592 research outputs found

    Advancements in Sensor Technologies and Control Strategies for Lower-Limb Rehabilitation Exoskeletons: A Comprehensive Review

    Get PDF
    Lower-limb rehabilitation exoskeletons offer a transformative approach to enhancing recovery in patients with movement disorders affecting the lower extremities. This comprehensive systematic review delves into the literature on sensor technologies and the control strategies integrated into these exoskeletons, evaluating their capacity to address user needs and scrutinizing their structural designs regarding sensor distribution as well as control algorithms. The review examines various sensing modalities, including electromyography (EMG), force, displacement, and other innovative sensor types, employed in these devices to facilitate accurate and responsive motion control. Furthermore, the review explores the strengths and limitations of a diverse array of lower-limb rehabilitation-exoskeleton designs, highlighting areas of improvement and potential avenues for further development. In addition, the review investigates the latest control algorithms and analysis methods that have been utilized in conjunction with these sensor systems to optimize exoskeleton performance and ensure safe and effective user interactions. By building a deeper understanding of the diverse sensor technologies and monitoring systems, this review aims to contribute to the ongoing advancement of lower-limb rehabilitation exoskeletons, ultimately improving the quality of life for patients with mobility impairments

    Neuromuscular Reflex Control for Prostheses and Exoskeletons

    Get PDF
    Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors of a P/O device. We identified the controller parameters through optimizations using human experimental data of perturbed walking, in which we minimized the error between the torque produced by our controller and the standard torque trajectories observed in the able-bodied experiments. In simulations, we then compare the VMR controller to a four-phase impedance controller. For both controllers the coefficient of determination R^2 and root-mean-square (RMS) error were calculated as a function of the gait cycle. When simulating the hip, knee, and ankle joints, the RMS error and R^2 across all joints and all trials is 15.65 Nm and 0.28 for the impedance controller, respectively, and for the VMR controller, these values are 15.15 Nm and 0.29, respectively. With similar performance, it was concluded that the VMR controller can reproduce characteristics of human walking in response to perturbations as effectively as an impedance controller. We then implemented the VMR controller on the Parker Hannifin powered exoskeleton and performed standard isokinetic and isometric knee rehabilitation exercises to observe the behavior of the virtual muscle model. In the isometric results, RMS error between the measured and commanded extension and flexion torques are 3.28 Nm and 1.25 Nm, respectively. In the isokinetic trials, we receive RMS error between the measured and commanded extension and flexion torques of 0.73 Nm and 0.24 Nm. Since the onboard virtual muscles demonstrate similar muscle force-length and force-velocity relationships observed in humans, we conclude the model is capable of the same stabilizing capabilities as observed in an impedance controller

    Neuromuscular Reflex Control for Prostheses and Exoskeletons

    Get PDF
    Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors of a P/O device. We identified the controller parameters through optimizations using human experimental data of perturbed walking, in which we minimized the error between the torque produced by our controller and the standard torque trajectories observed in the able-bodied experiments. In simulations, we then compare the VMR controller to a four-phase impedance controller. For both controllers the coefficient of determination R^2 and root-mean-square (RMS) error were calculated as a function of the gait cycle. When simulating the hip, knee, and ankle joints, the RMS error and R^2 across all joints and all trials is 15.65 Nm and 0.28 for the impedance controller, respectively, and for the VMR controller, these values are 15.15 Nm and 0.29, respectively. With similar performance, it was concluded that the VMR controller can reproduce characteristics of human walking in response to perturbations as effectively as an impedance controller. We then implemented the VMR controller on the Parker Hannifin powered exoskeleton and performed standard isokinetic and isometric knee rehabilitation exercises to observe the behavior of the virtual muscle model. In the isometric results, RMS error between the measured and commanded extension and flexion torques are 3.28 Nm and 1.25 Nm, respectively. In the isokinetic trials, we receive RMS error between the measured and commanded extension and flexion torques of 0.73 Nm and 0.24 Nm. Since the onboard virtual muscles demonstrate similar muscle force-length and force-velocity relationships observed in humans, we conclude the model is capable of the same stabilizing capabilities as observed in an impedance controller

    Neuromuscular Reflex Control for Prostheses and Exoskeletons

    Get PDF
    Recent powered lower-limb prosthetic and orthotic (P/O) devices aim to restore legged mobility for persons with an amputation or spinal cord injury. Though various control strategies have been proposed for these devices, specifically finite-state impedance controllers, natural gait mechanics are not usually achieved. The goal of this project was to invent a biologically-inspired controller for powered P/O devices. We hypothesize that a more muscle-like actuation system, including spinal reflexes and vestibular feedback, can achieve able-bodied walking and also respond to outside perturbations. The outputs of the Virtual Muscle Reflex (VMR) controller are joint torque commands, sent to the electric motors of a P/O device. We identified the controller parameters through optimizations using human experimental data of perturbed walking, in which we minimized the error between the torque produced by our controller and the standard torque trajectories observed in the able-bodied experiments. In simulations, we then compare the VMR controller to a four-phase impedance controller. For both controllers the coefficient of determination R^2 and root-mean-square (RMS) error were calculated as a function of the gait cycle. When simulating the hip, knee, and ankle joints, the RMS error and R^2 across all joints and all trials is 15.65 Nm and 0.28 for the impedance controller, respectively, and for the VMR controller, these values are 15.15 Nm and 0.29, respectively. With similar performance, it was concluded that the VMR controller can reproduce characteristics of human walking in response to perturbations as effectively as an impedance controller. We then implemented the VMR controller on the Parker Hannifin powered exoskeleton and performed standard isokinetic and isometric knee rehabilitation exercises to observe the behavior of the virtual muscle model. In the isometric results, RMS error between the measured and commanded extension and flexion torques are 3.28 Nm and 1.25 Nm, respectively. In the isokinetic trials, we receive RMS error between the measured and commanded extension and flexion torques of 0.73 Nm and 0.24 Nm. Since the onboard virtual muscles demonstrate similar muscle force-length and force-velocity relationships observed in humans, we conclude the model is capable of the same stabilizing capabilities as observed in an impedance controller
    corecore