamental units. In beluga, 

scaling is performed based on the units associated with the different components of 

the problem. For example, in the constrained brachistochrone problem, the base 

scaling factors are defined as: 

ocp.scale(m=’y’, s=’y/v’, kg=1, rad=1, nd=1) 

Here, the ‘meter’ unit is scaled based on the absolute magnitude of the y state vari-

able. As the magnitude of y increases during continuation, this value also increases, 

thereby keeping the scaled state variable value on the order of unity. Similarly the 

time unit is scaled by the magnitude of the expression x/v and every other unit is 

left unscaled. Since all the other associated variables and constants also have their 

own dimensional units (e.g. m/s2 for g), these values also get scaled accordingly. 
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5.4 Necessary Conditions 

The framework offers two options for calculating the necessary conditions of op-

timality – conventional optimal control theory [12] and ICRM. The former converts 

the constrained optimal control problem into a multi-point boundary value problem 

while the latter regularizes the path constraints using the methods described in this 

dissertation to form a two-point boundary value problem. 

All of the equations relevant to the problem are defined as strings by the designer. 

These strings are converted into Sympy [72] symbolic expressions so that they can be 

manipulated. In case of ICRM, the path constraints are regularized and extra states 

and control variables are added to the problem definition. The dynamic equations 

and cost functionals are used to formulate the Hamiltonian and then the dynamics 

and boundary conditions for the costates. The necessary conditions of optimality thus 

formulated are used to generate Python functions that evaluate both the ODEs and 

the boundary conditions for the two-point or multi-point boundary value problem. 

Each numerical solver defines a template file that converts the symbolic expressions 

representing the necessary conditions of optimality into executable Python code. 

5.5 Numerical Solvers 

beluga defines a generic interface that allows the implementation of different nu-

merical methods for solving boundary value problems. Each numerical method de-

fines its own pre-processing step for converting symbolic expressions into executable 

Python code. This allows for method-specific code optimizations to be applied. For 

example, QCPI implements code parallelization using the Numba library that is not 

implemented by the shooting solver. At the time of writing, beluga offers two numer-

ical methods – a multiple shooting solver and a QCPI implementation. The designer 

specifies the numerical method in the input file. The open nature of the project offers 

scope for further expansion of the framework using third-party contributions. 
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5.6 Continuation Strategies 

Continuation plays a major role in being able to use indirect methods to solve 

complex optimal control problems [13]. As such, beluga offers different strategies 

for generating initial guess as well as for performing continuation. Currently, two 

types of continuation strategies are implemented – manual strategy and bisection 

strategy. These methods assume that the initial guess converges to a valid solution to 

the boundary value problem. Continuation is then performed or the initial/terminal 

boundary conditions or the constants until the desired parameters are achieved. 

5.6.1 Initial Guess Generation 

Practically all numerical methods for solving nonlinear boundary value problems 

require an initial guess. Indirect methods in particular are known for requiring an 

accurate initial guess and having a small radius of convergence. beluga includes three 

types of initial guess generators. 

Automatic Initial Guess using Integration 

This method is the simplest to set up but may not work immediately for more 

complex problems. In this method, a starting/ending point is specified for the states 

along with fixed initial guess for the costates. This starting point is then integrated 

forward/backward numerically for a fixed amount of time, and the result is used as the 

initial guess for the numerical solver. When using ICRM, it is also necessary to provide 

starting values for the control variables. In case of the constrained Brachistochrone 

problem solved using ICRM, the initial guess is generated using this method, and it 

is defined in the input file as: 

guess_maker = beluga.guess_generator(’auto’, 

start=[0,0,1], # Starting values for states 

direction=’forward’, 
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costate_guess = 0.1, 

control_guess = [-3.14*60/180, 0.0, 0.0], 

) 

Data File Initial Guess 

This method uses a previously converged solution as the starting point for con-

tinuation. In this case, the name of the data file and the index of the solution to be 

used is specified. The solution data is loaded from the file and passed directly to the 

numerical solver. 

Custom or Static Initial Guess 

This method is used when the designer wants to manually specify the complete 

initial guess data structure. This provides adequate flexibility in those cases where 

the automatic guess generator proves insufficient or when the designer wants to use 

insight into the problem to provide a custom initial guess solution. 

5.6.2 Manual Continuation Strategy 

This is the simplest homotopy continuation strategy implemented in beluga. The  

designer specifies the target values for the initial or terminal boundary condition as 

well as the number of intermediate steps to take. The framework then solves each 

step in sequence, using the previous solution as the initial guess for the next until 

the desired parameters are achieved. If any of the steps fail to converge, the iteration 

stops. 

For example, for the Brachistochrone problem, if the automatic initial guess is 

used, a trajectory that is about 0.1 s long is obtained. Continuation is performed on 

the terminal x and y values until the desired values are reached. This is defined as: 

continuation_steps = beluga.init_continuation() 
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continuation_steps.add_step(’manual’) \ 

.num_cases(21) \ 

.terminal(’x’, 10) \ 

.terminal(’y’,-10) 

It is possible to add more than one continuation step to, for example, perform a 

continuation in x first and then in y. This may be required in some cases to navigate 

around infeasible areas in the design space. 

5.6.3 Bisection Continuation Strategy 

The bisection strategy builds on the manual strategy and attempts to automati-

cally find a feasible continuation step size. In case of the Brachistochrone example, 

such a continuation strategy would be defined as: 

continuation_steps = beluga.init_continuation() 

continuation_steps.add_step(’bisection’) \ 

.num_cases(21) \ 

.terminal(’x’, 10) \ 

.terminal(’y’,-10) 

Unlike the manual strategy, if any of the intermediate steps fail to converge, the 

step is cut in half, and the numerical solver attempts to solve it again. For example, if 

the continuation succeeded up to terminal boundary conditions of x = 5  and  y = −5, 
but somehow failed to converge for x = 5.5 and  y = −5.5, the solver would cut this 

step size in half and try to solve for x = 5.25 and y = −5.25. This bisection would 

continue until a pre-defined number of divisions (10 by default). 

This strategy helps reduce some of the burden on the designer of selecting contin-

uation steps and was used to solve all of the examples described in this dissertation. 
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5.6.4 Advanced Continuation Strategies 

The challenge with the two continuation strategies discussed above is that there are 

many cases in which a smaller continuation step may result in the problem becoming 

even more infeasible. An example of this can be seen in this figure from Ref. 80. If 

continuation is simultaneously being performed on both x1 and x2, there are scenarios 

where decreasing the step-size may result in the problem becoming infeasible when 

the terminal boundary conditions land in the red area. The way to resolve this using 

manual/bisection strategies would be to perform continuation on x1 and x2 separately. 

x2 Optimal Trajectory 

x1 
Initial 

Terminal 

Difficult 
Region 

i =1 

i = 3 
i = 2 

~ o· ...... -✓· ... . 
..... ..... . . . " : .. ..... - -- : 

(2) (3) Δ x1 ≠ Δ x1 

Figure 5.1. Adaptive Continuation in Design Space with Infeasible 
Areas [Source: Mansell [80]] 

Ref. 80 describes two adaptive strategies that can automatically search in the 

continuation space by changing both the step-size and direction. The strategy uses 

Lagrange multipliers used for adjoining boundary conditions and graph-search meth-

ods such as A* and RRT for find a feasible path through complex design spaces. 

beluga offers an interface in which this and other advanced continuation strategies 

can be implemented. 
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5.7 Visualization 

Visualizing the results is an important part of solving any engineering problem. 

beluga includes a flexible, extensible visualization library that supports renderer back-

ends such as MatPlotLib [164], Bokeh [173] and ToyPlot [174]. The visualization 

module offers the ability to compute and plot time-series data consisting of arbitrary 

expressions containing constants and variables defined in the problem. These expres-

sions can be evaluated on coarse or fine meshes using spline interpolation, transparent 

to the user. 

The visualization module also defines a generic data source interface that can 

be customized to load data from a variety of sources. The default implementation 

includes support for beluga data files as well .MAT files generated by GPOPS [6]. 

This allows comparison of results obtained from different sources with the solutions 

obtained by beluga. This is very important for validation purposes. A sample plot-

ting script used for comparing results from beluga and GPOPS can be seen in Ap-

pendix B.3. 

5.8 Summary 

beluga is being developed with the goal of being a viable contender to state-of-the-

art direct solvers such as GPOPS and DIDO. In its current form, as illustrated by the 

various examples in this dissertation, it has made significant advances in automating 

the use of indirect methods for trajectory optimization. The implementation of ICRM 

has enabled easy inclusion of path constraints in optimal control problems, almost 

with the level of ease as GPOPS. Though there are numerical difficulties in some 

cases, the bulk of the complex analytical math is automatically performed behind-the-

scenes without requiring any intervention from the designer. beluga offers a powerful 

interface for implementing custom algorithms and numerical methods. In fact, it could 

even be expanded to support direct solvers which could facilitate the application of 

a mix of direct and indirect solvers on different parts of the same problem. 
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Following on the path of popular and widely used scientific software projects such 

as SciPy [1] and Numpy [2], beluga is released under the permissive MIT license 

[3]. Being an open source project allows the community to contribute freely to the 

framework, further expanding its capabilities and allow faster integration of new 

advances to the state-of-the-art [175–178]. 
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6. SUMMARY AND FUTURE WORK 

6.1 Summary of Contributions 

The contributions described in the previous chapters advance the state-of-the-art 

in solving large scale trajectory optimization problems using indirect methods. The 

Integrated Control Regularization Method (ICRM), described in Chapter 2, over-

comes one of the major limitations traditionally associated with indirect methods. It 

does so in a way that makes it possible to still use existing numerical methods for 

solving boundary value problems. In Chapter 3, ICRM is complemented by a new 

numerical method for solving large scale nonlinear boundary value problems that is 

capable of utilizing parallel computing architectures. This is particularly important 

as modern computing hardware is trending towards highly parallel architectures. In 

Chapter 4, a large scale multi-vehicle problem is solved using the two methods de-

veloped in the previous chapters. It demonstrates that even with relatively simple 

dynamic models, it is possible to study complex behavior that emerges in optimal 

trajectories of multi-vehicle systems. Chapter 5 summarizes the features and design 

of an open source indirect trajectory optimization framework which was used to solve 

all of the examples in this dissertation. QCPI and ICRM are implemented as part of 

this framework. This chapter summarizes all these contributions and then describes 

future work that can overcome limitations of the current implementations. 

6.1.1 Integrated Control Regularization Method (ICRM) 

Incorporation of path constraints into optimal control problems using indirect 

methods is generally considered a non-trivial task. It is also cited one of the main 

reasons for not using indirect methods for solving real-world trajectory optimization 
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problems. This is because when using indirect methods, path constraints force the 

solution to be split into multiple arcs with a sequence that has to be known a-priori. 

The arcs also introduce interior boundary conditions forming a multi-point boundary 

value problem (MPBVP). Providing an accurate initial guess to these MPBVPs is 

also a non-trivial task. Prior to this dissertation, one way for overcoming this issue 

was to use a continuation strategy for introducing path constraint arcs one at a time 

into an unconstrained solution. However, this strategy does not scale well as the 

number of constraints increase or when the same constraint is active and inactive 

multiple times in the solution. Another strategy is to regularize the path constraints 

using saturation functions and formulating the BVP as one consisting of a differential 

algebraic equation (DAE) system. This type of BVP required the development of a 

special numerical solver that also has difficulties scaling as the problem size increases. 

The Integrated Control Regularization Method (ICRM), as described in this dis-

sertation, uses saturation functions to incorporate path constraints into an optimal 

control problem, while at the same time enabling the use of existing numerical solvers 

such as the shooting method. It does not introduce interior boundary conditions, and 

the solution remains a single arc. The ability to use existing numerical methods also 

means that it can leverage parallel numerical methods developed for solving generic 

boundary value problems. Comparisons with results obtained using conventional op-

timal control theory as well as direct solvers such as GPOPS, where applicable, vali-

dates the accuracy of the constrained solutions generated using ICRM. The method 

is then applied to a two-vehicle cooperative engagement scenario with two path con-

straints to illustrate that it is capable of solving complex optimal control problems of 

the type that was previously considered impractical to solve using indirect methods. 

6.1.2 Quasilinear Chebyshev-Picard Iteration (QCPI) 

The main performance bottleneck when solving large scale optimal control prob-

lems using indirect methods is the numerical method used for solving the boundary 



151 

value problems that result from applying indirect methods. One way to accelerate 

these numerical methods is by leveraging parallel computing architectures that can 

execute different parts of the algorithm simultaneously rather as a serial process. 

Prior work in Ref. 30 examined ways to structure a multiple shooting solver to lever-

age highly parallel GPUs for solving boundary value problems. It also highlighted 

some of the limitations of the method as the size of the problem increases. 

In this dissertation, a new numerical method is developed with inherently parallel 

features for the express purpose of leveraging parallel computing architectures. The 

Quasilinear Chebyshev-Picard Iteration (QCPI) method builds on prior work based on 

the Picard Iteration and the Chebyshev-Gauss quadrature rule. While the previous 

method, the Modified Chebyshev-Picard Iteration (MCPI) was restricted to being 

able to solve specific types of nonlinear boundary value problems with fixed boundary 

conditions, QCPI extends it to a larger class of general nonlinear boundary value 

problems. MCPI was not capable of solving for free-parameters in boundary value 

problems or nonlinear boundary conditions. QCPI overcomes this by leveraging the 

Modified Quasilinearization Algorithm which can solve for free-parameters without 

explicitly propagating the sensitivity matrix. 

One of the main features of QCPI that make it highly parallel is that it mainly 

consists of multiplying large matrices – an operation which has many existing efficient, 

highly parallel implementations. It also consists of large number of independent nu-

merical operations evaluating functions over the entire solution space unlike multiple 

shooting where the solution is built up one time-step at a time. QCPI is developed 

in the Python programming language and then accelerated using the automatic par-

allelization library, Numba. The method is validated by solving some well-known op-

timal control problems and comparing the results to those obtained using a shooting 

solver. The performance of the solver is then benchmarked by solving a multi-vehicle 

cooperative engagement scenario and comparing the runtime to that of a shooting 

solver. It was shown that QCPI scales very well as the problem gets larger and is 
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also able to more efficiently leverage parallel computing resources as compared to the 

shooting solver. 

6.1.3 Large Scale Multi-Vehicle Trajectory Optimization 

A multi-vehicle cooperative engagement scenario with path constraints is set up 

to illustrate the capabilities of the ICRM and QCPI methods developed in this dis-

sertation. The problem consists of five vehicles, a 3DOF kinematic model, control 

constraints, and a keep-out zone constraint. The versatility of ICRM is demonstrated 

by performing trade-studies that involve changing constraint parameters and prob-

lem boundary conditions. Smooth transitions between constrained and unconstrained 

arcs and vice-versa are demonstrated which is something that is not possible with con-

ventional path constraint implementations when using indirect methods. The trades 

are also used to demonstrate the cross-coupling effects that emerge in optimal tra-

jectories of multi-vehicle systems even when using relatively simple dynamic models. 

This provides a starting point and demonstrates that indirect methods can indeed be 

used to solve highly constrained, large, nonlinear trajectory optimization problems. 

6.1.4 Open Source Indirect Trajectory Optimization Framework 

Another major challenge often cited as a drawback of indirect methods is that 

knowledge of optimal control theory is required in order to derive the necessary con-

ditions of optimality. The advent of modern symbolic computation engines such as 

Sympy and Mathematica has allowed the automation of almost all aspects of deriving 

the necessary conditions of optimality. In this dissertation, the design and develop-

ment of an open source, indirect trajectory optimization framework is described. The 

framework, called beluga, enables a designer to define a trajectory optimization prob-

lem and solve it using indirect methods without having to manually derive any of 

the necessary conditions of optimality. This framework helps bring near parity in 

ease-of-use between indirect methods and direct solvers such as GPOPS. Similar to 
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GPOPS, the designer only has to list out the various components of the problem such 

as states, controls, constraints and dynamic equations, and the framework automates 

the rest of the derivations required for applying indirect methods. It also includes 

a rich visualization framework that can leverage existing visualization libraries while 

combining data from multiple sources. 

beluga also implements continuation strategies which are used to solve the non-

linear boundary value problems that result from applying indirect methods. This is 

required because it is often not practical to supply an accurate initial guess to the 

highly complex nonlinear boundary value problem. Instead, it is easier to start with 

a trivial initial guess for a simpler problem and then change the solution in a series of 

steps until the desired problem parameters are achieved. This dissertation describes 

two such continuation strategies, namely, manual and bisection strategies that pro-

vide some level of automation to this process. The framework was used to solve all 

of the optimal control problems described in this dissertation and to generate all ac-

companying trajectory visualizations. beluga was designed with the goal of becoming 

a viable, free, and open source alternative to state-of-the-art design software in terms 

of performance, accuracy, and ease-of-use, and the work presented in this dissertation 

lays the foundation for achieving this goal. 

6.2 Future Work 

6.2.1 Automated Computation of ICRM Push-Off Factor 

In the multi-vehicle example in Chapter 4, the path constraint was enforced in 

such a way that there was a significant push-off factor with how close the trajectory 

approached the constraint. This was because a relatively large value was used for 

the regularization parameter, , while incorporating the constraint using ICRM. As 

discussed before in Section 2.7, smaller values of can reduce the push-off factor 

with the added cost of high numerical sensitivity. A multiple shooting solver with 

adaptive stepping is able to accommodate for this but a solver like QCPI with a 
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fixed grid struggles to solve such BVPs. While the addition of extra nodes can help 

mitigate this to a certain extent, doing so can significantly increase the computation 

time. 

An alternative approach would be to use a higher value of and modify the con-

straint limit such that the push-off factor ensures that the actual trajectory obeys 

the design constraints. However, the relationship between the push-off factor and 

is highly problem specific. One way to find the “right” values for and the con-

straint limit would be to use a bisection search strategy. A good starting value for 

should be first found using trial and error which keeps the problem feasible in terms 

of constraints while also not making the problem numerically sensitive. The con-

straint limit can then be adjusted using a bisection search methodology until the 

effective constraint limit in the problem (due to the push-off factor) matches the 

desired problem parameters. This would significantly improve the performance of 

numerical solvers when using ICRM to solve constrained optimal control problems. 

6.2.2 Fully Numerical Indirect Optimal Control 

The use of indirect methods for optimal control still involves a significant amount 

of symbolic computation when the necessary conditions of optimality are derived. 

Especially with the use of ICRM, all these computations involve taking one or more 

derivatives of expressions consisting of the dynamic equations and objective function-

als of the problem. These could be formulated as a single two-point boundary value 

problem by using automatic differentiation algorithms [179,180] completely avoiding 

the symbolic manipulation of large equations. 

Another strategy for doing this would involve representing the Hamiltonian as a 

Chebyshev polynomial series and then using the derivative rules of Chebyshev poly-

nomials to represent the costates and other necessary conditions of optimality. This 

would involve combining QCPI and ICRM into a hybrid method which directly for-

mulates the two-point boundary value problem without symbolically deriving the 
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necessary conditions of optimality. Developing such a unified method that lever-

ages indirect methods would allow the easy incorporation of black-box functions into 

dynamic models while still maintaining the high quality of solutions guaranteed by 

indirect methods. 

6.2.3 Improved Numerical Stability for DAEs 

In ICRM, the differential algebraic equations in the boundary value problem are 

differentiated to obtain differential equations for the algebraic variables. While this 

works effectively in many cases as illustrated in the examples in this dissertation, there 

are many problems in which numerical instabilities arise when using this approach 

to solve DAEs. The original work that ICRM is based on [111] overcomes this by 

developing a custom numerical solver based on collocation that can incorporate the 

algebraic conditions directly into the numerical solution process. In a similar fashion, 

one strategy to solve DAEs without differentiation would be to incorporate the alge-

braic constraints directly into the QCPI solution process. If the algebraic conditions 

can be incorporated into the QCPI iteration process for calculating Chebyshev coef-

ficients, the numerical instabilities that arise from taking derivatives of the algebraic 

variables can be avoided. 

6.2.4 Adaptive Grid & Mesh Refinement for QCPI 

One of the major limitations of QCPI in its current form is that it uses a fixed-size 

mesh for representing the solution which has nodes clustered at the beginning and end 

of the trajectory. While this may be ideal in some cases, those problems that have 

highly sensitive dynamics towards the middle of the trajectory may be difficult to 

solve using the current implementation. This limitation was explored before in more 

detail in Section 4.3.4. This is very similar to the challenges encountered when using 

by collocation-based numerical methods such as bvp4c or direct solvers like GPOPS. 
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These solvers use an adaptive mesh-sizing and mesh refinement strategy that adjusts 

the points where the nodes are clustered based on the sensitivity of the problem. 

Some strategies for overcoming this limitation are described in Refs 88, 153, and 

154. A similar strategy can be developed for QCPI that uses multiple sets of Cheby-

shev polynomial series starting and ending at points of high numerical sensitivity. 

Such an adaptive mesh refinement strategy would help greatly improve the numerical 

stability of QCPI and make it applicable to a wider range of nonlinear optimal control 

problems. Ref. 181 describes a method for choosing the order of the Chebyshev series 

based on the desired accuracy of the solution. This is another strategy that could be 

implemented in QCPI to make it more robust. 

6.2.5 Parallel Implementation of QCPI 

The work in this dissertation demonstrated the inherent parallelism of the QCPI 

algorithm using benchmarks on a multi-core computer. The various components of 

QCPI – independent evaluation of dynamic equations, matrix multiplication opera-

tions, and linear algebra, are all operations that can be very efficiently implemented 

on parallel processors. The MCPI algorithm that this method was built on was 

demonstrated to be very efficient at leveraging GPU processors [31, 146]. Similarly 

the QCPI can also greatly benefit from the highly parallel computing environment 

offered by GPUs and significantly accelerate the numerical solution of large-scale 

nonlinear boundary value problems. 

6.2.6 On-board Trajectory Optimization and Model Predictive Control 

Model predictive control is an advanced method of process control where the 

control is generated by repeatedly solving a numerical optimization problem to a 

finite time-horizon. Since the optimal control problem is solved for successive starting 

points in a short time-span, the prior solutions can be used as a very good initial 

guess for the next iteration. The performance of QCPI with an eight-core processor 
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was demonstrated in Section 3.5. The run-time values illustrated in that section 

was for starting from a trivial initial guess and evolving the problem to the desired 

parameters. When starting with a very good initial guess, as in the case of MPC, 

such a continuation process is not required. This makes QCPI a very good candidate 

for implementing model predictive control or onboard trajectory optimization. 

The NVIDIA Jetson is a credit-card sized system-on-a-chip (SoC) that contains a 

suite of input, output, and processing hardware including an NVIDIA GPU [182–184]. 

Ref. 185 shows that the form factor of the Jetson TX1 computer allows its use in a 

small satellite such as a Cubesat for image processing tasks such as image recogni-

tion, object detection and localization, and image segmentation. The newer version of 

this platform, the NVIDIA Jetson TX2 [186] has even more processing power. Com-

bined with a highly parallel implementation as outlined in the previous section, QCPI 

would be capable of achieving real-time performance on such a computing platform 

even for scenarios with moderately complex dynamic systems. This could be used 

for performing real-time trajectory planning to account for perturbations form the 

reference trajectory during flight or planning optimal maneuvers in-flight. In military 

applications, such a system could be used for real-time trajectory planning for missile 

avoidance, optimal adversary engagement strategies, and countermeasure maneuvers 

for pilot assistance or fully autonomous vehicles. 

6.2.7 Expansion of beluga 

Being a free, open source software project allows for wide adoption by the design 

community as well as faster growth using community contributions. In order to fulfill 

this objective, beluga is designed to be highly customizable with a rich API that 

allows implementation of new numerical methods, new optimal control algorithms, 

continuation strategies, etc. For example, the current version of beluga includes fixed-

step and bisection strategies for performing homotopy continuation while solving 

optimal control problems. beluga also provides an interface for the implementation 
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of more advanced continuation strategies such as those that leverage graph search 

algorithms [80] which can automate the continuation process even further putting 

less of a burden on the designer. Another possible improvement would be support for 

multi-phase optimal control problems as described in Ref. 187. 

beluga currently does not treat multi-vehicle problems any differently from single 

vehicle problems. Every state is considered to have a unique dynamic equation, 

and they are not grouped together in any way. This results in inefficiencies in both 

run-time and compile-time in some cases as shown in Chapter 3. The necessary 

conditions for multiple vehicles with the same dynamic models could be formulated 

to more efficiently to reuse code and leverage parallelization. This would further 

improve performance when solving multi-vehicle problems. 
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[109] Cristiana Silva and Emmanuel Trélat. Smooth regularization of bang-bang opti-
mal control problems. IEEE Transactions on Automatic Control, 55(11):2488– 
2499, 2010. 

[110] Kshitij Mall and Michael J. Grant. Trigonomerization of optimal control prob-
lems with bounded controls. AIAA AVIATION Forum. American Institute of 
Aeronautics and Astronautics, Jun 2016. 0. 

[111] Knut Graichen, Andreas Kugi, Nicolas Petit, and Francois Chaplais. Handling 
constraints in optimal control with saturation functions and system extension. 
Systems & Control Letters, 59(11):671–679, 2010. 

[112] Stephen L Campbell and B Leimkuhler. Differentiation of constraints in 
differential-algebraic equations. Journal of Structural Mechanics, 19(1):19–39, 
1991. 



167 

[113] Kathryn Eleda Brenan, Stephen L Campbell, and Linda Ruth Petzold. Numer-
ical solution of initial-value problems in differential-algebraic equations. SIAM, 
1995. 

[114] Charles William Gear and Linda Ruth Petzold. Ode methods for the solu-
tion of differential/algebraic systems. SIAM Journal on Numerical Analysis, 
21(4):716–728, 1984. 

[115] Stephen L Campbell. The numerical solution of higher index linear time vary-
ing singular systems of differential equations. SIAM journal on scientific and 
statistical computing, 6(2):334–348, 1985. 

[116] Kathryn E Brenan and Björn E Engquist. Backward differentiation approxima-
tions of nonlinear differential/algebraic systems. Mathematics of Computation, 
51(184):659–676, 1988. 

[117] Charles William Gear. Maintaining solution invariants in the numerical solution 
of odes. SIAM journal on scientific and statistical computing, 7(3):734–743, 
1986. 

[118] Rafael de P Soares and Argimiro R Secchi. Direct initialisation and solution 
of high-index dae systems. Computer Aided Chemical Engineering, 20:157–162, 
2005. 

[119] Claus Führer and BJ Leimkuhler. Numerical solution of differential-algebraic 
equations for constrained mechanical motion. Numerische Mathematik, 
59(1):55–69, 1991. 

[120] C. W. Gear. Differential-algebraic equation index transformations. SIAM Jour-
nal on Scientific and Statistical Computing, 9(1):39–47, 1988. 

[121] K Brenan. Stability and convergence of difference approximations for higher 
index differential/algebraic equations with applications to trajectory control. 
PhD Disertation, Math. Dept. UCLA, Los Angeles, 1983. 

[122] Per Lötstedt and Linda Petzold. Numerical solution of nonlinear differential 
equations with algebraic constraints. i. convergence results for backward differ-
entiation formulas. Mathematics of computation, 46(174):491–516, 1986. 

[123] Linda Petzold and Per Lötstedt. Numerical solution of nonlinear differential 
equations with algebraic constraints ii: Practical implications. SIAM Journal 
on Scientific and Statistical Computing, 7(3):720–733, 1986. 

[124] Joachim Baumgarte. Stabilization of constraints and integrals of motion in 
dynamical systems. Computer methods in applied mechanics and engineering, 
1(1):1–16, 1972. 

[125] LF Shampine. Conservation laws and the numerical solution of odes. Computers 
& Mathematics with Applications, 12(5-6):1287–1296, 1986. 

[126] LF Shampine. Conservation laws and the numerical solution of odes, ii. Com-
puters & Mathematics with Applications, 38(2):61–72, 1999. 

[127] Kenneth Sutton and Randolph A. Graves Jr. A general stagnation-point con-
vective heating equation for arbitrary gas mixtures. Technical report, National 
Aeronautics and Space Administration, 1971. 



168 

[128] Yun Fei, Guodong Rong, Bin Wang, and Wenping Wang. Parallel L-BFGS-B 
Algorithm on GPU. Computers & Graphics, 40:1–9, 2014. 

[129] NVIDIA Corporation. Cuda C Programming Guide, 2014. 
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parallélogrammes. Imprimerie de l’Académie impériale des sciences, 1853. 

[131] L Fox and IB Parker. Chebyshev polynomials in numerical analysis. 1968. 

[132] John C Mason and David C Handscomb. Chebyshev polynomials. CRC Press, 
2002. 

[133] CW Clenshaw. The numerical solution of linear differential equations in cheby-
shev series. In Mathematical Proceedings of the Cambridge Philosophical Society, 
volume 53, pages 134–149. Cambridge University Press, 1957. 

[134] CW Clenshaw and HJ Norton. The solution of nonlinear ordinary differential 
equations in chebyshev series. The Computer Journal, 6(1):88–92, 1963. 

[135] K Wright. Chebyshev collocation methods for ordinary differential equations. 
The Computer Journal, 6(4):358–365, 1964. 

[136] David Gottlieb and Steven A Orszag. Numerical analysis of spectral methods: 
theory and applications. SIAM, 1977. 

[137] Mehmet Sezer and Mehmet Kaynak. Chebyshev polynomial solutions of lin-
ear differential equations. International Journal of Mathematical Education in 
Science and Technology, 27(4):607–618, 1996. 

[138] John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 
2001. 

[139] Minoru Urabe. Numerical solution of multi-point boundary value problems in 
chebyshev series theory of the method. Numerische Mathematik, 9(4):341–366, 
1967. 

[140] Jacques Vlassenbroeck and Rene Van Dooren. A chebyshev technique for solving 
nonlinear optimal control problems. IEEE transactions on automatic control, 
33(4):333–340, 1988. 

[141] Gamal N Elnagar and Mohammad A Kazemi. Pseudospectral chebyshev opti-
mal control of constrained nonlinear dynamical systems. Computational Opti-
mization and Applications, 11(2):195–217, 1998. 

[142] T Feagin. The numerical solution of two point boundary value problems using 
chebyshev series. PhD thesis, Ph. D. dissertation, The Universtiy of Texas at 
Austin, Austin, TX, 1973. 

[143] J Shaver. Formulation and evaluation of parallel algorithms for the orbit deter-
mination problem. PhD thesis, 1980. 

[144] Terry Feagin and Paul Nacozy. Matrix formulation of the picard method for par-
allel computation. Celestial Mechanics and Dynamical Astronomy, 29(2):107– 
115, 1983. 



169 

[145] Toshio Fukushima. Vector integration of dynamical motions by the picard-
chebyshev method. The Astronomical Journal, 113:2325, 1997. 

[146] Darin Koblick, Mark Poole, and Praveen Shankar. Parallel High-Precision Orbit 
Propagation using the Modified Picard-Chebyshev Method. In ASME 2012 
International Mechanical Engineering Congress and Exposition, pages 587–605. 
American Society of Mechanical Engineers, 2012. 

[147] Thomas Antony and Michael J. Grant. A Generalized Adaptive Cheby-
shev–Picard Iteration Method for Solution to Two–Point Boundary Value Prob-
lems. In 3rd Annual Meeting of the AFRL Mathematical Modeling and Opti-
mization Institute, 2015. 

[148] Angelo Miele. Method of particular solutions for linear, two-point boundary-
value problems. Journal of Optimization Theory and Applications, 2(4):260– 
273, Jul 1968. 

[149] Angelo Miele and RR Iyer. General technique for solving nonlinear, two-point 
boundary-value problems via the method of particular solutions. Journal of 
Optimization Theory and Applications, 5(5):382–399, 1970. 

[150] A. Miele, R. R. Iyer, and K. H. Well. Modified quasilinearization and optimal 
initial choice of the multipliers part 2—optimal control problems. Journal of 
Optimization Theory and Applications, 6(5):381–409, Nov 1970. 

[151] S. Gonzalez and S. Rodriguez. Modified quasilinearization algorithm for op-
timal control problems with nondifferential constraints and general boundary 
conditions. Journal of Optimization Theory and Applications, 50(1):109–128, 
Jul 1986. 

[152] E Hairer, S.P. Norsett, and G. Wanner. Solving ordinary, differential equations 
i, nonstiff problems. 2000. 

[153] Christopher L Darby, William W Hager, and Anil V Rao. An hp-adaptive 
pseudospectral method for solving optimal control problems. Optimal Control 
Applications and Methods, 32(4):476–502, 2011. 

[154] Christopher L Darby, William W Hager, Anil V Rao, et al. Direct trajectory op-
timization using a variable low-order adaptive pseudospectral method. Journal 
of Spacecraft and Rockets, 48(3):433, 2011. 

[155] Michael J Grant. Rapid Simultaneous Hypersonic Aerodynamic and Trajectory 
Optimization for Conceptual Design. PhD thesis, Georgia Institute of Technol-
ogy, 2012. 

[156] Thomas Antony, Michael J. Grant, and Michael A. Bolender. Optimization 
of Interior Point Cost Functions Using Indirect Methods. AIAA AVIATION 
Forum. American Institute of Aeronautics and Astronautics, Jun 2015. 

[157] Michael J. Grant and Michael A. Bolender. Rapid, Robust Trajectory Design 
Using Indirect Optimization Methods. AIAA AVIATION Forum. American 
Institute of Aeronautics and Astronautics, Jun 2015. 0. 

[158] Kshitij Mall and Michael J. Grant. High mass mars exploration using slender 
entry vehicles. AIAA SciTech Forum. American Institute of Aeronautics and 
Astronautics, Jan 2016. 0. 



170 

[159] Kshitij Mall and Michael J. Grant. Epsilon-trig regularization method for bang-
bang optimal control problems. AIAA AVIATION Forum. American Institute 
of Aeronautics and Astronautics, Jun 2016. 0. 

[160] Janav P. Udani, Kshitij Mall, Michael J. Grant, and Dengfeng Sun. Opti-
mal flight trajectory to minimize noise during landing. AIAA SciTech Forum. 
American Institute of Aeronautics and Astronautics, Jan 2017. 0. 

[161] Joseph Williams, Kshitij Mall, and Michael J. Grant. Trajectory optimization 
using indirect methods and parametric scramjet cycle analysis. AIAA SciTech 
Forum. American Institute of Aeronautics and Astronautics, Jan 2017. 0. 

[162] Pearu Peterson. F2py: a tool for connecting fortran and python programs. 
International Journal of Computational Science and Engineering, 4(4):296–305, 
2009. 

[163] Travis E Oliphant. Python for scientific computing. Computing in Science & 
Engineering, 9(3), 2007. 

[164] John D Hunter. Matplotlib: A 2d graphics environment. Computing In Science 
& Engineering, 9(3):90–95, 2007. 

[165] Luke Barnard and Matej Mertik. Usability of visualization libraries for web 
browsers for use in scientific analysis. International Journal of Computer Ap-
plications, 121(1), 2015. 

[166] Christoph Weniger. A tentative gamma-ray line from dark matter annihila-
tion at the fermi large area telescope. Journal of Cosmology and Astroparticle 
Physics, 2012(08):007, 2012. 

[167] Helge Eichhorn and Reiner Anderl. Plyades: A Python Library for Space Mis-
sion Design. arXiv preprint arXiv:1607.00849, 2016. 

[168] Andy Buckley, Hendrik Hoeth, Heiko Lacker, Holger Schulz, and Jan Eike von 
Seggern. Systematic event generator tuning for the lhc. The European Physical 
Journal C-Particles and Fields, 65(1):331–357, 2010. 

[169] JR Johansson, PD Nation, and Franco Nori. Qutip: An open-source python 
framework for the dynamics of open quantum systems. Computer Physics Com-
munications, 183(8):1760–1772, 2012. 

[170] Michael J Keiser, Bryan L Roth, Blaine N Armbruster, Paul Ernsberger, John J 
Irwin, and Brian K Shoichet. Relating protein pharmacology by ligand chem-
istry. Nature biotechnology, 25(2):197–206, 2007. 

[171] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford, James 
Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammar-
ling, Alan McKenney, et al. LAPACK Users’ guide. SIAM, 1999. 

[172] Alan C Hindmarsh. Odepack, a systematized collection of ode solvers, rs steple-
man et al.(eds.), north-holland, amsterdam,(vol. 1 of), pp. 55-64. IMACS trans-
actions on scientific computation, 1:55–64, 1983. 

[173] Bokeh Development Team. Bokeh: Python library for interactive visualization, 
2014. 



171 

[174] Timothy M Shead. toyplot. Technical report, Sandia National Laboratory, 
2014. 

[175] Audris Mockus, Roy T Fielding, and James D Herbsleb. Two case studies of 
open source software development: Apache and mozilla. ACM Transactions on 
Software Engineering and Methodology (TOSEM), 11(3):309–346, 2002. 

[176] Karim R Lakhani and Eric Von Hippel. How open source software works:“free” 
user-to-user assistance. Research policy, 32(6):923–943, 2003. 

[177] Eric von Hippel and Georg von Krogh. Open source software and the “private-
collective” innovation model: Issues for organization science. Organization sci-
ence, 14(2):209–223, 2003. 

[178] Karim R Lakhani, Robert G Wolf, et al. Why hackers do what they do: Un-
derstanding motivation and effort in free/open source software projects. Per-
spectives on free and open source software, 1:3–22, 2005. 

[179] Andreas Griewank, David Juedes, and Jean Utke. Algorithm 755: Adol-c: a 
package for the automatic differentiation of algorithms written in c/c++. ACM 
Transactions on Mathematical Software (TOMS), 22(2):131–167, 1996. 
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A. MCPI Matrices 

There are two matrices used in formulating the matrix-vector form of the Chebyshev-

Picard iteration used by QCPI. The first, Ca, is used to compute the coefficients, F , 

for an N-th order Chebyshev Polynomial series to a given function, g(x), as follows: 

F = 2χ0 + Ca × g(x)  (A.1)  

where g(x) is  g(x) evaluated on an N-th order Chebyshev mesh as: 

g = [g(τ0), g(τ1), ..., g(τN )]
T (A.2) 

and χ0 is defined as: 
T 

χ0 = 2x0 0 0  · · ·  0 0  (A.3) 

with x0 being the initial value of x. Ca is defined as: 

Ca ≡ RST V (A.4) 

where 

1 1 1 1 
R = diag 1, ,

2
, ..., 
4

,
2(N − 1) 2N 

(A.5a) ⎤⎡ 

S = 

            ⎣ 

1 −2 11 −1 −2 · · ·  (−1)N+1 
2 3 4 15 N−1 

1 0 −1 0 0 · · ·  0 

0 1 0 −1 0  · · ·  0 
. . . . . . . . . . . . . . . . . . . . . . . . 

0 0 0 · · ·  1 0 −1 
0 0 0 0 · · ·  1 0 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(A.5b) 
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⎤⎡ 
T0(τ0) T0(τ1) · · ·  T0(τN ) 

T1(τ0) T1(τ1) · · ·  T1(τN ) 

T = 

         ⎣ 

T2(τ0) T2(τ1) · · ·  T2(τN ) 
. . . . . . . . . . . . 

TN (τ0) TN (τ1) · · ·  TN (τN ) 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

(A.5c) 

Tk(τj ) = cos (k arccos τj ) (A.5d) 

jπ
τj = cos  

N 
(A.5e) 

1 2 2 2 1 
V = diag ,

N N 
, 
N 
, ..., ,

N N 
with N + 1 elements (A.5f) 

(A.5g) 

The second matrix is Cx which is used to evaluate an N-th order Chebyshev series 

represented by its coefficients, β on a Chebyshev grid. 

x = Cx × β (A.6) 

Cx is defined as: 

Cx ≡ TW  (A.7) 

where 
1 

W = diag , 1, 1, · · ·  , 1, 1 with N + 1 elements (A.8)
2 
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B. beluga Software Information 

B.1 Obtaining & Installing beluga 

Follow these steps to obtain and install beluga. 

1. Install Python version 3.6 or newer. It is recommended that a package such 

as Anaconda be used (https://www.anaconda.com/distribution/) since it 

includes many popular scientific computing libraries such as NumPy and SciPy 

that are used by beluga 

2. Download and install the latest version of beluga by following the instructions 

at https://github.com/thomasantony/beluga 

B.2 Sample Input File 

"""Brachistochrone example with path constraint.""" 

ocp = beluga.OCP(’constrainedBrachistochrone’) 

# Define independent variables 

ocp.independent(’t’, ’s’) 

# Define equations of motion 

ocp.state(’x’, ’v*cos(theta)’, ’m’)\ 

.state(’y’, ’v*sin(theta)’,’m’)\ 

.state(’v’, ’g*sin(theta)’,’m/s’) 

# Define controls 

https://github.com/thomasantony/beluga
https://www.anaconda.com/distribution
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ocp.control(’theta’,’rad’) 

# Define constants 

ocp.constant(’g’,-9.81,’m/s^2’) 

# Define costs 

ocp.path_cost(’1’,’s’) 

# Define constraints 

ocp.constraints() \ 

.initial(’x-x_0’,’m’) \ 

.initial(’y-y_0’,’m’) \ 

.initial(’v-v_0’,’m/s’)\ 

.terminal(’x-x_f’,’m’) \ 

.terminal(’y-y_f’,’m’) 

ocp.constraints() \ 

.path(’constraint1’,’y+x’,’>’,-1.0,’m’,start_eps=1e-4) 

ocp.scale(m=’y’, s=’y/v’, kg=1, rad=1, nd=1) 

bvp_solver = beluga.bvp_algorithm(’MultipleShooting’, 

tolerance=1e-4, 

max_iterations=500, 

verbose = True, 

max_error=50, 

) 

guess_maker = beluga.guess_generator(’auto’, 
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start=[0,0,1], # Starting values for states 

direction=’forward’, 

costate_guess = 0.1, 

control_guess = [-3.14*60/180, 0.0, 0.0], 

) 

continuation_steps = beluga.init_continuation() 

continuation_steps.add_step(’bisection’) \ 

.num_cases(21) \ 

.terminal(’x’, 10) \ 

.terminal(’y’,-10) 

beluga.solve(ocp, 

method=’icrm’, 

bvp_algorithm=bvp_solver, 

steps=continuation_steps, 

guess_generator=guess_maker) 

B.3 Sample Plotting Script 

from beluga.visualization import BelugaPlot 

from beluga.visualization.datasources import Dill, GPOPS 

gpops_ds = GPOPS(’./brachisto_eps5.mat’,states=(’x’,’y’,’v’,’xi’,’tf’) 

  ,controls=(’theta’,’ue1’)) 

plots = BelugaPlot(’./data.dill’,default_sol=-1,default_step=-1, 

  renderer=’matplotlib’) 
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plots.add_plot(mesh_size=None).line(’x’,’y’,label=’ICRM�Solution’, sol 

  =-1, step=-1) \ 

.line(’x’,’y’,label=’GPOPS�Solution’, style=’o’,sol=-1, 

  step=-1, datasource=gpops_ds) \ 

.line(’x’,’-1.0-x’,label=’Constraint1’,step=-1,sol=-1) 

  \ 

.xlabel(’x(t)’).ylabel(’y(t)’) \ 

.title(’Trajectory’) 

plots.add_plot(mesh_size=None).line(’t’,’ue1’,label=’ICRM’) \ 

.line(’t’,’ue1’,label=’GPOPS’,datasource=gpops_ds,style 

  =’o’) \ 

.xlabel(’t�(s)’).ylabel(’theta�(degrees)’) \ 

.title(’Control�history’) 

plots.add_plot(mesh_size=None).line(’t’,’theta*180/3.14’,label=’ICRM’) 

  \ 

.line(’t’,’theta*180/3.14’,label=’GPOPS’,datasource= 

  gpops_ds,style=’o’) \ 

.xlabel(’t�(s)’).ylabel(’theta�(degrees)’) \ 

.title(’Control�history’) 

plots.add_plot(mesh_size=None).line(’t’,’lamX’)\ 

.line(’t’,’lamY’)\ 

.line(’t’,’lamV’)\ 

.line(’t’,’lamXI11’)\ 

.line(’t’,’lamX’,datasource=gpops_ds,style=’o’) \ 

.line(’t’,’lamY’,datasource=gpops_ds,style=’o’) \ 

.line(’t’,’lamV’,datasource=gpops_ds,style=’o’) \ 
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.line(’t’,’lamXI’,datasource=gpops_ds,style=’o’) \ 

.xlabel(’t�(s)’).ylabel(’lambda’) \ 

.title(’lamX’) 

plots.render() 
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