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PREFACE

Grid computing is developed through a combination of various 
resources from different geographic locations. This makes grid 
computing different from conventional distributed computing and 
cluster computing. One of the most important problems in grid 
computing is load balancing where all submitted jobs need to be equally 
distributed among resources. A good load balancing algorithm must 
be capable of balancing the entire resources by distributing workload 
evenly across two or more computers, CPUs, network links, hard 
disk or other resources in order to get optimal resource utilization. 
Stagnation problem in grid computing will be minimized when all 
resources are well utilized. Ant Colony Optimization (ACO)  is one of 
the most recent algorithms for load balancing in grid computing. It has 
been used in solving the scheduling problem between the submitted 
jobs and available resources in grid computing. ACO algorithm is 
used in grid computing because it is easily adapted to solve both static 
and dynamic combinatorial optimization problems. 

The study on load balancing of resources in grid environment is 
presented in this monograph. An enhancement of existing ant colony 
based algorithm has proposed that it can schedule jobs to resources 
with the aim of balancing the load on all resources. Dynamic 
scheduling of jobs can be processed by the resources is implemented 
where the scheduling depends on the changing rate of the evaporation 
value.  Findings from this research will contribute to another grid 
resource management algorithm that can signifi cantly improve the 
performance of the available ACO algorithms. The new algorithm 
enhances the classical approach of ACO algorithm by dynamically 
scheduling submitted jobs to suitable resources, thus offering the 
chance to improve the effi ciency of managing resources in grid 
computing. 
  
The structure of the monograph is as follows. An overview of grid 
computing and ACO algorithm concept are introduced in Chapter 1. 
The discussion on ant-based approach for managing resources in grid 
computing and current approaches to control stagnation problem are 
presented in Chapter 2 while Chapter 3 highlights the methodology 
and framework for resource management in grid environment. Chapter 
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4 presents the proposed ant based resource management algorithm. 
The grid resource management scenario and details of the proposed 
algorithm are discussed, followed by the description of the design 
and implementation of the proposed algorithm. Experimental results 
and analysis of the implementation of the proposed algorithm in grid 
computing environment are presented in Chapter 5 while contribution 
of the research and future research directions are highlighted in 
Chapter 6. 

We would like to express our gratitude to Ministry of Higher 
Education for the fi nancial support under the Fundamental Research 
Grant Scheme and to Universiti Utara Malaysia for facilitating the 
management of this research. 

Ku Ruhana Ku Mahamud
Aniza Mohamed Din
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1

RESOURCE MANAGEMENT IN 
GRID COMPUTING

INTRODUCTION

Grid computing is based on large-scale resources sharing in a widely 
connected network such as the Internet (Yan et al., 2009). Grid 
computing emerged from metacomputing with the introduction of 
middleware design as a wide-area infrastructure to support data-
intensive applications and diverse online processing (Moallem, 
2009). At the same time, systems such as Globus Toolkit (Foster 
& Kesselman, 1997), Storage Resource Broker (Baru et al., 1998), 
Legion (Grimshaw et al., 1999) and Condor (Frey et al., 2002) were 
developed to support scientifi c applications. 

Research by Foster and Kesselman (2004) defi ned that cluster and 
grid computing are several ways for establishing a distributed system. 
A distributed system consists of multiple computers that communicate 
through a computer network. Several personal computers or 
workstations in cluster computing are combined through local networks 
in order to develop distributed applications. In cluster computing, 
applications are infl exible in variation because they are limited to a 
fi xed area. From this disadvantage, grid computing has been proposed 
as a solution to this problem. Grid computing is developed through a 
combination of various resources from different geographic locations. 
This makes grid computing different from conventional distributed 
computing and cluster computing. However, computational grid has 
different constraints and requirements compared to the traditional 
high performance computing systems. 
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In grid computing system, resource management is the main 
component that needs to be considered in order to manage all 
submitted jobs and available resources. There are various issues in 
grid resource management such as resource discovery, resource 
scheduling, resource monitoring, resources inventories, resource 
provisioning, load balancing, fault isolation, autonomic capabilities 
and service level management system (Sharma & Bawa, 2008). 
However, grid scheduling and grid load balancing are the main issues 
that are often discussed by many researchers (Moallem, 2009; Chang 
et al. 2007; Liu & Wang, 2008)  

Grid scheduling is an essential function provided by the grid 
infrastructure (Kousalya & Balasubramanie, 2008). The scheduling 
problem in grid computing is classifi ed as Nondeterministic 
Polynomial (NP) – complete problem (Kousalya & Balasubramanie, 
2009) which means that there is no exact algorithm that can solve 
the problem in a polynomial time. Scalability and adaptability are 
two main aspects that have to be considered in implementing any 
scheduling algorithm.  

Resources in grid environment are geographically distributed in a 
large-scale way and resource performance changes from time to time. 
On the other hand, jobs submitted by the users require resources 
with different Quality of Service (QoS) requirements. An effective 
scheduling technique must be defi ned in order to manage the grid 
computing environment. Scheduling aims to maximize throughput, 
minimize computational time (response time) and avoid an overload 
on certain resources. In order to achieve these aims, the conditions of 
jobs and resources such as job characteristics and resource capacity 
must be considered. At the same time, a good scheduling algorithm 
infl uences the balancing of workload on each resource.  

Scheduling algorithm can be classifi ed as static or dynamic (Moallem, 
2009). In the static scheduling algorithm, all information about jobs, 
resources and communication network are known in advance and 
jobs are assigned to suitable resources before execution begins. Once 
started, they keep running on the same resource without interruption. 
However, static scheduling has one major disadvantage, i.e. all 
information about jobs and resources remain constant during the 
process. In contrast, dynamic scheduling attempts to use the runtime 
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state information to make a scheduling decision more informative. 
Reevaluation is allowed on the already-taken assignment decisions 
during job execution in dynamic scheduling algorithm (Chtepen, 
2005). However, research by Liu and Wang (2008) stated that static 
or dynamic scheduling algorithm is categorized by the evaporation 
rate factor. In static scheduling algorithm, the evaporation rate value 
remains constant in all situations, while in dynamic scheduling 
algorithm, evaporation rate value is adaptively changed according to 
the grid condition. Static scheduling algorithm is easier to implement 
and has minimal runtime overhead compared to dynamic scheduling 
algorithm. However, dynamic scheduling may result in better 
performance. In this research, dynamic scheduling is implemented 
where the scheduling depends on the changing rate of the evaporation 
value.  

One of the most important problems that need to be handled in grid 
computing is load balancing. In order to solve this problem, all 
submitted jobs need to be equally distributed among resources in grid 
computing system. A good load balancing algorithm must be capable 
of balancing the entire resources by distributing workload evenly 
across two or more computers, central processing units (CPUs), 
network links, hard disk or other resources in order to get optimal 
resource utilization. 

Ant colony optimization (ACO) is one of the most recent algorithms 
for load balancing in grid computing. It has been used in solving 
the scheduling problem between the submitted jobs and available 
resources in grid computing (Fidanova & Durchova, 2006). ACO 
also has been applied in solving the grid load balancing problem. 
Research by Chang et al. (2007) and Yan et al. (2005) used the ACO 
algorithm to solve the load balancing problem. ACO is inspired by a 
colony of ants that work together in foraging behavior. This behavior 
encourages ants to fi nd the shortest path between their nest and 
food source. It is one of the examples of the application of swarm 
intelligence (Dorigo & Socha, 2006). Swarm intelligence is the fi eld 
of artifi cial intelligence that studies the intelligent behavior of groups 
such as the behavior of natural systems of social insects like ants, 
bees, termites and wasps. The other example of swarm intelligence is 
the particle swarm intelligence which studies swarm behavior in fi sh 
schooling and bird fl ocking (Zhan et al., 2009). 
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There are a number of experiments that have been done by many 
researchers to study the behavior of real ants like foraging and nest 
construction. Gross, Aron, Deneubourg, and Pasteels in 1989 (as cited 
in Dorigo & Stützle, 2004) conducted the double bridge experiment to 
investigate the foraging behavior of ants.  Ants move in a continuous 
path from the nest to the food source as shown in Figure 1.1(a). In 
Figure 1.1(b), when an obstacle appears in the way, ants will choose 
whether to turn left or right with equal probability because they have 
no clue about which is the best choice or the shorter path as there is 
no pheromone at that time on both paths. At this time, about 50% of 
the ants will choose each path. While ants are moving from nest to 
food source on both paths, they deposit certain amount of pheromone. 
Ants that have chosen the shorter path will reach the opposite 
direction faster assuming that all ants walk at approximately the same 
speed. This means that more ants travelled on the shorter path than 
those that travelled on the longer path. Therefore, the pheromone 
will be accumulated more quickly on the shorter path as shown 
in Figure 1.1(c). The probability of ants choosing the shorter path 
will be increased with time. After a transitory phase, almost all ants 
will choose the shorter path due to the large amount of pheromone 
accumulated on that path as shown in Figure 1.1(d). 

Figure 1.1. Ant behavior in foraging process (Perretto & Lopes, 
2005).

Ant Colony System (ACS), Max-Min Ant System (MMAS), Rank-
Based Ant System and Elitist Ant System (EAS) (Dorigo & Stützle, 
2004) are variants of ACO algorithms. ACO also has been applied to 
solve many problems in scheduling such as Job Shop Problem, Open 
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Shop Problem, Permutation Flow Shop Problem, Single Machine 
Total Tardiness Problem, Single Machine Total Weighted Tardiness 
Problem, Resource Constraints Project Scheduling Problem, Group 
Shop Problem and Single Machine Total Tardiness Problem with 
Sequence Dependent Setup Times (Dorigo & Stützle, 2004). 

ACO algorithm is used in grid computing because it is easily adapted 
to solve both static and dynamic combinatorial optimization problems. 
However, more research work is needed to enhance the performance of 
ACO algorithms to solve the scheduling and load balancing problems 
in order to get maximum throughput, minimize response time, avoid 
overload, minimize stagnation problem and at the same time, balance 
the entire resources. Stagnation in grid computing may occur if the 
computational time of the processed job is high. Stagnation also may 
occur when all jobs are assigned to the same resources which lead to 
the resources having high workload.  The stagnation problem in grid 
computing will be minimized when all resources are well utilized.  
 

RESEARCH BACKGROUND

In grid computing system, there exists more than one resource to 
process the submitted jobs. Users will experience delay in response 
time when the number of jobs increase (Lorpunmanee et al., 2007).  
This is because the number of available resources is insuffi cient to 
cater for all the jobs and there is ineffi cient assignment of jobs to 
resources (Fidanova & Durchova, 2006; Wenming et al., 2009). 
Jobs must be queued to be processed by the available resources. 
This will lead to stagnation in grid environment. Available resource 
management algorithm tries to schedule the submitted jobs to 
available resources as evenly as possible. However, improvements 
of resource management algorithm to reduce the stagnation problem 
and to minimize the computational time of each job are still needed. 

Scheduling the jobs to the resources in grid computing is also 
complicated due to the distributed and heterogeneous nature of 
the resources (Li, 2006). The matching process between jobs and 
resources is the most important problem that must be handled in 
grid computing. The resource matching problem involves assigning 
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jobs to resources in order to satisfy job requirements and resource 
policies (Tangmunarunkit et al., 2003; Moallem & Ludwig, 2009). 
The submitted jobs must be matched between the available resources 
in terms of their job characteristics and resources capacity. Current 
algorithms (Xu et al., 2003, Chang et al., 2007) have also considered 
the jobs characteristics and resources capacity in scheduling of jobs 
but did not take into considerations of Million Instruction per Second 
(MIPS) and CPU time needed for each job.

Current algorithms in managing the resources have not always 
consider the load balancing problem (Xu et al., 2003; Ali et al., 2010). 
As a result, this leads to the increase in computational time because the 
available resources are not utilized well. The load balancing problem 
cannot be completely solved with the present resource management 
algorithms that are based on ACO approach. This is because the 
pheromone updates technique and resource selection techniques in 
the present ACO used a fi x value for the pheromone evaporation rate 
(Lorpunmanee et al., 2007; Wenming et al., 2009). 

The main objective of the study is to develop an enhanced ant based 
resource scheduling algorithm which can minimize job computational 
time, match jobs with suitable resources and balance workload of entire 
resources in grid environment. Specifi c objectives of the research are:

(i) To construct a graph model to represent the resource selection 
strategy that can be used to assign submitted job to resource(s).

(ii) To formulate a formula to calculate an initial pheromone 
value that can match jobs and resources according to job 
characteristics and resources capacity. 

(iii) To develop pheromone update techniques that can update 
current status of each resource during scheduling process.

(iv) To simulate the proposed model that can be used to evaluate the 
proposed algorithm.

Grid computing is emerging as a new computing paradigm to solve 
the challenging applications in engineering, science and economics. 
Grid architecture involves the effi cient management of distributed, 
heterogeneous and dynamically available resources. Therefore 
managing resources is crucial in grid environment. 
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The outcome of this research contributes to another grid resource 
management algorithm that can signifi cantly improve the performance 
of available ACO algorithms. The new algorithm enhances the 
classical approach of ACO algorithm by dynamically scheduling 
submitted jobs to suitable resources, thus offering the chance to 
improve the effi ciency of managing resources in grid computing. 

The concentration of this research is on improving the way ants 
search for the best resources and at the same time trying to balance 
all the workload on available resources. ACO is selected as the based 
algorithm to be enhanced in solving the dynamic scheduling of 
resources to jobs. The pheromone update technique in ACS is also 
adopted and adapted in the proposed algorithm. Single colony of ants 
is used for searching the best resources to process jobs. 

Grid computing has been proposed to provide services through a 
combination of various resources from different geographic locations. 
Good resource management approach will enable grid system to be 
fully utilized. However, there are various issues in grid computing 
resource management specifi cally resource discovery, resource 
scheduling, resource monitoring, resource inventory, resource 
provisioning, load balancing, fault isolation, autonomic capabilities 
and service level management system. As such, resource management 
algorithms are essential for effi cient management of the resources.
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2

ANT COLONY OPTIMIZATION IN GRID 
RESOURCE MANAGEMENT

This chapter presents the reviews of research that have been done in 
the areas of grid computing and ACO. Discussions on grid resource 
management, grid scheduling and grid load balancing are also 
included. Previous work on ACO and ant based approach for grid 
resource scheduling and load balancing will be presented.

GRID RESOURCE MANAGEMENT

Resource management is a central component of a grid computing 
system. Resource management is the process of managing submitted 
jobs and available grid resources accordingly. This process includes 
the resources that are allocated, assigned, authorized, assured and 
authenticated to process the request jobs (Sharma & Bawa, 2008). 

In grid environment, jobs that are submitted by users always have 
different quality of service requirements or accept best-effort service 
levels provided by grid system (Krauter et al., 2002). From that point, 
resource management system is required to handle all submitted jobs 
in terms of maximizing the quality of service requirements with the 
aim of distributing workload evenly across two or more computers in 
order to get optimal resource utilization. In this research, processing 
time and load balancing aspects are the main quality of service 
components that have been considered. 



9

Grid Resource Discovery and Matching

Resource discovery and matching involves the process of searching 
the available resources and scheduling of jobs to suitable resources 
(Fattahi & Charkari, 2009). Matching is defi ned as a process of 
evaluation of the degree of similarity of two objects (Bai et al., 2004). 
During the scheduling process, jobs needed to be matched with 
suitable resources that can fulfi ll their requirements. Grid resource 
matching is the process of matching between the jobs and resources 
while taking into account job requirements and available resource 
capacities and optimizing one or more objective functions (Naik et 
al., 2006).

There are many types of algorithms that have been used in resource 
matching in grid computing system. The research by Bai et al. (2004) 
proposed the framework to solve the resource matching problem. The 
framework contains a resource specifi cations component, a request 
specifi cation components and matchmaking algorithms. A request 
specifi cation includes a matchmaking function and two additional 
constraints, a cardinality threshold and matching degree threshold. The 
cardinality threshold defi nes how many resources are expected to be 
returned by the matchmaking service while the matchmaking degree 
threshold specifi es the least matching degree of one resources returned 
by the service. The matchmaking process executes a matchmaking 
algorithm for each request that is sent by the requester. Request and 
grid resource instances that are stored in the knowledge base of the 
matchmaking service are the input of this algorithm. On the other 
hand, the output of this algorithm is the number of grid resources 
ranked according to their matching degree. However, the proposed 
framework only considers the resource characteristics without taking 
into considerations the characteristics of each submitted jobs. 

The study done by Naik et al. (2006) used the concepts of Qualifying 
Resource Collection (QRC) in fi nding the minimal set of resources 
that need to be assigned to the jobs to satisfy their requirements. 
The problem was represented by a graph model. QRC specifi ed 
the resource capacity needed and in which interval is required 
by the jobs. For a certain number of jobs, there are many QRCs, 
and it represents all possible assignment of the resources to the 
job. The relationship between jobs and a QRC indicates that the 
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requirements and consumptions of the job are met by the resources 
in the corresponding QRC. The requirement that is needed by each 
job described the provision a of set of resource dependencies on 
one or more types of resources. Each dependency put the attribute 
constraints on the attribute values of the resources of a specifi c type. A 
job can also specify optional temporal and location constraints. A job 
may specify preferences which provide a selection of criteria when 
multiple resource sets satisfy dependencies related with a job. A job 
can identify its preference either by providing a method of ordering 
qualifying resources or by simply identifying specifi c resource 
instances by attribute value or by name. The attributes of each job 
are very important to ensure that job will be processed with the 
suitable resources that fulfi ll its requirement. However, the proposed 
graph model only considers the matching problem between jobs and 
resources without considering the processing time of each resource.  

Semantic based grid resource discovery and its integration with the 
grid resource broker was proposed by Somasundaram et al. (2006). 
The research proposed fi ve layered architecture that implements a 
knowledge layer on top of Gridbus broker which are fabric layer, 
core middleware layer, high level middleware layer, knowledge 
layer and application layer. Semantic grid architecture was proposed 
where knowledge layer was introduced at the top of Gridbus broker 
architecture that can enable broker to discover resources semantically. 
On the other hand, the semantic component in the knowledge layer 
enables semantic description of grid resources with the help of ontology 
template. Protégé-OWL editor will create the ontology template for 
different types of computing resources in the grid environment. The 
Protégé-OWL libraries are used to dynamically create knowledge 
base of grid resource and Globus Toolkit’s MDS is used to gather 
grid resource information. The research also used Algernon inference 
engine in interacting with the knowledge base to discover suitable 
resources. However, the proposed ontology template depends on 
MDS component and did not support middleware other than Globus. 

The study by Li (2006) proposed a bio-inspired adaptive job 
scheduling mechanism in grid computing. Various software ant 
agents were designed with simple functionalities. This research 
proposed the system architecture with fi ve main components of ant 
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agents namely the queen, scout, tester, worker and cleaner. In this 
architecture, there is no direct communication among these agents. 
The only indirect communication is via the pheromone values stored 
in a grid resource table. To develop this architecture, the queen will 
produced another agent. The grid resources may become available or 
unavailable without any notifi cations. The scout is responsible to fi nd 
the new grid resources that are providing computational services and 
adds it to the grid resource table. A tester executes a small sample 
programme on a grid resource and test for the computational time of 
the sample programme. According to the job completion time, tester 
will update the pheromone value of this resource. A worker chooses 
an available grid resource and runs a computational job on this 
resource. Resources with higher pheromone value will have a higher 
probability to be selected. The cleaner will remove the resources that 
have low pheromone value from the grid resource table. However, the 
proposed algorithm did not consider the load balancing problem of 
each resource. 

Research by Zhu et al. (2009) proposed the resource discovery method 
based on the adjacency list and the ant colony algorithm. There are 
three layers in the proposed resource discovery model which are Peer-
To-Peer (P2P) layer, Virtual Organization (VO) layer and resource 
layer. P2P layer composed of many supernodes where each node 
represents a super management domain. P2P layer is modifi ed to 
interacte information between supernodes. When supernodes search 
resources, the users fi rstly query the resources in the supernodes of 
local VO. If there is no query result, Ant colony algorithm is used to 
search the other supernodes. Mobile agent technology is used in every 
layer including P2P layer, VO layer, and resource layer. The proposed 
algorithm used resource adjacency list a centering resource discovery 
method in the supernode of every VO while Ant Colony algorithm 
a distributed resource discovery method is used in the middle of 
supernodes of P2P layer. However, the performance of the proposed 
method is not used to compare with any other algorithm. 

Many researchers proposed the matching algorithms in solving the 
matching problem between submitted jobs and available resources. 
However, the improvement of existing algorithms is still needed in 
order to get a better matching algorithm that can reduce the stagnation 
problem in grid computing.
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Grid Scheduling

Many algorithms have been proposed to solve the grid scheduling 
problem. The grid scheduling experiment that applies Simulated 
Annealing (SA) was performed by Yarkhan and Dongarra (2002). 
The experiments were implemented over a non-homogeneous set of 
grid resources located at geographically disparate locations. Dynamic 
machine status and connectivity information were obtained from the 
Globus Metacomputing Directory Service (MDS) and the Network 
Weather System (NWS). In many experiments, the SA and Ad-Hoc 
Scheduler were compared in order to see which scheduler produces 
better estimated schedules when given the same information. In order 
to get consistent information, the list of available machines and their 
characteristics were obtained from MDS and NWS. Experimental 
results showed that SA is better than Ad-Hoc scheduler in terms of the  
estimated execution times. This is because SA can avoid some of the 
local optima that are not anticipated in the Ad-Hoc technique search. 
In the study, SA algorithm was not verifi ed in a larger experimental 
environment. 

In a study conducted by Carretero and Xhafa (2006), Genetic 
Algorithms (GA) for job scheduling in grid computing wash done in 
order to optimize the makespan and total fl ow time. The researchers 
aimed to obtain an effi cient scheduler that could allocate a large number 
of jobs to a large number of grid resources. In order to determine 
which work is better for the problem, several variations of GA 
operators were examined.  A grid simulator package was developed to 
generate large size instances of the problem which were then used to 
study the performance of GA implementations. Experimental results 
showed that the proposed GA algorithm performed well in static 
scheduling benchmark. However, this study did not consider the use 
of the simulator over a period of time and the statistical signifi cance 
during the experiments. 

The study by Abraham et al. (2006) proposed a new grid scheduling 
algorithm based on the particle swarm optimization (PSO) approach. 
The velocity and position of the particles in the conventional PSO 
were enhanced from the real vector to fuzzy matrices in order to 
dynamically generate an optimal schedule. The researchers aimed 
to complete the tasks within a minimum period of time and also to 
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utilize the resources in an effi cient way. The performance of the 
proposed algorithm was also compared to the GA and SA algorithms. 
Experimental results showed that the PSO algorithm was better than 
GA and SA in terms of speed of convergence and the ability to obtain 
faster and feasible schedules. However, the experiments only focused 
on makespan values instead of considering the utilization of each resource. 

Grid scheduling algorithm based on the particle swarm was 
proposed by Chen et al. (2006). The study expressed each possible 
grid scheduling technique as a task resource assignment graph and 
mapped the grid scheduling problem into a graph optimal selection 
problem in order to fi nd an optimal solution quickly and accurately. 
The proposed scheduling algorithm assumed that the longest path of 
the task resource assignment graph as a fi tness value and encoded 
every task resource assignment as a particle. The performance of the 
proposed algorithm was compared to the GA algorithm. Experimental 
results showed that the proposed PSO algorithm was better than GA 
algorithm in terms of the makespan and completion time of each job. 
However, the proposed algorithm did not consider the utilization of 
each resource in order to balance all the resources.      

Wang et al. (2006) proposed a new decentralized grid job scheduling 
based on hill climbing algorithm. Decentralized job scheduling was 
implemented by job migration between neighboring grid nodes. Hill 
climbing algorithm was used to determine the migration route which 
the job needs to migrate many times in order to optimize node selection 
of new submitted job. A set of experiments were done in order to 
simulate a decentralized job scheduling including node adjacencies, 
local scheduling of grid nodes and grid workload. The performance of 
the proposed algorithm was compared with k-distributed and auction 
methods. Experiment results showed that hill climbing scheduling 
algorithm could enhance the processor utilization and reduce bounded 
slowdown. However, the proposed algorithm only considered the 
conditions of resources and not the conditions of submitted jobs such 
as their makespan and completion time. 

Multi-objective evolutionary algorithm for scheduling jobs on 
computational grid was proposed by Grosan et al. (2007). The proposed 
algorithm introduced a Multi-Objective Evolutionary Algorithm 
(MOEA) by using the Pareto dominance as the way to solve the 
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scheduling problem in grid computing. The researchers aimed to 
minimize the makespan which is the time when the last task is fi nished 
and also to minimize the fl owtime of the grid system that minimizes 
the sum of completion times of all the tasks. The Pareto dominance 
theory was used in order to compare two solutions, i.e. dominance and 
non-dominance. Mutation and crossover were used as operators while 
the binary tournament selection was used in the implementation. The 
performance of MOEA algorithm was compared to GA, SA, and PSO 
in terms of their makespan and fl owtime aspects. Experimental results 
showed that MOEA produced excellent results when compared to the 
other algorithms. However, the proposed algorithm only considered 
the number of jobs and resources and not the characteristics of jobs 
and the capacity of resources.  

A bio-inspired adaptive job scheduling mechanism on a computational 
grid was proposed by Li (2006). The researcher aimed to solve the 
problem of scheduling a set of parallel jobs with different arrival 
times to run on a computational grid. The proposed bio-inspired 
scheduling algorithm was inspired by the behavior of the ant colony 
to effectively utilize the dynamic distributed resources in the grid 
computing environment in order to achieve an optimal job completion 
time. The bio-inspired mechanism is similar to the collective behavior 
of social insects in terms of their strong adaptability and robustness 
to the dynamic nature of the grid computing environment. The bio-
inspired mechanism also designed a tester program that can produce 
easy-to-verify intermediate values and partial results in order to 
verify the trustworthiness of the distributed computation grid. The 
performance of the proposed bio-inspired scheduling mechanism 
was compared with the random mechanism and heuristic mechanism 
in terms of their job completion time.  Experimental results showed 
that the proposed ant inspired scheduling algorithm was better than 
the other algorithms from the adaptability and robustness aspects. 
However, the bio-inspired scheduling algorithm did not consider the 
load balancing and the current conditions of each resource during 
scheduling process.

A grid scheduling algorithm based on ant algorithm which is a Monte 
Carlo method was proposed by Fidanova and Durchova (2006). The 
researchers aimed to fi nd a good solution in a reasonable time and 
also to achieve high throughput computing in grid environment. The 
proposed algorithm was designed for distributed systems shared 
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asynchronously by both remote and local users. The heuristic algorithm 
based on ACO method was developed and its basic strategies for grid 
scheduling were formulated. The performance of the proposed ant 
algorithm was compared to the online-mode algorithm in terms of their 
execution time. Experimental results showed that the proposed ant 
algorithm was better than online-mode algorithm from the execution 
time and balancing aspects. However, the proposed algorithm did not 
consider the requirement of each submitted job and the capacity of 
available resources.

The study by Lorpunmanee et al. (2007) proposed an ACO for 
dynamic job scheduling in grid computing. The researchers aimed to 
develop an effective grid scheduling algorithm that could minimize 
the total tardiness time of each submitted job. The proposed algorithm 
was designed to adapt the dynamic grid environment and at the same 
time improve the overall performance of the system. An optimal 
resource allocation technique for each job within the dynamic grid 
environment was developed and tested by using Gridsim toolkit. The 
performance of the proposed scheduling algorithm was compared 
with First Come First Serve algorithm, Minimal Tardiness Earliest 
Due Date algorithm and Minimal Tardiness Earliest Release Date 
algorithm. Experimental results showed that the proposed ACO 
algorithm performed better than the other algorithms. However, the 
proposed algorithm did not consider the balancing of each resource 
during the scheduling process. 

Dynamic grid scheduling algorithm based on self adaptive Tabu 
Search (TS) was proposed by Kong et al. (2010).  The proposed 
algorithm is suitable for the grid dynamic characteristics in order to 
reduce the makespan of the submitted jobs. The scheduling process 
was separated into partial scheduling and last partial information was 
exploited to decide the next partial scheduling parameters set. During 
searching process, tabu list kept a local optimal solution and marked it 
in order to get a simple searching way for these solutions in the future 
search process. The performance of the proposed tabu search algorithm 
was compared to several typical algorithms, i.e. Min – min algorithm, 
Max - min algorithm and Sufferage algorithm. Experimental results 
showed that the TS algorithm was better than the other algorithms in 
terms of the makespan value. However, the proposed TS algorithm 
did not consider the utilization of the resources. 
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In order to solve the grid scheduling problem, many researchers 
proposed scheduling algorithms which considered the processing time 
of each job. Based on previous research discussed above, ACO has 
proven to be the most promising algorithm that has been successfully 
used in grid computing to solve scheduling problems which eventually 
reduces the stagnation problem. However, the load balancing problem 
is another aspect that should be considered in managing resources 
in grid computing.  Load balancing is the technique to distribute 
workload between several computers, workstation, CPUs, network 
links, and other resources in order to get optimal resources utilization, 
throughput and response (Moallem, 2009). 

Grid Load Balancing 

Grid load balancing is one of the most diffi cult problems that must 
be handled in managing resources. In grid computing environment, 
load balancing algorithm should be ‘fair’ in distributing jobs across 
the resources (Zhu & Hu, 2004). The objectives of the load balancing 
algorithm are to spread the job equally on each resource, minimize 
the total task execution time of each job and maximize the utilization 
of each resource. In order to achieve these objectives, the difference 
between the heaviest-loaded node and the lightest node should be 
minimized. The problem of balancing resources is also defi ned as NP-
complete problem (Ibarra & Kim, 1977). 

There are many types of algorithms that have been used in resource 
balancing in grid computing system. The study by Cao et al. (2005) 
used a combination of intelligent agents and multi-agent approaches 
that work in grid load balancing area. In static grid load balancing, the 
iterative heuristic algorithm is better than the First Come First Serve 
(FCFS) algorithm. The study highlighted that a peer-to-peer service 
advertisement and discovery technique were more effective in dynamic 
grid load balancing environment. Instead of using a centralized control, 
distributed agent could reduce the network overhead signifi cantly and 
allow the system to operate well in distributed environment which 
helped the user to achieve good resource utilization and minimize the 
processing time of each job. 

The research by Subrata et al. (2007) addressed the use of Genetic 
Algorithm (GA) and Tabu Search (TS) to solve the grid load 
balancing problem in the dynamic environment. In the study, GA and 
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TS performed better than the Best-Fit, Random, Min-min, Max-min 
and Sufferage algorithms in terms of time taken to schedule submitted 
jobs and job completion time. GA and TS could balance the extra 
overhead by considering the ever decreasing costs of storage and 
processing power. However, these algorithms required extra storage 
and processing requirement at the scheduling nodes. 

Balanced Ant Colony Optimization (BACO) algorithm proposed by 
Chang et al. (2007) chooses optimal resources to process jobs based 
on resource status and size of submitted job. The researchers aimed 
to balance the entire resources and at the same time minimize the 
makespan of the jobs in grid computing system. The performance of 
the BACO algorithm was compared with the improved Ant Colony 
Optimization algorithm, Fastest Processor to Largest Task First 
algorithm, and random algorithms. Experimental results showed 
that the BACO algorithm performed better than the other algorithms 
in terms of standard deviation and makespan. However, BACO 
algorithm did not consider the capacity of each resource during the 
scheduling process. 

Rose et al. (2008) proposed the allocation strategies for utilization 
of space shared resources in bag of tasks grids. In this research, an 
adaptor automatically fi ts grid requests to the resource in order to 
decrease turn-around time of application. The jobs from the user are 
received by the grid broker. The request adaptor receives the grid 
broker requirements and tries to provide workers by the submission 
of space shared requests crafted by heuristics. Each processor can 
run several tasks during the requested time but only one at a given 
moment. In order to choose the suitable parameters for requests, the 
request adaptor should obtain some information about the space shared 
resource state, space shared resource scheduler administrative policies 
and the grid application. The performance of the proposed allocation 
strategies was compared with Transparent Allocation Strategy (Netto 
et al., 2005). Experimental results showed that the proposed strategy 
enable users to natively submit tasks without having to submit their 
requirement.  However, the proposed strategy only can process one 
job at a time and does not consider the jobs requirement. 

A hybrid load balancing strategy of sequential tasks that uses a 
combination of static and dynamic load balancing strategies which 
combines a FCFS algorithm with a special designed GA was proposed 
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by Li et al. (2009). The FCFS algorithm can make decisions instantly 
which can reduce the system’s response time, resulting in a shorter 
makespan. GA was used to control the overall performance over a 
list of tasks and target the balance of the resources in grid computing 
area. A sliding-window technique was used to trigger the switch 
between the two algorithms and to make a rapid task assignment as 
well. From the experiment conducted, it was found that hybrid GA 
provided better performance than dynamic GA and FCFS in different 
conditions such as makespan and the current work load. Besides, the 
proposed strategy did not consider the requirement of each submitted 
job and the capacity of available resources.
 
The study by Sadhasivam and Meenakshi (2009) proposed a load 
balanced, effi cient scheduling with parallel job submission in 
computational grids using Parallel Particle Swarm Optimization 
(PPSO). The researchers aimed to maximize the speed of completion 
of processes, minimize the communication overhead, enhance 
resource utilization, and parallel effi ciency. PPSO approach is used 
to group the jobs and to submit them in parallel to available grid 
resources. In order to improve the job submission time and to ensure 
security, the trust based parallel job submission was also proposed. 
PPSO groups the jobs based on resource utilization and trust level of 
the users/resources. All information about jobs and resources such as 
the total number of jobs, processing requirement of each job, trust of 
each job, total number of  available resources, processing capabilities 
of each resource and the granularity time was determined in order to 
optimize the utilization of the resources and also to minimize the job 
execution time. The groups of jobs were then submitted in parallel to 
the resources in the grid environment. The performance of PPSO in 
terms of its simulation time and resource utilization was compared 
with job grouping scheduling framework using PSO. Experimental 
results showed that PPSO was better than classical PSO from both 
aspects.  

The use of artifi cial life technique for distributed grid job scheduling 
was proposed by Moallem and Ludwig (2009). The research proposed 
two distributed artifi cial life inspired load balancing algorithms based 
on ACO algorithm and PSO algorithm. The researchers aimed to 
minimize the processing time of the submitted jobs and also to balance 
the entire resources. The performance of the proposed algorithm was 
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compared with the random approach. Experimental results showed 
that the proposed algorithm worked well in distributing the submitted 
jobs to resources. However, the ant algorithm did not schedule jobs 
well to a small number of resources. 

Adaptive hierarchical scheduling policy for enterprise grid computing 
systems was proposed by Abawajy (2009). This research proposed an 
approach by combinding both time sharing and space sharing policy. 
An adaptive hierarchical scheduling (AHS) policy was introduced 
with special attention to input/output and service demands of parallel 
jobs in homogeneous and heterogeneous systems with background 
workload. In order to assign resource to parallel jobs, AHS integrates 
affi nity scheduling, job assignment, and self scheduling approach 
into a framework. The performance of the proposed algorithm was 
compared with static space-time sharing policy. Experimental results 
showed that the proposed algorithm performs better than the static 
space-time sharing policy in term of arrival time and utilization. 
However, AHS policy did not consider the processing time of each job. 

A decentralized Recent Neighbor (RN) load balancing algorithm 
for computational grid was proposed by Balasangameshwara and 
Raju (2010). The researchers aimed to solve the grid load balancing 
problem by assigning loads in grid system without neglecting the 
communication overhead in collecting the load information. RN 
algorithm performs intra-cluster and inter-cluster load balancing in 
dynamic grid environment. Experimental results showed that RN 
was better in terms of its response time and resource utilization when 
compared to the other algorithms. However, the proposed algorithm 
only considered the processing power of resources without considering 
the other aspects such as the bandwidth and current load of resources 
that can affect the performance of the algorithm.  

Many researchers proposed the load balancing algorithms which 
consider the utilization of each resource in order to solve the grid load 
balancing problem. Based on the previous research discussed above, 
ACO has proven to be the most promising algorithm that has been 
successfully used in solving the load balancing problem. However, 
the improvement of existing algorithms is still needed in order to 
get a better load balancing algorithm than can reduce the stagnation 
problem in grid computing.
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ANT COLONY OPTIMIZATION

ACO is a biologically inspired algorithm that can provide the user 
with an opportunity to solve optimization problem and design the 
meta-heuristics algorithm (Dorigo & Stützle, 2004). This algorithm 
is a new evolutionary approach where several ants work together to 
search for a good solution. Every ant builds up a solution step by 
step by its own decision points until a complete solution is found. 
Ants put an amount of pheromone on the edges of the path to mark 
their solution (paths). The strength of pheromone is used to build the 
solution. The next ant will be attracted by the pheromone, so it will 
search for the solution.   

The main part of the ACO is the use of a combination of priori 
information (heuristics) and posteriori information (pheromone) 
(Dorigo & Stützle, 2004). Priori information is about the quality 
of candidate solutions (called greedy strategy) while posteriori 
information is about the goodness of the previously obtained 
solution (called positive feedback or autocatalytic process). ACO 
not only uses heuristics to create a solution but also uses the 
accumulated experiences about obtaining good solutions in the 
previous process.   

Ant System (AS) is the fi rst member of among several of the well 
known ACO algorithms to be introduced and the prototype of a 
number of ant algorithms. It was initially proposed by Colorni et al. 
(1991) and Dorigo (1992) and it aimed to search for an optimal path 
in a graph based on the behavior of ants seeking a path between their 
colony and a source of food. AS is also the fi rst ACO algorithm which 
was applied to the Traveling Salesman Problem (TSP) (Dorigo et al., 
1996). Three different versions of ant system were proposed, i.e. ant-
density, ant-quantity and ant-cycle. In ant-density and ant-quantity, 
the ants update the pheromone directly after a move from a city to 
an adjacent city. But in ant-cycle, the pheromone update was only 
done after all the ants had constructed the tours. The two main phases 
of the AS algorithm constitute the ants’ solution construction and 
the pheromone update. The performance of AS when compared to 
other algorithms tends to decrease dramatically as the size of the test-
instances increases.
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ACS proposed by Dorigo and Gambardella (1997a, 1997b) is the fi rst 
extension of AS to improve its performance. ACS differs in three 
main aspects from the ant system. Firstly, ACS uses a more aggressive 
action choice rule as compared to AS. Secondly, the pheromone is 
added only to arcs belonging to the global-best solution. Thirdly, each 
time an ant uses an arc (i,j) to move from city i to city j, it removes 
some pheromone from the arc. In ACS, ants choose the next city using 
the pseudo-random-proportional action choice rule. This probabilistic 
rule is a trade-off between exploration and exploitation. Exploration 
gives the chance to add new edge to the solution. Exploitation uses 
the accumulated information from previous iterations preferring the 
choice of an edge with maximum combination of pheromone trails 
and heuristic values. An ant with probability q exploits the available 
information about previous good solutions or with probability (1- q) 
explores new areas of the solution space focusing on shorter edges 
with pheromone rate. In ACS, only the global best ant is allowed to 
add pheromone after each iteration. The trail update only applies to 
the arcs of the global-best tour, not to all the arcs like in AS. Only 
the global best solution receives feedback. Additionally, with regards 
to the global updating rule, in ACS, the ants use a local update rule 
that they apply immediately after having crossed an arc during the 
tour construction. The effect of the local updating rule is to make an 
already chosen arc less desirable for a following ant. In this way, the 
exploration of yet to be visited arcs is increased.        

Bullnheimer et al. (1996) proposed ranked AS (AS
rank

) as an extension 
of AS

elitist 
proposed by Dorigo et al. (1996). In AS

rank
, the global 

best tour is always used to update the pheromone trails, similar to 
the elitist strategy of AS. Additionally, a number of the best ants of 
the current iteration are allowed to add pheromone. To this end, the 
ants are sorted by tour length and the quantity of pheromone an ant 
may deposit is weighted according to the rank r of the ant. Only the 
(w-1) best ants of each iteration are allowed to deposit pheromone. 
The global best solution which gives the strongest feedback is given 
weight, w. The rth best ant of the current iteration contributes to 
pheromone updating with a weight given by max {0, w-r}. Among the 
AS-based algorithms, both AS

rank
 and AS

elitist 
performed signifi cantly 

better than AS, with AS
rank 

giving slightly better results than AS
elitist. 

Max-Min AS (MMAS) was proposed by Stützle and Hoos (2000) as 
another improvement over AS-based algorithm and it has showed a 
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higher performance than other ACO algorithms for TSP. The solutions 
in MMAS are constructed in the same way as in AS. Additionally, 
MMAS uses the pseudo-random-proportional action choice rule of 
ACS.  Using that action choice rule, very good solution could be 
found faster, but the fi nal solution quality achieved was worse. The 
main modifi cations in MMAS with respect to AS are the following 
aspects: 1) to exploit the best solution found, after each iteration, only 
one ant is allowed to add pheromone; 2) to avoid search stagnation, 
the allowed range of the pheromone trail strengths is limited to 
the interval [T

min,
T

max
]; 3) the pheromone trails are initialized to 

the upper trail limit which causes a higher exploration at the start 
of the algorithm; 4) the pheromone trails are updated after all ants 
have constructed a solution; and 5) the ant which is allowed to add 
pheromone may be the global best solution or iteration best solution. 
Therefore, if the same arcs are often used in the best solutions, it will 
receive a larger amount of pheromone. The lower and upper limits on 
the possible pheromone strengths on any arc are imposed in MMAS 
to avoid search stagnation. This trail limit has the effect of indirectly 
limiting the probability T

ij 
of selecting a city j when an ant is in city i 

to an interval [T
min, 

T
max

] with 0< T
min

 ≤ T
ij
≤ T

max
≤1. The pheromone 

trails in MMAS are initialized to their upper pheromone trail limits.    

Best Worst AS (BWAS) was proposed by Cordon et al. (2000) as 
another extension of the basic idea of AS by including some concepts 
from evolutionary computation algorithms. BWAS is similar to AS 
(same transition rule) in constructing ants’ solutions.  BWAS enhances 
the ants’ solution by using local optimizer to bring each solution to 
its local optimum. There are basically three core activities performed 
offl ine by daemon actions. First, daemon actions perform positive and 
negative pheromone updates by reinforcing the edges of global best 
solution through the addition of an amount of pheromone proportional 
to the quality of this solution. Furthermore, daemon actions penalize 
the edges belonging to the worst solution obtained from the current 
iteration and do not share in the global best solution by evaporating 
extra amount of pheromone. Second, like MMAS, a mechanism to 
avoid stagnation is incorporated in BWAS. Stagnation usually takes 
place when there are big differences between the pheromone trails of 
edges of the best solutions (very high) and the pheromone trails of other 
edges (very small). In such situations, BWAS considers restarting the 
search process by reinitializing all pheromone trails to an initial value. 
Third, to encourage the exploration of new areas of the solution space, 
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a mutation operation is applied on the pheromone trails by performing 
small changes in early iterations (no chance of stagnation) and strong 
changes in latter iteration when there is a higher chance of stagnation. 
The mutation range depends on the average of pheromone trails on the 
edges of the global best solution. Cordon et al. (2002) conducted an 
analysis of the above three components, considering each component 
separately as well as different combination of them on the TSP and 
quality of service access point. Their analysis studies showed that 
BWAS with the above three components gave much better solutions 
than BWAS with one or two of these components. 

Kaegi and White (2003) proposed Local Best Tour Ant System 
(LBTAS) as a new version of AS which considered the use of local 
information to guide the ants’ search process. The basic change was 
that each ant updates the pheromone trails according to its own best 
tour from the beginning of the algorithm. This modifi cation avoids 
the use of global information by observing all ants’ tours and selects 
the best global one as in ACS and MMAS. In LBTAS, each ant works 
individually on a copy of AS and indirectly cooperates with other ants. 
The early results of applying LBTAS on some versions of TSP were 
promising when compared with original AS and AS

elitist
. Kaegi and 

White (2003) were of the opinion that adding local search procedure 
to LBTAS improves its chance to outperform other versions of AS.

ANT BASED GRID SCHEDULING ALGORITHM

In a grid computing system, when a job is submitted, it needs to 
be processed by the available resources. Best resources in terms of 
processing speed, memory and availability status are more likely 
to be selected for the submitted jobs during the scheduling process 
(Lorpunmanee et al., 2007). The best resources are categorized as 
optimal resources. In a research by Li (2006), ACO has been used 
as an effective algorithm in solving the scheduling problem in grid 
computing.  The process undertaken by ACO considers the value of 
pheromone, a chemical substance used for indirect communications 
between the ants for resource selection. 

Simple grid simulation architecture for resource management and 
dynamic grid scheduling was proposed in Xu et al. (2003). This study 
also validated the scalability of ant algorithm. The ant algorithm for 
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grid task scheduling was integrated into the simulation architecture. 
The initial pheromone value was calculated based on the number of 
processing elements (PEs), MIPS, size of job, and transfer time. A set 
of experiments was conducted to see the performance of the proposed 
algorithm. Good results were obtained in terms of resource average 
utilization and response time. 

The study to improve ant algorithm for dynamic job scheduling in 
grid computing which is based on the basic idea of ACS was proposed 
by Yan et al. (2005). The pheromone update function in this research 
was performed by adding encouragement, punishment coeffi cient and 
load balancing factor. The initial pheromone value of each resource 
was based on its status where job was assigned to the resource with 
the maximum pheromone value. The strength of pheromone of each 
resource was updated after completion of the job. The encouragement 
and punishment and local balancing factor coeffi cient were defi ned 
by users and were used to update pheromone values of resources. If 
a resource completed a job successfully, more pheromone was added 
by the encouragement coeffi cient in order to be selected for the next 
job execution. If a resource failed to complete a job, it was punished 
by adding less pheromone value. The load of each resource was taken 
into account and the balancing factor was also applied to change the 
pheromone value of each resource.      

The study by Li (2006) proposed a bio-inspired adaptive job 
scheduling mechanism in static grid computing. The purpose of this 
research was to minimize the execution time of the computational 
jobs by effectively taking advantage of the large amount of distributed 
resource. Various software ant agents were designed with simple 
functionalities. The pheromone update function was done based 
on the execution of each resource. In the research, comparison was 
made between the bio inspired adaptive scheduling with the random 
mechanism and heuristic mechanism. Experimental results showed 
that a bio-inspired adaptive job scheduling had good adaptability and 
robustness in a dynamic computational grid.  

Ant algorithm to solve static grid scheduling problem was proposed 
by Fidanova and Durchova (2006). The researchers aimed to fi nd a 
good scheduling algorithm that can minimize the processing time of 
the jobs. In this proposed algorithm, the scheduler allocated submitted 



25

jobs to available resources based on the prediction of the computing 
power of the resource. There were two types of mapping heuristics 
which are online mode and batch mode. The proposed algorithm 
was based on batch mode as the scheduler considers a meta-task for 
matching and scheduling at each mapping event. The pheromone 
value was calculated based on the evaporation rate value and the 
function free factor which is the time when the machine will be free. 
The performance of the proposed algorithm was compared with the 
online mode algorithm in terms of their execution time. Experimental 
results showed that the proposed algorithm performed better than 
online mode algorithm from the execution time aspects. However, 
there was no pheromone update function in this proposed algorithm. 
The job was only submitted if the resource is fully free to be used. 
This affected the execution time of the algorithm. 

For dynamic job scheduling in grid environment, an ACO based 
algorithm was proposed by Lorpunmanee et al. (2007) which aimed 
to minimize the total job tardiness time. The process to update the 
pheromone value on each resource was based on local update and 
global update rules as in ACS. The performance of the proposed 
algorithm was compared with existing algorithms which are First 
Come First Serve, Minimal Tardiness Earliest Due Date and Minimal 
Tardiness Earliest Release Date algorithms. Experimental results 
showed that the proposed algorithms performed better than the other 
algorithms because it considered the load of each resource during the 
resource selection process. 

The dynamic grid scheduling algorithm based on adaptive ant 
colony algorithm was proposed by Liu and Wang (2008). The aim 
of the research was to minimize the searching time and avoid the 
stagnation problem in grid computing system. In the algorithm, the 
evaporation rate value was adaptively changed and a minimum value 
for evaporation rate was assigned. The evaporation rate used by the 
algorithm was under control and was never reduced to 0. The local 
and global pheromone updates were used in order to control the 
pheromone value of each resource. The performance of the proposed 
algorithm was compared with the basic ant colony algorithm. 
Experimental results showed that an adaptive ant colony algorithm 
performed better than the basic ant colony algorithm in terms of the 
searching time. 
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An improved ant algorithm for static grid scheduling problem was 
proposed by Bagherzadeh and MadadyarAdeh (2009). The researchers 
aimed to minimize the processing time of jobs and to balance the entire 
resources in grid computing system. The proposed ant algorithm was 
based on batch mode, where jobs and resources were collected and 
mapped at prescheduled time. The pheromone update mechanism was 
done at the end of the iteration instead of the selection process. This 
allows faster convergence of the proposed algorithm to the optimal 
solution. The performance of the proposed algorithm was compared 
to the existing algorithms which are Opportunistic Load Balancing, 
Minimum Execution Time, Minimum Completion Time, Switching 
Algorithm, K-Percent Best, MinMin, MaxMin, MaxStd, Dupplex, 
and previous ACO. Experimental results showed that the proposed 
ant algorithm performed better than the other algorithms in terms of 
makespan and utilization. 

The research by Wenming et al. (2009) proposed the trust based 
ACO for dynamic grid resource scheduling. The researchers aimed 
to minimize the completion time of jobs and utilization of resources. 
The local pheromone update and global pheromone update were 
used in the algorithm in order to achieve the load balance system by 
incorporating resource oriented trust mechanism. Local pheromone 
update would reduce the pheromone value on the path, thus freeing the 
ant to explore the new path that is to be used. The global pheromone 
update was done by updating the pheromone value on the shortest 
path after the task had been fi nished. From those points, the optimal 
solution could be obtained and the system load balancing could be 
achieved. The performance of the trust based ant colony algorithm 
was compared with MinMin algorithm. Experimental results showed 
that the trust based ant algorithm performed better than MinMin 
algorithm in terms of completion time. 

From the above research, ACS is found to be the most popular variant 
of ACO that has been successfully used in grid computing to solve 
the scheduling problems which eventually reduced the stagnation 
problem. However, more work is needed to enhance the performance 
of the algorithm in this application domain.
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ANT BASED GRID LOAD BALANCING ALGORITHM

A study by Salehi and Deldari (2006) proposed a new dynamic 
algorithm that is based on an echo intelligent system, autonomous and 
cooperative ants. Ant level load balancing was proposed to improve 
the performance of the mechanism. In this proposed algorithm, the 
ants can procreate and also can commit suicide depending on the 
existing condition. Ants were created on demand to achieve load 
balancing during their adaptive lives. The ants may bear offspring 
when they detected the system is drastically unbalanced and commit 
suicide when they detect equilibrium in the environment. The ants 
will care for every node visited during their steps and record node 
specifi cations for future decision making. Theoretical and simulation 
results indicated that this new algorithm surpasses its predecessor. 
However, the pheromone values were not updated in this proposed 
algorithm which enabled the assignment of jobs to the same resource. 
Therefore, stagnation occurred in the grid computing system.

Balanced job assignment based on ant algorithm for computing grids 
called BACO was proposed by Chang et al. (2007). The research 
aimed to minimize the computation time of job executing in Taiwan‘s 
UniGrid environment which also focused on load balancing factors of 
each resource. By considering the resource status and the size of the 
given job, BACO algorithm chose optimal resources to process the 
submitted jobs. The local and global pheromone update techniques 
were used to balance the system load. Local pheromone update 
function updated the status of the selected resource after a job had 
been assigned and the job scheduler depends on the latest information 
of the selected resource for the next job submission. The global 
pheromone update function updated the status of each resource for 
all jobs after the completion of the jobs. By using these two update 
techniques, the job scheduler will obtained the latest information of all 
resources for the next job submission. From the experimental results, 
BACO was capable of balancing the entire system load regardless of 
the size of the jobs in the static scheduling benchmark. 

An enhanced ant algorithm for dynamic task scheduling in grid 
computing was proposed by Sathish and Reddy (2008) which gave 
better throughput with a controlled cost. The proposed scheduling 
algorithm increased the performance in terms of low processing time 
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and low processing cost when applied to a grid application with a 
large number of jobs such as the parameter sweeps application. This 
algorithm worked effectively in minimizing the processing time 
and processing cost of the jobs. The simulation results of various 
scheduling algorithm such as the modifi ed ant algorithm and the cost 
controlled algorithm were also compared. The results showed that 
this enhanced algorithm worked better than the ant algorithm. By 
considering the processing cost, this enhanced ant algorithm was more 
suitable for a wide use. However, this algorithm did not consider the size 
of the jobs which leads to appropriate assignment of jobs to resources.

Load balancing in non-dedicated grids using ACO was proposed 
by Chen (2008). The proposed static algorithm was based on ACO 
algorithm in solving the load balancing problem in grid computing 
system. In the algorithm, the effi ciency of the resources was maintained 
by immigrating jobs from overloaded resources to under loaded 
resources. The inherent features of a non dedicated grid computing 
system, such as dynamics and heterogeneity, were embedded in the 
model while the pheromone update function was done according to 
the Gauss Function and the evaporation rate. The performance of 
the proposed algorithm was compared with the First In First Out 
algorithm, the Tabu algorithm, and the Tabu + Granularity-based 
Job Allocation Policy algorithm. Experimental results showed that 
the proposed algorithm performed better than the other algorithms 
in terms of makespan and resource usage. However, the proposed 
algorithm did not consider the requirement of each submitted jobs 
and the capacity of resources.

In Moallem and Ludwig (2009), two distributed artifi cial life-inspired 
algorithms were introduced and they are ACO and PSO in solving 
the static grid load balancing problem. Distributed load balancing 
are categorized as a robust algorithm that can adapt to any topology 
changes in a network. In the proposed algorithm, an ant acted as a 
broker to fi nd the best node in terms of the pheromone value stored 
in the pheromone table. The node with the lightest load was selected 
as the best node. The position of each node in the fl ock could be 
determined by its load in PSO. The particle compared the load of 
nodes with its neighbours and moved towards the best neighbour by 
sending assigned jobs to it. The proposed algorithm performed better 
than ACO for job scheduling where jobs were submitted from different 
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sources and different time intervals. PSO showed better results than 
ACO in terms of the makespan. However, PSO used more bandwidth 
and communication compared to ACO. The main drawback of the 
Ant Colony was that jobs are not scheduled effi ciently and therefore 
load among the resources were not balanced. This problem can be 
fi xed by increasing the number of ants that can explore the entire grid 
system to fi nd resources with the lightest load. 

ACO algorithm for dynamic load balancing in distributed systems 
through the use of multiple ant colonies was proposed by Ali et al. 
(2010). In this algorithm, information on resources was dynamically 
updated at each ant movement. Load balancing system was based on 
multiple ant colonies information. Multiple ant colonies were adopted 
in order that each node sent a colored colony throughout the network. 
Coloured ant colonies were used to prevent ants of the same nest from 
following the same route and also forcing them to be distributed all 
over the nodes in the system. Each ant acted like a mobile agent which 
carried newly updated load balancing information to the next node. 
This proposed algorithm was compared to the work-stealing approach 
for load balancing in grid computing. Experimental results showed 
that multiple ant colonies worked better than work-stealing algorithm 
in terms of their effi ciency. However, the multiple ant colonies did 
not consider resources capacity and jobs characteristics. This can 
make matching the jobs with the best resources a diffi cult task for the 
scheduling algorithm.

Based on the previous research discussed above, it is found that 
many researchers have used an ACO approach in solving the grid 
load balancing problem. The pheromone update function is applied 
in order to manage the pheromone value of each resource during 
selection process.  However, more work is needed to enhance the 
performance of the algorithm in this application domain.

 
SUMMARY

Resource scheduling is the process of managing submitted jobs 
to available resources in grid computing system. The scheduling 
algorithm must consider the characteristics of each job and the 
capacity of resources in scheduling the submitted jobs to the available 
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resources. In current situations, many effective algorithms are applied 
in order to solve the grid resource scheduling problem. The most 
promising technique that has been used is the ACO technique. ACO 
technique can solve the scheduling problem, stagnation problem and 
minimize the computational time in grid computing environment. The 
local pheromone update and the global pheromone update are used to 
update the pheromone value of each resource. 
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3

METHODOLOGY AND PROPOSED 
FRAMEWORK

This chapter presents the methodology and proposed framework 
that have been used in this research. The activities of the research 
methodology will be discussed in detail followed by the description 
of the proposed framework. 

RESEARCH METHODOLOGY

The experimental research methodology  that has been used by a 
large number of ACO researchers like Dorigo et al. (1991a, 1991b, 
1996) and Gambardella (1997a, 1997b), Stützle and Hoos (2000) and 
Kawamura et al. (2000), has been chosen to be used in this research.  
There are fi ve steps in this methodology (refer Figure 3.1) which are 
analyzing the research problem, developing the proposed framework, 
constructing the simulation environment, conducting a set of 
experiments and evaluating the results. This methodology is adapted 
because it suits the proposed algorithm, provides a good output, and is 
easy to use in solving the grid resource management problem.

Analyzing the Research Problem

The fi rst step in this research is to analyze available ACO algorithms 
applied in grid computing and to determine existing problems. 
This include cases where the ACO algorithms only considered the 
computational time of each processed job without considering the 
matching problem between job requirement and resource capacity 
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which leads to stagnation problem in grid computing. These problems 
were captured when studying the mechanisms used by existing 
ACO algorithms to control the activities of ants namely the resource 
selection mechanism and the pheromone updating mechanism. These 
mechanisms infl uence the ant’s decision making process and are 
used to organize the attraction of ants toward the previously obtained 
solution. Thus, stagnation in the grid computing will be minimized 
when good resource selection and pheromone updating mechanisms 
can reduce the attraction of ants to a single solution. 

The research problem is determined at the end of this step, i.e. after 
the stagnation in grid computing was clearly defi ned and the available 
approach that attempts to reduce this problem was identifi ed. The 
initial pheromone value and the global pheromone update were 
modifi ed to get a better scheduling result and which, at the same time, 
could balance the entire resources in grid computing system. 

Figure 3.1. Steps of experimental research methodology. 

Developing the Proposed Framework

The proposed framework is developed in this step. Details of the 
framework will be discussed in Chapter 4.
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Constructing the Simulation Environment

A computer simulation was developed for the proposed algorithm 
and the environment to be applied. Full implementation of the 
proposed algorithm, ant algorithm by Moallem (2009), Particle 
Swarm (Moallem and Ludwig, 2009), Space Share and Time Share 
were carried out using Java programming under Gridsim toolkit. The 
computational time of each job and the load of each resource were 
measured during the simulation process. 

Conducting the Experiment

A set of experiments wase conducted. These experiments were used to 
test the performance of the proposed algorithm. Tests were carried out 
on job processing time and utilization of resources in grid computing. 
The objectives of the experiments are to evaluate the performance 
of the proposed algorithm in term of processing time and utilization 
of each resource and comparing the results with existing algorithms. 
A set of experiments was also conducted to determine how different 
values of evaporation rate will affect the performance of the proposed 
algorithm. In all the experiments, the number of machine per resource 
is 1 and the number of PEs per machine is randomly chosen from 1 to 
5. The PE ratings and bandwidth for each machine will vary. 

Four experiments have been conducted in order to evaluate the 
performance of the proposed algorithm in term of processing time and 
utilization. Three experiments were conducted in order to evaluate the 
performance of the proposed algorithm in the load balancing aspect. 
Various numbers of resources and jobs have been used in all the 
experiments.

Evaluating the Results

Performance of the proposed algorithm during different experiments 
was reported and compared with the performance of other available 
algorithms. This process is important to show the relative strength 
and weakness of the proposed algorithm. The result of this proposed 
algorithm was compared with ant algorithm by Moallem (2009) 
and other algorithms such as Particle Swarm (Moallem & Ludwig, 



34

2009), Space Shared (Rose et al., 2008), and Time Shared (Abawajy, 
2009). The results of these algorithms were taken from the literature 
wherever possible; otherwise they were taken from the implementation 
developed in this research. 

The comparisons presented in this report are designed so that 
all algorithms run exactly the same parameters. This gives a fair 
judgment of the results of these algorithms. Thus, the comparison of 
performances gives an indication on how successful the organization 
of ant’s population is in the  proposed algorithm and how effective the 
mechanisms are being  incorporated. 

THE PROPOSED FRAMEWORK

The main aim of the research is to develop enhancement of the ant 
colony algorithm that can balance the load among resources in the grid 
system. The proposed algorithm hereafter will be known as enhanced 
ant colony optimization (EACO). There are three mechanisms in the 
framework that are used to organize the work of ant colony to form 
the proposed algorithm. The mechanisms are initial pheromone value 
mechanism, resource selection mechanism and pheromone updating 
mechanism The initial pheromone value mechanism will solve the 
matching problem between submitted jobs and the available resources 
while the resource selection mechanism will solve the scheduling 
problem where by the best resource will be selected to process 
jobs. Pheromone updating mechanism will solve the load balancing 
problem of each resource. Figure 3.2 shows the basic components of 
this framework.

Initial Pheromone Value Mechanism

An initial pheromone value is calculated after each job enters the grid 
information system. The effect of the initial pheromone value is to 
match all submitted jobs to suitable resources. This value is calculated 
by considering the jobs characteristics and the capacity of resources. 
The initial pheromone value of each resource for each job is calculated 
based on the estimated transmission time and the execution time of a 
given job when assigned to this resource. 
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Figure 3.2. The proposed EACO framework.

Resource Selection Mechanism

When an ant wants to move to another resource, it must make a 
probabilistic decision to select a suitable resource. The probabilistic 
decision is based on heuristic information (computational time) and 
pheromone information. Pheromone represents information about 
previous experiences of the ant while heuristic represents a priori 
information about the goodness of a solution. In this situation, ants 
use the exploration control mechanism when they explore new 
resource in the grid environment. On the other hand, ants that want 
to use the  previously selected resources will use the exploitation 
control mechanism.  

Pheromone Updating Mechanism

The proposed pheromone updating mechanism encourages a balanced 
form of exploitation of previous experiences and exploration of new 
nodes. The global pheromone updating mechanism has been used 
in encouraging the exploration of new areas of the search space by 
reducing the importance of the visited nodes. That was used in this 
proposed algorithm. In global pheromone updating mechanism, the 
best ant will deposit an amount of pheromone on its own nodes. 
The best ant refers to the ant that obtains the best solution in the 
current iteration of the algorithm execution or the ant that obtains the 
best solution since the start of the algorithm execution. The global 
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pheromone update concludes that each ant reduces the amount of 
pheromone on nodes that it has visited to give more chance to other 
nodes to be chosen by the next ants. 

SUMMARY

The proposed framework which consists of three mechanisms has been 
used to organize the work of ant colony in the resource scheduling 
algorithm with the aim to balance the load of all resources. The initial 
pheromone value is calculated by considering the jobs characteristics 
and the capacity of resources. The initial pheromone mechanism 
will solve the matching problem between the submitted jobs and the 
available resources.

The resource selection mechanism will be performed when ants try to 
search for a new solution. However, this should be done under certain 
control to avoid exploring a very wide area of search space that might 
be far from the optimal solution. On the other hand, an exploitation of 
the search history is necessary to search for previous good solution. 
However, very strong exploitation is not required to prevent the 
stagnation problem of certain resources. The resource selection 
mechanism will solve the scheduling problem in grid computing. 

The global pheromone update mechanism will be performed after all 
jobs are completely processed. The best ant will deposit an amount 
of pheromone on its own nodes during the global pheromone update 
mechanism. The pheromone updating mechanism will solve the load 
balancing problem of each resource.
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4

ENHANCEMENT OF ANT COLONY 
OPTIMIZATION ALGORITHM

This chapter presents the proposed enhanced ant based grid resource 
scheduling algorithm called EACO. The proposed algorithm takes 
into consideration the capacity of resources and the characteristics 
of jobs in determining the best resource to process a job. The grid 
resource scheduling scenario is discussed in detail, followed by the 
description of the proposed algorithm. The enhancement of the ant 
colony algorithm design and implementation are also presented. 

GRID RESOURCE SCHEDULING SCENARIO

In a distributed system, there might be issues in which a job waits for 
a service at the queue of one resource, while at the same time another 
resource which is capable of processing a job is idle. The purpose of 
a resource scheduling algorithm is to prevent these problems from 
occuring as much as possible (Livny & Melman, 1981).
 
Information collection, decision making and data migration are three 
phases in grid resource scheduling process. In the collection phase, 
the grid broker collects all information of each resource and detects 
whether there is a load imbalance among resources. Optimal job 
distribution is calculated during the decision making process while an 
exact amount of jobs is transferred to other suitable resources during 
the job migration process. 
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Grid scheduling are divided into three classes of architecture and they  
are centralized, decentralized and hierarchical. In centralize approach, 
all jobs are submitted to a single scheduler that is responsible to 
schedule all jobs to the available resources. This method is optimal 
to use since all information are available at one place but this method 
is not very scalable in grid computing because bottleneck problems  
occur when the scheduler tries to keep all information on the state of 
the resources. Thus, scalability is a problem in centralized method 
that infl uences a single point of failure to the system. 

There is no central scheduler in decentralized scheduling method and 
scheduling is implemented by the resource requestors and owners 
independently. This scheduling method is scalable in grid computing 
system and is suitable for peer-to-peer architectures and dynamic 
environments. In this method, individual scheduler must cooperate 
with each other in making scheduling decisions. The proposed EACO 
algorithm is based on decentralized scheduling method.

In hierarchical scheduling method, the schedulers are organized in a 
hierarchy with resources with high level entities being scheduled at 
higher levels and resources with low level entities being scheduled 
at lower levels. This method is a combination of centralized and 
decentralized scheduling methods. 

ENHANCED ANT COLONY OPTIMIZATION

EACO is developed by integrating the idea of how ants cluster the 
objects. Figure 4.1 shows behaviour of ants in clustering the objects. 
Ant will move randomly until it encounters an object. The ant will  
disregard this object if it is carrying another object, or will pick it 
up and will continue on its way. It can be seen that each ant seems 
to cooperate in piling up dead corpses in the nest. This proposed 
algorithm uses the inspiration of how ants are able to cluster objects and 
tries to use it in the inverse version to spread jobs in the grid system. 
The ants try to distribute as many jobs as possible rather than piling them. 

The proposed algorithm is inspired by a colony of ants that works 
together to fi nd the shortest path between their nest and food source. 
Every ant will deposit a chemical substance called pheromone on the 
ground after they move from the nest to food sources and vice versa. 
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Therefore, they will choose the shortest or optimal path based on the 
pheromone value. The path with high pheromone value is shorter than 
the path with low pheromone value. This behavior is the basis for a 
cooperative communication.

Figure 4.1. Ant behaviour of clustering the objects.

EACO Graph Model

The EACO graph model was developed in order to manage the 
resources in grid computing system (refer Figure 4.2). This directed 
graph model consists of a set of jobs with requirement associated with 
it and resources with their capacity. Jobs are submitted by different 
users from different geographic locations. Each job has its own 
characteristics and requirements that need to be satisfi ed by available 
resources in grid system such as their size and CPU time needed for 
each job. There are many types of resources such as application, 
database, printer, and server. Resources are distributed in different 
geographic area and owned by different owners with their own rules. 
Each resource type has its static and dynamic attribute. For example, 
the static attributes for the resource type server are host name, CPU 
speed and CPU architecture. On the other hand, the dynamic attributes 
for resource type server are current CPU load, memory usage and 
availability status.  
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Figure 4.2. EACO Graph Model.

As can be seen from the graph model, there are four types of vertices 
that are related to each other. Due to that special kind of relation, the 
graph can be seen as three sub- graphs, each of which is a bipartite 
graph related to each other:

 Sub-graph E1, a bipartite graph that connects Job and 
Requirement, E1 = {Job, Requirement}.

 Sub-graph E2, a bipartite graph that connects Resource and 
Capacity, E2 = {Resource, Capacity}.

 Sub-graph E3, a bipartite graph that connects Job and Resource, 
E3 = {Job, Resource}.

By using the computational model as described above, the main 
aim of grid resource management process can be accomplished by 
choosing appropriate path from job to resource. The task in this model 
is perfectly matched with the task done in the Simple AS algorithm 
(Colorni et al. 1991; Dorigo, 1992), where ants must go back and 
forth between food and nest, passing more preferred path, and then 
deciding which path should be chosen. 

By using the simple AS algorithm, the grid system element that is 
represented by sequence of vertices in the path between nest and food 
will be selected based on the amount of pheromone deposited by the 
ant that moves from nest to food. Therefore, before the path selection 
is performed, there should be a process to construct the pheromone 
trail. 
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The construction of pheromone trail is done by moving the ants from 
nest to food. The pheromone value of each job to be processed by each 
resource will be calculated. Resource with high pheromone value will 
be selected to process the submitted jobs. If the job is fi nished, the ant 
will update the pheromone value and the resource will be released to 
be used by another job. 
  
Proposed EACO Algorithm

The proposed algorithm, EACO, is inspired by a colony of ants that 
work together in foraging behavior. The EACO takes into consideration 
the job requirements and resources capacity in determining the best 
resource to process a job. The EACO algorithm selects the resources 
based on the pheromone value on each resource which is recorded 
on a pheromone value table (PVT). The proposed EACO algorithm 
consists of 5 steps namely obtain job requirements, create an ant for 
a job, calculate the initial pheromone value and store in PVT for all 
resources, assign resource with highest pheromone value in PVT to the 
job, and perform global pheromone update after complete processing 
the job. The pseudo code of EACO algorithm is shown in Figure 4.3. 

    

                           
Figure 4.3. Pseudo code of the EACO algorithm.

 
Get number of resources from num_resource 
Get number of jobs from num_gridlet 
Compute evaporation rate value; 

evap_rate = calculateEvapRate(num_resource, num_gridlet);  
For each num_resource: 
 Bandwidth = getBandwidth(); 

MIPS = getMIPS(); 
load = getLoad(); 
createResource(id, bandwidth, MIPS, load); 

For each num_gridlet: 
job_size = getJobSize(); 
cpu_time = getCPUTime(); 
createGridlet(); 
createAnt(); 

Calculate PV for each resource and job combination, and store into pv_table 
 
While process_iteration < num_gridlet 
 
 For (R = 0; R < num_resource; R++) 
  For (J = 0; J < num_gridlet; J++) 
   getHighestPV(); 
  process (R, J); 

 global_update(evap_rate, R, J); 
   process_iteration++; 
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Jobs are submitted by different users to the grid environment. 
Submitted jobs are independent of each other and contain different 
requirements. For each job, the scheduler will record details the size 
of the job and CPU time needed by the job. 
 
An ant which is to represent a job in the grid system is created for 
every job that is submitted to the system. The task for the ant is to 
move from one resource to another with the aim to evaluate the 
best resource to be assigned to the job. The calculation of the initial 
pheromone value is presented in the third step. 

The initial pheromone value is calculated by considering the job 
requirements and resource capacity. The ant that represents a job 
will move from one resource to another to calculate the pheromone 
value. Pheromone value on a resource indicates the capacity of each 
resource in grid system. The initial pheromone value of each resource 
for each job is calculated based on the estimated transmission time 
and execution time of a given job when assigned to this resource. The 

estimated transmission time can be determined by                     where  S
j
 

is the size of a given job j and 
 
is the bandwidth available between the 

grid resource broker and the resource. The initial pheromone value is 
defi ned by:

                                   (4.1)

where PV
j
 is the pheromone value for job j assigned to resource r, 

C
j 
is the CPU time needed of job j, MIPS

r
 is the processor speed of 

resource r and 1-load is the current load of resource r. The load, 
processor speed and bandwidth can be obtained from grid information 
server. Pheromone value will be stored on the PVT as a reference to 
the other ants. 

The ant decides which resource to choose in its next step by looking 
at the PVT. Assume that there are n jobs and m resources in PVT as 
shown below:
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The largest entry from PVT will be selected in each iteration. The 
job will be assigned and processed by the resource represented by the 
largest entry in PVT.

In the fi nal step of the algorithm, the global pheromone update is 
performed to recalculate the entire PVM when a job is completely 
processed. The global pheromone update is adapted from the ACS 
algorithm that has been proposed by Dorigo and Gambardella (1997a, 
1997b). After all ants have constructed a solution, the pheromone 
value is updated according to the following formula: 

                              (4.2)

where ∆ 
rj

bs = 1/Lbest and is the evaporation rate value that adaptively 
change with grid condition. Many researchers used the static 
evaporation rate value which is 0.5 while a dynamic evaporation 
rate changer was proposed in this research by considering the size of 
the submitted jobs and the available resources. Increasing the ratio 
of the resources to the jobs will increase the evaporation rate of the 
EACO algorithm while decreasing the ratio of the resources to the 
jobs will decrease the evaporation rate of the EACO algorithm. The 
evaporation rate value is defi ned by

                                    (4.3)

where R is the number of resource, J is the number of job and n  is 
defi ned by

                                                       

  (4.4)

The dynamic value of the evaporation rate will ensure that the ant will 
move faster as the number of job increases. The ant which is allowed 
to add pheromone may be the iteration-best solution or global best 
solution. If a specifi c resource is often used in the best solution, it will 
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receive a larger amount of pheromone and stagnation will occur. The 
effect of the global pheromone update is to make an already chosen 
resource less desirable for the following ant (Dorigo et al., 1991b). So, 
the exploration of the not yet visited resource is increased. Once the 
job is fi nished, the resource will be released to be used by the other jobs.  

ENHANCED ACO DESIGN AND IMPLEMENTATION

The proposed algorithm was implemented in the grid simulation 
toolkit, called Gridsim toolkit.  Gridsim was selected because it is 
one of the current and complete frameworks for simulating the grid 
environment. Gridsim toolkit is a Java based toolkit that supports 
simulation and modelling of heterogeneous Grid resources, users and 
application models. Additionally, Gridsim toolkit also provides the 
service to create application jobs, thr mapping of jobs to resource 
and their management. In Gridsim toolkit, researchers can integrate 
the scheduling algorithm to be used in managing resources in grid 
computing system. In addition, Gridsim toolkit supports modelling of 
heterogeneous types of resources and resources can be modelled as 
space shared or time shared mode. Resources can be mapped in any 
time zone and at the same time weekend and holidays can be located 
depending on resource’s local time to model non-Grid workload. 
Resource can be booked for advance reservation and resource 
capability can be defi ned.

Application that runs in Gridsim toolkit can be simulated with 
different parallel application. Application can also be CPU or I/O 
intensive and can be heterogeneous. There is no limit to the number 
of jobs that can be submitted to a resource and multiple users can 
submit jobs for execution simultaneously in the same resource. 
Static and dynamic schedulers are supported by Gridsim toolkit and 
network speed between resources can be determined. Statistics of all 
operations can also be recorded and can be analyzed using the Gridsim 
statistics analysis methods. In the study, EACO was implemented 
in the Gridsim toolkit in order to solve the dynamic grid resource 
management problem. 

There are several steps suggested by Gridsim team (Buyya & Murshed, 
2002) in order to simulate a grid scheduling algorithm using Gridsim 
toolkit. The steps are as follows:
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i. Create resources with different capabilities and confi gurations, 
for example single or multiprocessor, time shared or space 
shared resource manager, connections links and speed, etc.

ii. Create users with different requirements and characteristics. 
Each user can submit jobs (Gridlets) at different intervals with 
different characteristics. 

iii. Create a user entity that creates and interacts with the grid 
resource broker entity to coordinate an experiment. It can also 
directly interact with the resource entity and grid information 
service entity in order to get the grid information and 
submitting or receiving processed jobs. On the other hand, 
the implementation of a separate resource broker entity is 
encouraged. 

iv. Implement a grid resource broker entity that performs 
application scheduling on resources. To do this, based on time, 
for example, access the grid information service, and then inquire 
about the resource capabilities including time. Depending 
on the processing requirements, a schedule is developed 
for assigning Gridlets to resources and coordinating the 
execution. 

The AllocPolicy class in the Gridsim toolkit must be overridden in 
order to implement the EACO algorithm. In the design specifi cations 
of Gridsim toolkit, each resource is attached to the allocation policy. 
The enhancement is made to adapt the idea of the proposed scheduling 
algorithm. Figure 4.4 depicts the UML class diagram of the design. 
As can be seen in the fi gure, the EACO algorithm is inheriting the 
AllocPolicy class. There is also a class called MyGridSimulator 
which extends the Gridsim class in the Gridsim toolkit that creates 
all  resources and submits the jobs to the grid. The characteristics of 
each resource in the grid system are provided in the Resource 
Characteristics class. 

Each resource was created and initialized with a specifi c scheduling 
algorithm. Jobs are sent to the grid computing system and they are 
delivered to their resources according to the scheduling algorithm 
defi ned for the system. Resources and jobs can be created by using 
different parameters according to the simulation needs. 
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Figure 4.4. The UML class diagram of the design.

By extending the AllocPolicy class, the AntColonyAllocPolicy has 
been created which tries to select the best resources to process the job. 
It can be implemented by coordinating jobs in one resource together 
within one class. Figure 4.5 shows the class diagram of AntColony
AllocPolicy which is inherited from the AllocPolicy class in the 
Gridsim toolkit.

Figure 4.5. The UML class diagram of the EACO algorithm.
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In this proposed algorithm, Round Robin scheduling policy is adopted 
to manage jobs which are assigned to one resource. Whenever a job 
is submitted to a resource, it uses a Round Robin policy to execute it 
inside the resource. In a Round Robin policy, jobs in the executing list 
get an equal time stamp to execute in a resource. In order to do this, 
there is a list containing executing jobs which is (gridletInExecList) in 
the AntColonyAllocPolicy class. There is also PVT which is fi lled by 
visiting ants and their pheromone value. Class Ant is an inner class of 
AntColonyAllocPolicy which controls the movement of the ant from 
one resource to the other resource. All ants have a small memory to 
carry a history of the visited resource and also the gridlet that it is 
scheduling. 

Figure 4.6 depicts a sequence diagram of simulation process which 
shows how the EACO scheduling works. A step by step explanation 
of the simulation process is as follows:

1.  MyGridSimulator is responsible for simulating the jobs which 
are submitted to the grid system. When MyGridSimulator sends 
a job to a grid system, the job will be sent to its scheduling 
policy.

2. AntColonyAllocPolicy will create a new Ant object in response 
to receiving a job and sends it out to explore the grid system to 
fi nd the best resource to process the job. 

3. The ant moves in the grid system by calculating the pheromone 
value of the visited resources and stores it to the pvList. The ant 
decides which resource will process a job by reading the pvList 
information.

4. The ants decides which resource to choose either by looking 
at the previous resource that was used to process jobs or by 
choosing another resource by referring to the pheromone 
value associated with it. This is to prevent the ant from getting 
caught in local minimum. The ant needs to send a request to 
GridInformationService which contains the information about 
the resources in the grid in order to choose a random resource.

5. When the ant fi nds a suitable resource, them the job will be 
processed using the function processGridletSubmission().

6. When a job is completed, the global pheromone update is 
performed to recalculate the pheromone value of the resource 
using the function updatePV (global_update).
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Figure 4.6. UML sequence diagram of the EACO algorithm.

SUMMARY

One of the main diffi culties in selecting the resource is when the 
requirement of each job is uniform. The proposed EACO takes into 
consideration the capacity of the resources and characteristics of the 
jobs in determining the best resource to process a job. EACO selects the 
the resources based on the pheromone value on each resource which is 
recorded in a matrix form. The initial pheromone value of each resource 
for each job is calculated based on the estimated transmission time and 
execution time of a given job if it is assigned to the resource. Resources 
with high pheromone value are selected to process the submitted jobs. 
The global pheromone update is done after the jobs have completely 
being processed with the aim to reduce the pheromone value of the 
resources.   
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5

ENHANCED ANT COLONY 
OPTIMIZATION ALGORITHM

This chapter presents the experimental results of EACO and several 
existing grid scheduling algorithms in terms of their processing time 
and their utilization of each resource. Details of the system model that 
focuses on how the environment setting is chosen and how the grid 
system is constructed will be presented, followed by the application 
model of the grid system. The characteristics of the jobs that are 
submitted to the grid system, and the performance evaluation criteria 
that are used to evaluate the performance are also explained. Lastly, 
experimental results and analysis are discussed. 

SYSTEM MODEL

In the grid computing environment, there are a set of resources 
that are connected via different communication networks with 
different speeds. Each resource may have one or multiple numbers of 
machines and each machine may have single or multiple processing 
elements. The speed of a processor or computational power is defi ned 
by the number of cycles per unit time. As the processors in each 
machine can be heterogeneous, so, they may have different processing 
power. 

In the experiments that were conducted, each resource is assumed to 
consist of one machine and each machine may have one or several 
processors. The processors in the same or different machines can consist 
of different processing power. A machine in the grid system may also 
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have a local user that uses the machine for other computations. From 
that point, onward, at any one time, a machine may have background 
workload associated with it. It will affect the computational time 
of jobs assigned to it. In order to solve this problem, the Gridsim 
toolkit provides the users with the ability to defi ne the background 
workload according to the historical and statistical information for 
each machine. Each resource has an associated background load that 
is taken from the average load that the resource has experienced at 
similar times (such as weekends or working days).

APPLICATION MODEL

In order to develop an application model, it is assumed that the 
applications which are being run or the jobs which are submitted to 
the grid system consist of a set of independent jobs with no particular 
order of execution. Jobs that are submitted consist of different 
computational time, therefore each job will require a different data 
transmission time and computation time for completing.

The length of each job is presented in MIPS and each job has different 
input and output size requirements. Jobs in the grid computing system 
can be classifi ed into one of the two categories namely computational 
intensive task or data intensive task. This research focuses on 
computationally intensive tasks as it is more common in today’s real 
life applications and the waste of computational power of resources is 
more costly than their memory (Moallem, 2009). 

PERFORMANCE EVALUATION CRITERIA

The performance evaluation criteria that are used to evaluate the 
performance of the proposed algorithm are the processing time and 
utilization of each resource. Minimizing the variations in workloads 
on all machines is one of the aims of a load balancing algorithm. 
Standard deviation in workload distribution is often used to determine 
the performance and stability of the algorithm. A good load balancing 
scheme is indicated by a small standard deviation value. Standard 
deviation was calculated using equation 5.1 where x is the resource 
utilization and n is the size of resource
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                          (5.1)

Processing Time

Processing time of each algorithm is one of the most common measures 
in order to evaluate the performance of a scheduling algorithm. The 
processing time is the total application execution time which is 
measured from the time the job is sent to the grid system until the job 
comes out of the grid. As jobs and topologies are generated randomly, 
every simulation will roughly yield different results. In order to get 
better results, the average processing time of 10 runs is recorded. 
Equation 5.2 shows how the processing time of each submitted job 
is calculated.

     Processing Time = Finish Time – Submission Time           (5.2)

Utilization

The utilization of each resource in the grid system is dependent on the 
time to process all jobs which are assigned to the machine by the grid 
scheduler and the total time to process all the jobs in the system. The 
utilization of each resource can be calculated using the equation 5.3.

 
                                                                                                  (5.3) 

where total busy time is the time each resource consumes to process 
all assigned jobs and total time processing all the jobs is the total time 
taken for all the jobs to be processed by all resources 

EXPERIMENTAL DESIGN

A set of experiments was conducted in order to evaluate the 
performance of EACO. The performance of EACO algorithm was 
compared with ant based algorithm that was proposed by Moallem 
(2009), PSO algorithm (Moallem & Ludwig (2009), Space Shared 
algorithm (Rose et al., 2008) and Time Shared algorithm (Abawajy, 
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2009) in terms of processing time and resource utilization. In this 
study, the ant based algorithm by Moallem (2009) is referred to as 
AntZ algorithm.  PSO and AntZ have been implemented in Gridsim. 
The results from these algorithms were compared with the ones 
in Moallem (2009) in the process of validating. The Space Shared 
algorithm and the Time Shared algorithm were already provided by 
the Gridsim toolkit. 

The characteristics of the resources are shown in Table 5.1. Each 
resource has one machine and each machine has a random number 
of PEs ranging between 1 and 5. Each PE has a different processing 
power. 

Table 5.1

Resource Characteristics

Number of machines per resource 1
Number of PEs per machine 1-5
PE ratings 10 or 50 MIPS
Bandwidth 1000 or 5000 B/S

Jobs which are submitted to the grid system are supposed to be 
independent of each other. Table 5.2 shows the characteristics of 
the submitted jobs in order to compare the processing time of each 
algorithms. 

Table 5.2 

Jobs Characteristics

Length 0 – 50000 MI
File Size 100 + (10% to 40%)
Output Size 250 + (10% to 50%)

EXPERIMENTAL RESULTS

Results of the experiments were compared with  the AntZ algorithm, 
the Space Shared algorithm and the Time Shared algorithm in terms 
of processing time and the utilization of each resource. 



53

Processing Time

Figure 5.1 depicts a comparison between the processing times of 
the EACO algorithms with the AntZ algorithm, the PSO algorithm, 
the Space Shared algorithm and the Time Shared algorithm with the 
parameter specifi cations described in Table 5.3. Experimental results 
showed that EACO outperformed the others. This is expected as the 
EACO algorithm keeps track of the state of all resources at each point 
in time which makes it able to make more optimal decisions at any 
time. The Particle Swarm algorithm has the smallest processing time 
after the EACO algorithm followed by the AntZ algorithm, the Time 
Shared algorithm, and the Space Shared algorithm.

Figure 5.1. Processing time for different number of jobs and 
resources.

Table 5.3

Experimental Setting for Different Number of Jobs and Resources

Experiment No. of Jobs No. of Resources
1 100 10
2 200 20
3 300 30

Processing Time

(continued)
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Experiment No. of Jobs No. of Resources

4 400 40

5 500 50

6 600 60

7 700 70

8 800 80

9 900 90

10 1000 100

The effects of submitting the same number of jobs into the grid 
system that has the same number of resources was investigated in 
the next experiment. The specifi cations and parameter settings that 
were used in the experiment are listed in Table 5.4. Figure 5.4 depicts 
the performance of EACO and the other algorithms in comparing the 
processing time for the same number of jobs and resources. Again it 
can be seen that the EACO algorithm performed better than the other 
algorithms. 

Figure 5.2. Processing time for equal number of jobs and resources. 

Processing Time
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Table 5.4

Experimental Setting for the Same Number of Jobs and Resources

Experiment No. of Jobs No. of Resources
1 100 100
2 200 200
3 300 300
4 400 400
5 500 500
6 600 600
7 700 700

Figure 5.3 shows how increasing the number of jobs, while having 
the same number of resources that are available in grid system will 
affect the performance of the grid in terms of processing time. In this 
experiment, 10 resources are available in the grid system with varying 
number of jobs. The specifi cations and parameter settings are listed 
in Table 5.5. As can be seen, all the algorithms show a linear growth 
in response to the increasing number of jobs. Experimental results 
showed that the EACO algorithm had smoother growth compared to 
the other algorithms in terms of processing time.

Figure 5.3. Processing time for 10 resources with different number 
of jobs. 

Processing Time
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Table 5.5

Experimental Settings for 10 Resources with Different Number of Jobs

Experiment No. of Jobs No. of Resources
1 50 10
2 100 10
3 200 10
4 300 10
5 500 10
6 700 10
7 1000 10

In the next experiment, the effect of increasing the number of 
resources on the performance of the algorithms was investigated. In 
this experiment, a fi xed number of jobs were sent to the grid system 
while the number of resources that were available to process a job 
was increased. The specifi cations and parameter settings are listed in 
Table 5.6. As can be seen in Figure 5.4, increasing the number of 
resources has a decreasing exponential effect on the processing time. 
The EACO algorithm performed better than the other algorithms in 
response to the increasing number of resources. 

Figure 5.4. Processing time for the same number of jobs with 
different number of resources.

Processing Time
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Table 5.6

Experimental Setting for the Same Number of Jobs with Different 
Number of Resources

Experiment No. of Jobs No. of Resources
1 1000 10
2 1000 30
3 1000 50
4 1000 70
5 1000 100

Utilization

Experiments were also conducted to see whether jobs were distributed 
evenly among the resources. For this purpose, the utilization of 
the resources was measured. Figure 5.5 shows the utilization of 10 
resources in processing 100 jobs. The mean utilization for the 10 
resources is 10%. The utilization of 7 resources is within 1 standard 
deviation away from the mean. This shows that the EACO algorithm 
successfully scheduled the jobs among the resources which led to a 
balanced load network. 

Figure 5.5. Utilization of 10 resources in processing 100 jobs for 
EACO algorithm.

Utilization
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A set of experiments was also conducted in order to compare the 
utilization of each resource between the EACO algorithm and the 
AntZ algorithm (refer Figure 5.6). Experimental results showed that 
the EACO algorithm performed better than the AntZ algorithm. The 
standard deviation for the EACO algorithm is 0.48109736 while the 
standard deviation for the AntZ algorithm is 3.89609944. This is 
expected as the EACO algorithm is keeping track of the state of all 
the resources at each point in time which makes it able to make more 
optimal decisions at each point in time. 

Figure 5.6. Utilization of 10 resources in processing 100 jobs for 
EACO and AntZ algorithms.

A set of experiments was conducted to see the utilization of 10 resources 
in processing 500 jobs (refer Figure 5.7). The mean utilization for 
the 10 resources is 10%. The utilization of 8 resources is within 1 
standard deviation away from the mean. This showed that the EACO 
algorithm successfully balanced the load among the resources. 

Experiments was also conducted to compare the utilization of each 
resource between the EACO algorithm and the AntZ algorithm in 
order to process 500 jobs with 10 resources (refer Figure 5.8). The 
standard deviation for the EACO algorithm is 0.24781421 while the 
standard deviation for the AntZ algorithm is 3.6131422.These results 
also proved that the EACO algorithm performed better than the AntZ 
algorithm. Utilization of each resource was investigated for 1000 jobs 
(refer Figure 5.9). The results showed that the mean utilization for 

Utilization
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the 10 resources is 10. Seven (7) resources have utilization within 1 
standard deviation away from the mean. This showed that the loads/ 
jobs were better scheduled.

Figure 5.7. Utilization of 10 resources in processing 500 jobs for 
EACO algorithm.

Figure 5.8. Utilization of 10 resources in processing 500 jobs for 
EACO and AntZ algorithms.

Utilization

Utilization
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Figure 5.9. Utilization of 10 resources in processing 10  jobs for 
EACO algorithm.

Comparison on utilization of each resource between the EACO 
algorithm and the AntZ algorithm in processing 1000 jobs with 10 
resources was also conducted. Experimental results showed that the 
EACO algorithm was better than the AntZ algorithm as the standard 
deviation for the EACO algorithm is 0.28084636 and the standard 
deviation for the AntZ algorithm is 2.77428296 (refer Figure 5.10). 
These results showed that the EACO algorithm successfully balanced 
the load among the resources in a large scale manner. 

Figure 5.10. Utilization of 10 resources in processing 1000 jobs 
For EACO and AntZ algorithms.

Utilization

Utilization
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SUMMARY

In this chapter, the experimental results of applying EACO with 
preferred values for different control parameters is compared with an 
existing grid resource management algorithms in terms of processing 
time and utilization of each resource. All algorithms ran exactly the 
same scheduling parameters such as the number of jobs, the number 
of resources, the number of machines per resource, the number of PEs 
per machine, the PE ratings, the bandwidth, the size of jobs, and the 
CPU time needed by each job.

Experimental results showed that EACO performed better than the 
other algorithms in terms of processing time. In all conditions, EACO 
showed a lower processing time compared to the other algorithms. 
This is expected as the EACO algorithm is keeping track of the state 
of all resources at each point in time which makes it able to make 
more optimal decisions at each time. These results proved that EACO 
is promising in solving the matching and scheduling problems in grid 
computing. 

The performance of the proposed algorithm was also investigated 
in the load balancing aspect. Experimental results showed that the 
EACO algorithm performed better than the AntZ algorithm, the 
Space Shared algorithm and the Time Shared algorithm in terms of 
utilization of each resource. The EACO algorithm has successfully 
scheduled the jobs among resource in all conditions which leads to a 
balanced load network. 



62

6

CONCLUSION AND FUTURE WORK

EACO offers the opportunity to enhance the results of the ACO 
algorithms reported in the literature. The results of EACO showed 
that this approach can be superior to the best known ACO algorithms 
like ACS and MMAS. The enhancement of the ant based resource 
scheduling algorithm in grid computing was able to minimize job 
computational time, match jobs with suitable resources, and balance 
the resources in grid environment.

The research has considered: 

1. A directed graph model that consists of four vertices which 
are job, requirement, resource and capacity. The graph model 
refl ects the behavior of ants that must go back and forth between 
the food and nest in foraging for food. 

2. A formula to calculate an initial pheromone value that can match 
jobs and resources according to the jobs characteristics and the 
resources capacity. The initial pheromone value considered 
the size and CPU time needed by jobs and also considered the 
bandwidth, the MIPS and the current load of resources. This 
value will be stored in PVT as a reference to the following ants. 

3. A resource selection strategy that can be used to assign 
submitted jobs to resources. Ants can decide which resource 
to choose either by looking at the previous resource that was 
used to process jobs or choose a resource randomly by the 
probability of mutation factor in this strategy.
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4. A pheromone update technique that can be used to update 
current status of each resource during scheduling process. 
The calculation pheromone is performed after a resource 
has fi nished processing a job and the pheromone update is 
performed globally. The effect of the global pheromone update 
is to make an already chosen resource less desirable for the 
next ant.

5. A simulation model that can be used to simulate the grid 
environment and evaluate the proposed enhanced ACO algorithm 
in terms of processing time and the utilization of each resource. 

CONTRIBUTION OF THE RESEARCH

The main contribution of the research is to show how the ant tries to 
match  submitted jobs with available resources. To achieve this, the 
initial pheromone value is calculated by considering the characteristics 
of each job and the capacity of each resource such as the size and the 
CPU, the time needed by each job and also the bandwidth, the MIPS 
and the current load of each resource. By considering these aspects, 
jobs can be scheduled well to the suitable resources. It can reduce the 
processing time of each resource and also balance the entire resources.  

The pheromone updating mechanism is used to support the idea of 
diversifi cation as the pheromone updating is the means to store new 
experiences of ants. The global pheromone update in the EACO 
algorithm plays an important part by reducing the pheromone value on 
the resource that completely processed a job. The effect of this aspect is 
to make an already chosen resource less desirable for the next ant.

A range for the best value of each evaporation rate which is the 
control parameter is defi ned. Evaporation rate is different for different 
sets of jobs to be processed. A dynamic evaporation rate that can 
automatically change the evaporation rate based on the number of jobs 
submitted and the number of available resources was proposed. By 
considering this aspect, the EACO algorithm successfully scheduled 
jobs among the resources which lead to a balanced load network. 

The contributions mentioned above were able to minimize job 
computational time, match jobs with suitable resources and balance 
entire resources in grid environment. 
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FUTURE WORK

In grid environments, computational performance changes from 
time to time, network connections may become unreliable, resources 
may join or leave the system at any time and resources may become 
unavailable without any notifi cations will require a dynamic scheduling 
algorithm in managing jobs and resources. Future work can enhance 
the proposed EACO to consider the changes such as resource failure. 
In this case the dynamic algorithm will stop and migrates jobs to other 
available resources in a dynamic evaporation rate environment. 

Another potential future work is to apply the proposed algorithm 
on multiple ant colonies in solving the grid resource management 
problem. Using multiple ant colonies might improve the performance 
of the scheduling algorithm as ant populations will be divided into 
appropriate number of colonies to fi nd the appropriate ways for these 
colonies to organize their activities with high level cooperation.
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