5 research outputs found

    Optimization grid scheduling with priority base and bees algorithm

    Get PDF
    Grid computing depends upon sharing large-scales in a network that is widely connected within itself such as the Internet. Therefore, many grid computing researchers and scholars have focused on task scheduling, which is considered one of the NP-Complete issues. The main aim of this current research to propose an optimization of the initial scheduler for grid computing using the bees algorithm. Modern algorithms informed this research. The suggested procedure means that a newly developed algorithm can implement the schedule grid task while accounting for priorities and deadlines to decrease the completion time required for the tasks. The average waiting time of the grid environment can be minimized, and this minimization, in turn, creates an increase in the throughput of the environment

    Enhancement of Ant Colony Optimization for Grid Job Scheduling and Load Balancing

    Get PDF
    Managing resources in grid computing system is complicated due to the distributed and heterogeneous nature of the resources. Stagnation in grid computing system may occur when all jobs are required or are assigned to the same resources which lead to the resources having high workload or the time taken to process a job is high. This research proposes an Enhanced Ant Colony Optimization (EACO) algorithm that caters dynamic scheduling and load balancing in the grid computing system. The proposed algorithm can overcome stagnation problem, minimize processing time, match jobs with suitable resources, and balance entire resources in grid environment. This research follows the experimental research methodology that consists of problem analysis, developing the proposed framework, constructing the simulation environment, conducting a set of experiments and evaluating the results. There are three new mechanisms in this proposed framework that are used to organize the work of an ant colony i.e. initial pheromone value mechanism, resource selection mechanism and pheromone update mechanism. The resource allocation problem is modeled as a graph that can be used by the ant to deliver its pheromone. This graph consists of four types of vertices which are job, requirement, resource and capacity that are used in constructing the grid job scheduling. The proposed EACO algorithm takes into consideration the capacity of resources and the characteristics of jobs in determining the best resource to process a job. EACO selects the resources based on the pheromone value on each resource which is recorded in a matrix form. The initial pheromone value of each resource for each job is calculated based on the estimated transmission time and execution time of a given job. Resources with high pheromone value are selected to process the submitted jobs. Global pheromone update is performed after the completion of processing the jobs in order to reduce the pheromone value of resources. A simulation environment was developed using Java programming to test the performance of the proposed EACO algorithm against existing grid resource management algorithms such as Antz algorithm, Particle Swarm Optimization algorithm, Space Shared algorithm and Time Shared algorithm, in terms of processing time and resource utilization. Experimental results show that EACO produced better grid resource management solution compared to other algorithms

    Grid load balancing using ant colony optimization

    Get PDF
    An enhanced ant colony optimization technique for jobs and resources scheduling in grid computing is proposed in this paper. The proposed technique combines the techniques from Ant Colony System and Max – Min Ant System and focused on local pheromone trail update and trail limit. The agent concept is also integrated in this proposed technique for the purpose of updating the grid resource table. This facilitates in scheduling jobs to available resources efficiently which will enable jobs to be processed in minimum time and also balance all the resource in grid system

    Allocation optimale des ressources pour les applications et services de grille de calcul

    Full text link
    Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

    Ant colony optimization algorithm for load balancing in grid computing

    Get PDF
    Managing resources in grid computing system is complicated due to the distributed and heterogeneous nature of the resources. This research proposes an enhancement of the ant colony optimization algorithm that caters for dynamic scheduling and load balancing in the grid computing system. The proposed algorithm is known as the enhance ant colony optimization (EACO). The algorithm consists of three new mechanisms that organize the work of an ant colony i.e. initial pheromone value mechanism, resource selection mechanism and pheromone update mechanism. The resource allocation problem is modelled as a graph that can be used by the ant to deliver its pheromone.This graph consists of four types of vertices which are job, requirement, resource and capacity that are used in constructing the grid resource management element. The proposed EACO algorithm takes into consideration the capacity of resources and the characteristics of jobs in determining the best resource to process a job. EACO selects the resources based on the pheromone value on each resource which is recorded in a matrix form. The initial pheromone value of each resource for each job is calculated based on the estimated transmission time and execution time of a given job.Resources with high pheromone value are selected to process the submitted jobs. Global pheromone update is performed after the completion of processing the jobs in order to reduce the pheromone value of resources.A simulation environment was developed using Java programming to test the performance of the proposed EACO algorithm against other ant based algorithm, in terms of resource utilization. Experimental results show that EACO produced better grid resource management solution
    corecore