
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/12121792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SWARM INTELLIGENCE

UUM Press
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Malaysia.

Tel: 04-9284958
Fax: 04-9284142
E-mail: penerbit@uum.edu.my
Website: http://uumpress.uum.edu.my

© 2012 UUM Press

First Published 2012

All rights reserved. No part of this publication may be reproduced, stored
in retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior permission of
UUM Press.

UUM is a member of Malaysian Scholarly Publishing Council (MAPIM).

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Ku Ruhana Ku Mahamud
Ant colony optimization algorithm for load balancing in grid computing /
Ku Ruhana Ku Mahamud, Aniza Mohamed Din.
Bibliography: p. 65
ISBN 978-967-0474-09-0
1. Computational grids (Computer systems). 2. Ant algorithms.
I. Aniza Mohamed Din. II. Title.
005.1

Printed in Malaysia by
UUM Press
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Malaysia.

v

CONTENTS

List of Figures vii
Abbreviations ix
Preface xi

1 RESOURCE MANAGEMENT IN GRID
COMPUTING
Introduction 1
Research Background 5

2 ANT COLONY OPTIMIZATION IN GRID
RESOURCE MANAGEMENT
Grid Resource Management 8
Ant Colony Optimization 20
Ant Based Grid Scheduling Algorithm 23
Ant Based Grid Load Balancing Algorithm 27
Summary 29

3 METHODOLOGY AND PROPOSED
FRAMEWORK
Research Methodology 31
The Proposed Framework 34
Summary 36

4 ENHANCEMENT OF ANT COLONY
OPTIMIZATION ALGORITHM
Grid Resource Scheduling Scenario 37
Enhanced Ant Colony Optimization 38
Enhanced ACO Design and Implementation 44
Summary 48

5 ENHANCED ANT COLONY OPTIMIZATION
ALGORITHM
System Model 49
Application Model 50

vi

Performance Evaluation Criteria 50
Experimental Design 51
Experimental Results 52
Summary 61

6 CONCLUSION AND FUTURE WORK
Contribution of the Research 63
Future Work 64

REFERENCES 65

vii

LIST OF FIGURES

Figure 1.1 Ant behavior in foraging process 4

Figure 3.1 Steps of experimental research methodology 32

Figure 3.2 The EACO framework 35

Figure 4.1 Ant behaviour of clustering the objects 39

Figure 4.2 EACO graph model 40

Figure 4.3 Pseudo code of EACO algorithm 41

Figure 4.4 UML class diagram of the design 46

Figure 4.5 UML class diagram of the EACO algorithm 46

Figure 4.6 UML sequence diagram of the EACO
algorithm 48

Figure 5.1 Processing time for different number of jobs
and resources 53

Figure 5.2 Processing time for equal number of jobs and
resources 54

Figure 5.3 Processing time for 10 resources with different
number of jobs 55

Figure 5.4 Processing time for the same number of jobs
with different number of resources 56

Figure 5.5 Utilization of 10 resources in processing 100
jobs for EACO algorithm 57

Figure 5.6 Utilization of 10 resources in processing 100
jobs for EACO and Antz algorithms 58

Figure 5.7 Utilization of 10 resources in processing 500
jobs for EACO algorithm 59

Figure 5.8 Utilization of 10 resources in processing 500
jobs for EACO and Antz algorithms 59

Figure 5.9 Utilization of 10 resources in processing 1000
jobs for EACO algorithm 60

Figure 5.6 Utilization of 10 resources in processing 1000
jobs for EACO and Antz algorithms 60

ix

ABBREVIATIONS

ACO Ant Colony Optimization

ACS Ant Colony System

AHS Adaptive Hierarchical Scheduling

AS Ant System

BACO Balanced Ant Colony Optimization

BWAS Best Worst Ant System

CPU Central Processing Unit

EACO Enhanced Ant Colony Optimization

EAS Elitist Ant System

FCFS First Come First Serve

GA Genetic Algorithm

GJAP Tabu+Granularity-based Job Allocation Policy

LBTAS Local Best Tour Ant System

MDS Metacomputing Directory Service

MMAS Max-Min Ant System

MOEA Multi-Objective Evolutionary Algorithm

NP Nondeterministic Polynomial

NWS Network Weather System

P2P Peer-to-Peer

PE Processing Elements

PPSO Parallel Particle Swarm Optimization

PSO Particle Swarm Optimization

PV Pheromone Value

PVT Pheromone Value Table

QAP Quality of Service Access Point

QRC Quality Research Collection

RN Recent Neighbour

SA Simulated Annealing

TS Tabu Search

TSP Travelling Salesman Problem

VO Virtual Organization

xi

PREFACE

Grid computing is developed through a combination of various
resources from different geographic locations. This makes grid
computing different from conventional distributed computing and
cluster computing. One of the most important problems in grid
computing is load balancing where all submitted jobs need to be equally
distributed among resources. A good load balancing algorithm must
be capable of balancing the entire resources by distributing workload
evenly across two or more computers, CPUs, network links, hard
disk or other resources in order to get optimal resource utilization.
Stagnation problem in grid computing will be minimized when all
resources are well utilized. Ant Colony Optimization (ACO) is one of
the most recent algorithms for load balancing in grid computing. It has
been used in solving the scheduling problem between the submitted
jobs and available resources in grid computing. ACO algorithm is
used in grid computing because it is easily adapted to solve both static
and dynamic combinatorial optimization problems.

The study on load balancing of resources in grid environment is
presented in this monograph. An enhancement of existing ant colony
based algorithm has proposed that it can schedule jobs to resources
with the aim of balancing the load on all resources. Dynamic
scheduling of jobs can be processed by the resources is implemented
where the scheduling depends on the changing rate of the evaporation
value. Findings from this research will contribute to another grid
resource management algorithm that can signifi cantly improve the
performance of the available ACO algorithms. The new algorithm
enhances the classical approach of ACO algorithm by dynamically
scheduling submitted jobs to suitable resources, thus offering the
chance to improve the effi ciency of managing resources in grid
computing.

The structure of the monograph is as follows. An overview of grid
computing and ACO algorithm concept are introduced in Chapter 1.
The discussion on ant-based approach for managing resources in grid
computing and current approaches to control stagnation problem are
presented in Chapter 2 while Chapter 3 highlights the methodology
and framework for resource management in grid environment. Chapter

xii

4 presents the proposed ant based resource management algorithm.
The grid resource management scenario and details of the proposed
algorithm are discussed, followed by the description of the design
and implementation of the proposed algorithm. Experimental results
and analysis of the implementation of the proposed algorithm in grid
computing environment are presented in Chapter 5 while contribution
of the research and future research directions are highlighted in
Chapter 6.

We would like to express our gratitude to Ministry of Higher
Education for the fi nancial support under the Fundamental Research
Grant Scheme and to Universiti Utara Malaysia for facilitating the
management of this research.

Ku Ruhana Ku Mahamud
Aniza Mohamed Din

1

1

RESOURCE MANAGEMENT IN
GRID COMPUTING

INTRODUCTION

Grid computing is based on large-scale resources sharing in a widely
connected network such as the Internet (Yan et al., 2009). Grid
computing emerged from metacomputing with the introduction of
middleware design as a wide-area infrastructure to support data-
intensive applications and diverse online processing (Moallem,
2009). At the same time, systems such as Globus Toolkit (Foster
& Kesselman, 1997), Storage Resource Broker (Baru et al., 1998),
Legion (Grimshaw et al., 1999) and Condor (Frey et al., 2002) were
developed to support scientifi c applications.

Research by Foster and Kesselman (2004) defi ned that cluster and
grid computing are several ways for establishing a distributed system.
A distributed system consists of multiple computers that communicate
through a computer network. Several personal computers or
workstations in cluster computing are combined through local networks
in order to develop distributed applications. In cluster computing,
applications are infl exible in variation because they are limited to a
fi xed area. From this disadvantage, grid computing has been proposed
as a solution to this problem. Grid computing is developed through a
combination of various resources from different geographic locations.
This makes grid computing different from conventional distributed
computing and cluster computing. However, computational grid has
different constraints and requirements compared to the traditional
high performance computing systems.

2

In grid computing system, resource management is the main
component that needs to be considered in order to manage all
submitted jobs and available resources. There are various issues in
grid resource management such as resource discovery, resource
scheduling, resource monitoring, resources inventories, resource
provisioning, load balancing, fault isolation, autonomic capabilities
and service level management system (Sharma & Bawa, 2008).
However, grid scheduling and grid load balancing are the main issues
that are often discussed by many researchers (Moallem, 2009; Chang
et al. 2007; Liu & Wang, 2008)

Grid scheduling is an essential function provided by the grid
infrastructure (Kousalya & Balasubramanie, 2008). The scheduling
problem in grid computing is classifi ed as Nondeterministic
Polynomial (NP) – complete problem (Kousalya & Balasubramanie,
2009) which means that there is no exact algorithm that can solve
the problem in a polynomial time. Scalability and adaptability are
two main aspects that have to be considered in implementing any
scheduling algorithm.

Resources in grid environment are geographically distributed in a
large-scale way and resource performance changes from time to time.
On the other hand, jobs submitted by the users require resources
with different Quality of Service (QoS) requirements. An effective
scheduling technique must be defi ned in order to manage the grid
computing environment. Scheduling aims to maximize throughput,
minimize computational time (response time) and avoid an overload
on certain resources. In order to achieve these aims, the conditions of
jobs and resources such as job characteristics and resource capacity
must be considered. At the same time, a good scheduling algorithm
infl uences the balancing of workload on each resource.

Scheduling algorithm can be classifi ed as static or dynamic (Moallem,
2009). In the static scheduling algorithm, all information about jobs,
resources and communication network are known in advance and
jobs are assigned to suitable resources before execution begins. Once
started, they keep running on the same resource without interruption.
However, static scheduling has one major disadvantage, i.e. all
information about jobs and resources remain constant during the
process. In contrast, dynamic scheduling attempts to use the runtime

3

state information to make a scheduling decision more informative.
Reevaluation is allowed on the already-taken assignment decisions
during job execution in dynamic scheduling algorithm (Chtepen,
2005). However, research by Liu and Wang (2008) stated that static
or dynamic scheduling algorithm is categorized by the evaporation
rate factor. In static scheduling algorithm, the evaporation rate value
remains constant in all situations, while in dynamic scheduling
algorithm, evaporation rate value is adaptively changed according to
the grid condition. Static scheduling algorithm is easier to implement
and has minimal runtime overhead compared to dynamic scheduling
algorithm. However, dynamic scheduling may result in better
performance. In this research, dynamic scheduling is implemented
where the scheduling depends on the changing rate of the evaporation
value.

One of the most important problems that need to be handled in grid
computing is load balancing. In order to solve this problem, all
submitted jobs need to be equally distributed among resources in grid
computing system. A good load balancing algorithm must be capable
of balancing the entire resources by distributing workload evenly
across two or more computers, central processing units (CPUs),
network links, hard disk or other resources in order to get optimal
resource utilization.

Ant colony optimization (ACO) is one of the most recent algorithms
for load balancing in grid computing. It has been used in solving
the scheduling problem between the submitted jobs and available
resources in grid computing (Fidanova & Durchova, 2006). ACO
also has been applied in solving the grid load balancing problem.
Research by Chang et al. (2007) and Yan et al. (2005) used the ACO
algorithm to solve the load balancing problem. ACO is inspired by a
colony of ants that work together in foraging behavior. This behavior
encourages ants to fi nd the shortest path between their nest and
food source. It is one of the examples of the application of swarm
intelligence (Dorigo & Socha, 2006). Swarm intelligence is the fi eld
of artifi cial intelligence that studies the intelligent behavior of groups
such as the behavior of natural systems of social insects like ants,
bees, termites and wasps. The other example of swarm intelligence is
the particle swarm intelligence which studies swarm behavior in fi sh
schooling and bird fl ocking (Zhan et al., 2009).

4

There are a number of experiments that have been done by many
researchers to study the behavior of real ants like foraging and nest
construction. Gross, Aron, Deneubourg, and Pasteels in 1989 (as cited
in Dorigo & Stützle, 2004) conducted the double bridge experiment to
investigate the foraging behavior of ants. Ants move in a continuous
path from the nest to the food source as shown in Figure 1.1(a). In
Figure 1.1(b), when an obstacle appears in the way, ants will choose
whether to turn left or right with equal probability because they have
no clue about which is the best choice or the shorter path as there is
no pheromone at that time on both paths. At this time, about 50% of
the ants will choose each path. While ants are moving from nest to
food source on both paths, they deposit certain amount of pheromone.
Ants that have chosen the shorter path will reach the opposite
direction faster assuming that all ants walk at approximately the same
speed. This means that more ants travelled on the shorter path than
those that travelled on the longer path. Therefore, the pheromone
will be accumulated more quickly on the shorter path as shown
in Figure 1.1(c). The probability of ants choosing the shorter path
will be increased with time. After a transitory phase, almost all ants
will choose the shorter path due to the large amount of pheromone
accumulated on that path as shown in Figure 1.1(d).

Figure 1.1. Ant behavior in foraging process (Perretto & Lopes,
2005).

Ant Colony System (ACS), Max-Min Ant System (MMAS), Rank-
Based Ant System and Elitist Ant System (EAS) (Dorigo & Stützle,
2004) are variants of ACO algorithms. ACO also has been applied to
solve many problems in scheduling such as Job Shop Problem, Open

5

Shop Problem, Permutation Flow Shop Problem, Single Machine
Total Tardiness Problem, Single Machine Total Weighted Tardiness
Problem, Resource Constraints Project Scheduling Problem, Group
Shop Problem and Single Machine Total Tardiness Problem with
Sequence Dependent Setup Times (Dorigo & Stützle, 2004).

ACO algorithm is used in grid computing because it is easily adapted
to solve both static and dynamic combinatorial optimization problems.
However, more research work is needed to enhance the performance of
ACO algorithms to solve the scheduling and load balancing problems
in order to get maximum throughput, minimize response time, avoid
overload, minimize stagnation problem and at the same time, balance
the entire resources. Stagnation in grid computing may occur if the
computational time of the processed job is high. Stagnation also may
occur when all jobs are assigned to the same resources which lead to
the resources having high workload. The stagnation problem in grid
computing will be minimized when all resources are well utilized.

RESEARCH BACKGROUND

In grid computing system, there exists more than one resource to
process the submitted jobs. Users will experience delay in response
time when the number of jobs increase (Lorpunmanee et al., 2007).
This is because the number of available resources is insuffi cient to
cater for all the jobs and there is ineffi cient assignment of jobs to
resources (Fidanova & Durchova, 2006; Wenming et al., 2009).
Jobs must be queued to be processed by the available resources.
This will lead to stagnation in grid environment. Available resource
management algorithm tries to schedule the submitted jobs to
available resources as evenly as possible. However, improvements
of resource management algorithm to reduce the stagnation problem
and to minimize the computational time of each job are still needed.

Scheduling the jobs to the resources in grid computing is also
complicated due to the distributed and heterogeneous nature of
the resources (Li, 2006). The matching process between jobs and
resources is the most important problem that must be handled in
grid computing. The resource matching problem involves assigning

6

jobs to resources in order to satisfy job requirements and resource
policies (Tangmunarunkit et al., 2003; Moallem & Ludwig, 2009).
The submitted jobs must be matched between the available resources
in terms of their job characteristics and resources capacity. Current
algorithms (Xu et al., 2003, Chang et al., 2007) have also considered
the jobs characteristics and resources capacity in scheduling of jobs
but did not take into considerations of Million Instruction per Second
(MIPS) and CPU time needed for each job.

Current algorithms in managing the resources have not always
consider the load balancing problem (Xu et al., 2003; Ali et al., 2010).
As a result, this leads to the increase in computational time because the
available resources are not utilized well. The load balancing problem
cannot be completely solved with the present resource management
algorithms that are based on ACO approach. This is because the
pheromone updates technique and resource selection techniques in
the present ACO used a fi x value for the pheromone evaporation rate
(Lorpunmanee et al., 2007; Wenming et al., 2009).

The main objective of the study is to develop an enhanced ant based
resource scheduling algorithm which can minimize job computational
time, match jobs with suitable resources and balance workload of entire
resources in grid environment. Specifi c objectives of the research are:

(i) To construct a graph model to represent the resource selection
strategy that can be used to assign submitted job to resource(s).

(ii) To formulate a formula to calculate an initial pheromone
value that can match jobs and resources according to job
characteristics and resources capacity.

(iii) To develop pheromone update techniques that can update
current status of each resource during scheduling process.

(iv) To simulate the proposed model that can be used to evaluate the
proposed algorithm.

Grid computing is emerging as a new computing paradigm to solve
the challenging applications in engineering, science and economics.
Grid architecture involves the effi cient management of distributed,
heterogeneous and dynamically available resources. Therefore
managing resources is crucial in grid environment.

7

The outcome of this research contributes to another grid resource
management algorithm that can signifi cantly improve the performance
of available ACO algorithms. The new algorithm enhances the
classical approach of ACO algorithm by dynamically scheduling
submitted jobs to suitable resources, thus offering the chance to
improve the effi ciency of managing resources in grid computing.

The concentration of this research is on improving the way ants
search for the best resources and at the same time trying to balance
all the workload on available resources. ACO is selected as the based
algorithm to be enhanced in solving the dynamic scheduling of
resources to jobs. The pheromone update technique in ACS is also
adopted and adapted in the proposed algorithm. Single colony of ants
is used for searching the best resources to process jobs.

Grid computing has been proposed to provide services through a
combination of various resources from different geographic locations.
Good resource management approach will enable grid system to be
fully utilized. However, there are various issues in grid computing
resource management specifi cally resource discovery, resource
scheduling, resource monitoring, resource inventory, resource
provisioning, load balancing, fault isolation, autonomic capabilities
and service level management system. As such, resource management
algorithms are essential for effi cient management of the resources.

8

2

ANT COLONY OPTIMIZATION IN GRID
RESOURCE MANAGEMENT

This chapter presents the reviews of research that have been done in
the areas of grid computing and ACO. Discussions on grid resource
management, grid scheduling and grid load balancing are also
included. Previous work on ACO and ant based approach for grid
resource scheduling and load balancing will be presented.

GRID RESOURCE MANAGEMENT

Resource management is a central component of a grid computing
system. Resource management is the process of managing submitted
jobs and available grid resources accordingly. This process includes
the resources that are allocated, assigned, authorized, assured and
authenticated to process the request jobs (Sharma & Bawa, 2008).

In grid environment, jobs that are submitted by users always have
different quality of service requirements or accept best-effort service
levels provided by grid system (Krauter et al., 2002). From that point,
resource management system is required to handle all submitted jobs
in terms of maximizing the quality of service requirements with the
aim of distributing workload evenly across two or more computers in
order to get optimal resource utilization. In this research, processing
time and load balancing aspects are the main quality of service
components that have been considered.

9

Grid Resource Discovery and Matching

Resource discovery and matching involves the process of searching
the available resources and scheduling of jobs to suitable resources
(Fattahi & Charkari, 2009). Matching is defi ned as a process of
evaluation of the degree of similarity of two objects (Bai et al., 2004).
During the scheduling process, jobs needed to be matched with
suitable resources that can fulfi ll their requirements. Grid resource
matching is the process of matching between the jobs and resources
while taking into account job requirements and available resource
capacities and optimizing one or more objective functions (Naik et
al., 2006).

There are many types of algorithms that have been used in resource
matching in grid computing system. The research by Bai et al. (2004)
proposed the framework to solve the resource matching problem. The
framework contains a resource specifi cations component, a request
specifi cation components and matchmaking algorithms. A request
specifi cation includes a matchmaking function and two additional
constraints, a cardinality threshold and matching degree threshold. The
cardinality threshold defi nes how many resources are expected to be
returned by the matchmaking service while the matchmaking degree
threshold specifi es the least matching degree of one resources returned
by the service. The matchmaking process executes a matchmaking
algorithm for each request that is sent by the requester. Request and
grid resource instances that are stored in the knowledge base of the
matchmaking service are the input of this algorithm. On the other
hand, the output of this algorithm is the number of grid resources
ranked according to their matching degree. However, the proposed
framework only considers the resource characteristics without taking
into considerations the characteristics of each submitted jobs.

The study done by Naik et al. (2006) used the concepts of Qualifying
Resource Collection (QRC) in fi nding the minimal set of resources
that need to be assigned to the jobs to satisfy their requirements.
The problem was represented by a graph model. QRC specifi ed
the resource capacity needed and in which interval is required
by the jobs. For a certain number of jobs, there are many QRCs,
and it represents all possible assignment of the resources to the
job. The relationship between jobs and a QRC indicates that the

10

requirements and consumptions of the job are met by the resources
in the corresponding QRC. The requirement that is needed by each
job described the provision a of set of resource dependencies on
one or more types of resources. Each dependency put the attribute
constraints on the attribute values of the resources of a specifi c type. A
job can also specify optional temporal and location constraints. A job
may specify preferences which provide a selection of criteria when
multiple resource sets satisfy dependencies related with a job. A job
can identify its preference either by providing a method of ordering
qualifying resources or by simply identifying specifi c resource
instances by attribute value or by name. The attributes of each job
are very important to ensure that job will be processed with the
suitable resources that fulfi ll its requirement. However, the proposed
graph model only considers the matching problem between jobs and
resources without considering the processing time of each resource.

Semantic based grid resource discovery and its integration with the
grid resource broker was proposed by Somasundaram et al. (2006).
The research proposed fi ve layered architecture that implements a
knowledge layer on top of Gridbus broker which are fabric layer,
core middleware layer, high level middleware layer, knowledge
layer and application layer. Semantic grid architecture was proposed
where knowledge layer was introduced at the top of Gridbus broker
architecture that can enable broker to discover resources semantically.
On the other hand, the semantic component in the knowledge layer
enables semantic description of grid resources with the help of ontology
template. Protégé-OWL editor will create the ontology template for
different types of computing resources in the grid environment. The
Protégé-OWL libraries are used to dynamically create knowledge
base of grid resource and Globus Toolkit’s MDS is used to gather
grid resource information. The research also used Algernon inference
engine in interacting with the knowledge base to discover suitable
resources. However, the proposed ontology template depends on
MDS component and did not support middleware other than Globus.

The study by Li (2006) proposed a bio-inspired adaptive job
scheduling mechanism in grid computing. Various software ant
agents were designed with simple functionalities. This research
proposed the system architecture with fi ve main components of ant

11

agents namely the queen, scout, tester, worker and cleaner. In this
architecture, there is no direct communication among these agents.
The only indirect communication is via the pheromone values stored
in a grid resource table. To develop this architecture, the queen will
produced another agent. The grid resources may become available or
unavailable without any notifi cations. The scout is responsible to fi nd
the new grid resources that are providing computational services and
adds it to the grid resource table. A tester executes a small sample
programme on a grid resource and test for the computational time of
the sample programme. According to the job completion time, tester
will update the pheromone value of this resource. A worker chooses
an available grid resource and runs a computational job on this
resource. Resources with higher pheromone value will have a higher
probability to be selected. The cleaner will remove the resources that
have low pheromone value from the grid resource table. However, the
proposed algorithm did not consider the load balancing problem of
each resource.

Research by Zhu et al. (2009) proposed the resource discovery method
based on the adjacency list and the ant colony algorithm. There are
three layers in the proposed resource discovery model which are Peer-
To-Peer (P2P) layer, Virtual Organization (VO) layer and resource
layer. P2P layer composed of many supernodes where each node
represents a super management domain. P2P layer is modifi ed to
interacte information between supernodes. When supernodes search
resources, the users fi rstly query the resources in the supernodes of
local VO. If there is no query result, Ant colony algorithm is used to
search the other supernodes. Mobile agent technology is used in every
layer including P2P layer, VO layer, and resource layer. The proposed
algorithm used resource adjacency list a centering resource discovery
method in the supernode of every VO while Ant Colony algorithm
a distributed resource discovery method is used in the middle of
supernodes of P2P layer. However, the performance of the proposed
method is not used to compare with any other algorithm.

Many researchers proposed the matching algorithms in solving the
matching problem between submitted jobs and available resources.
However, the improvement of existing algorithms is still needed in
order to get a better matching algorithm that can reduce the stagnation
problem in grid computing.

12

Grid Scheduling

Many algorithms have been proposed to solve the grid scheduling
problem. The grid scheduling experiment that applies Simulated
Annealing (SA) was performed by Yarkhan and Dongarra (2002).
The experiments were implemented over a non-homogeneous set of
grid resources located at geographically disparate locations. Dynamic
machine status and connectivity information were obtained from the
Globus Metacomputing Directory Service (MDS) and the Network
Weather System (NWS). In many experiments, the SA and Ad-Hoc
Scheduler were compared in order to see which scheduler produces
better estimated schedules when given the same information. In order
to get consistent information, the list of available machines and their
characteristics were obtained from MDS and NWS. Experimental
results showed that SA is better than Ad-Hoc scheduler in terms of the
estimated execution times. This is because SA can avoid some of the
local optima that are not anticipated in the Ad-Hoc technique search.
In the study, SA algorithm was not verifi ed in a larger experimental
environment.

In a study conducted by Carretero and Xhafa (2006), Genetic
Algorithms (GA) for job scheduling in grid computing wash done in
order to optimize the makespan and total fl ow time. The researchers
aimed to obtain an effi cient scheduler that could allocate a large number
of jobs to a large number of grid resources. In order to determine
which work is better for the problem, several variations of GA
operators were examined. A grid simulator package was developed to
generate large size instances of the problem which were then used to
study the performance of GA implementations. Experimental results
showed that the proposed GA algorithm performed well in static
scheduling benchmark. However, this study did not consider the use
of the simulator over a period of time and the statistical signifi cance
during the experiments.

The study by Abraham et al. (2006) proposed a new grid scheduling
algorithm based on the particle swarm optimization (PSO) approach.
The velocity and position of the particles in the conventional PSO
were enhanced from the real vector to fuzzy matrices in order to
dynamically generate an optimal schedule. The researchers aimed
to complete the tasks within a minimum period of time and also to

13

utilize the resources in an effi cient way. The performance of the
proposed algorithm was also compared to the GA and SA algorithms.
Experimental results showed that the PSO algorithm was better than
GA and SA in terms of speed of convergence and the ability to obtain
faster and feasible schedules. However, the experiments only focused
on makespan values instead of considering the utilization of each resource.

Grid scheduling algorithm based on the particle swarm was
proposed by Chen et al. (2006). The study expressed each possible
grid scheduling technique as a task resource assignment graph and
mapped the grid scheduling problem into a graph optimal selection
problem in order to fi nd an optimal solution quickly and accurately.
The proposed scheduling algorithm assumed that the longest path of
the task resource assignment graph as a fi tness value and encoded
every task resource assignment as a particle. The performance of the
proposed algorithm was compared to the GA algorithm. Experimental
results showed that the proposed PSO algorithm was better than GA
algorithm in terms of the makespan and completion time of each job.
However, the proposed algorithm did not consider the utilization of
each resource in order to balance all the resources.

Wang et al. (2006) proposed a new decentralized grid job scheduling
based on hill climbing algorithm. Decentralized job scheduling was
implemented by job migration between neighboring grid nodes. Hill
climbing algorithm was used to determine the migration route which
the job needs to migrate many times in order to optimize node selection
of new submitted job. A set of experiments were done in order to
simulate a decentralized job scheduling including node adjacencies,
local scheduling of grid nodes and grid workload. The performance of
the proposed algorithm was compared with k-distributed and auction
methods. Experiment results showed that hill climbing scheduling
algorithm could enhance the processor utilization and reduce bounded
slowdown. However, the proposed algorithm only considered the
conditions of resources and not the conditions of submitted jobs such
as their makespan and completion time.

Multi-objective evolutionary algorithm for scheduling jobs on
computational grid was proposed by Grosan et al. (2007). The proposed
algorithm introduced a Multi-Objective Evolutionary Algorithm
(MOEA) by using the Pareto dominance as the way to solve the

14

scheduling problem in grid computing. The researchers aimed to
minimize the makespan which is the time when the last task is fi nished
and also to minimize the fl owtime of the grid system that minimizes
the sum of completion times of all the tasks. The Pareto dominance
theory was used in order to compare two solutions, i.e. dominance and
non-dominance. Mutation and crossover were used as operators while
the binary tournament selection was used in the implementation. The
performance of MOEA algorithm was compared to GA, SA, and PSO
in terms of their makespan and fl owtime aspects. Experimental results
showed that MOEA produced excellent results when compared to the
other algorithms. However, the proposed algorithm only considered
the number of jobs and resources and not the characteristics of jobs
and the capacity of resources.

A bio-inspired adaptive job scheduling mechanism on a computational
grid was proposed by Li (2006). The researcher aimed to solve the
problem of scheduling a set of parallel jobs with different arrival
times to run on a computational grid. The proposed bio-inspired
scheduling algorithm was inspired by the behavior of the ant colony
to effectively utilize the dynamic distributed resources in the grid
computing environment in order to achieve an optimal job completion
time. The bio-inspired mechanism is similar to the collective behavior
of social insects in terms of their strong adaptability and robustness
to the dynamic nature of the grid computing environment. The bio-
inspired mechanism also designed a tester program that can produce
easy-to-verify intermediate values and partial results in order to
verify the trustworthiness of the distributed computation grid. The
performance of the proposed bio-inspired scheduling mechanism
was compared with the random mechanism and heuristic mechanism
in terms of their job completion time. Experimental results showed
that the proposed ant inspired scheduling algorithm was better than
the other algorithms from the adaptability and robustness aspects.
However, the bio-inspired scheduling algorithm did not consider the
load balancing and the current conditions of each resource during
scheduling process.

A grid scheduling algorithm based on ant algorithm which is a Monte
Carlo method was proposed by Fidanova and Durchova (2006). The
researchers aimed to fi nd a good solution in a reasonable time and
also to achieve high throughput computing in grid environment. The
proposed algorithm was designed for distributed systems shared

15

asynchronously by both remote and local users. The heuristic algorithm
based on ACO method was developed and its basic strategies for grid
scheduling were formulated. The performance of the proposed ant
algorithm was compared to the online-mode algorithm in terms of their
execution time. Experimental results showed that the proposed ant
algorithm was better than online-mode algorithm from the execution
time and balancing aspects. However, the proposed algorithm did not
consider the requirement of each submitted job and the capacity of
available resources.

The study by Lorpunmanee et al. (2007) proposed an ACO for
dynamic job scheduling in grid computing. The researchers aimed to
develop an effective grid scheduling algorithm that could minimize
the total tardiness time of each submitted job. The proposed algorithm
was designed to adapt the dynamic grid environment and at the same
time improve the overall performance of the system. An optimal
resource allocation technique for each job within the dynamic grid
environment was developed and tested by using Gridsim toolkit. The
performance of the proposed scheduling algorithm was compared
with First Come First Serve algorithm, Minimal Tardiness Earliest
Due Date algorithm and Minimal Tardiness Earliest Release Date
algorithm. Experimental results showed that the proposed ACO
algorithm performed better than the other algorithms. However, the
proposed algorithm did not consider the balancing of each resource
during the scheduling process.

Dynamic grid scheduling algorithm based on self adaptive Tabu
Search (TS) was proposed by Kong et al. (2010). The proposed
algorithm is suitable for the grid dynamic characteristics in order to
reduce the makespan of the submitted jobs. The scheduling process
was separated into partial scheduling and last partial information was
exploited to decide the next partial scheduling parameters set. During
searching process, tabu list kept a local optimal solution and marked it
in order to get a simple searching way for these solutions in the future
search process. The performance of the proposed tabu search algorithm
was compared to several typical algorithms, i.e. Min – min algorithm,
Max - min algorithm and Sufferage algorithm. Experimental results
showed that the TS algorithm was better than the other algorithms in
terms of the makespan value. However, the proposed TS algorithm
did not consider the utilization of the resources.

16

In order to solve the grid scheduling problem, many researchers
proposed scheduling algorithms which considered the processing time
of each job. Based on previous research discussed above, ACO has
proven to be the most promising algorithm that has been successfully
used in grid computing to solve scheduling problems which eventually
reduces the stagnation problem. However, the load balancing problem
is another aspect that should be considered in managing resources
in grid computing. Load balancing is the technique to distribute
workload between several computers, workstation, CPUs, network
links, and other resources in order to get optimal resources utilization,
throughput and response (Moallem, 2009).

Grid Load Balancing

Grid load balancing is one of the most diffi cult problems that must
be handled in managing resources. In grid computing environment,
load balancing algorithm should be ‘fair’ in distributing jobs across
the resources (Zhu & Hu, 2004). The objectives of the load balancing
algorithm are to spread the job equally on each resource, minimize
the total task execution time of each job and maximize the utilization
of each resource. In order to achieve these objectives, the difference
between the heaviest-loaded node and the lightest node should be
minimized. The problem of balancing resources is also defi ned as NP-
complete problem (Ibarra & Kim, 1977).

There are many types of algorithms that have been used in resource
balancing in grid computing system. The study by Cao et al. (2005)
used a combination of intelligent agents and multi-agent approaches
that work in grid load balancing area. In static grid load balancing, the
iterative heuristic algorithm is better than the First Come First Serve
(FCFS) algorithm. The study highlighted that a peer-to-peer service
advertisement and discovery technique were more effective in dynamic
grid load balancing environment. Instead of using a centralized control,
distributed agent could reduce the network overhead signifi cantly and
allow the system to operate well in distributed environment which
helped the user to achieve good resource utilization and minimize the
processing time of each job.

The research by Subrata et al. (2007) addressed the use of Genetic
Algorithm (GA) and Tabu Search (TS) to solve the grid load
balancing problem in the dynamic environment. In the study, GA and

17

TS performed better than the Best-Fit, Random, Min-min, Max-min
and Sufferage algorithms in terms of time taken to schedule submitted
jobs and job completion time. GA and TS could balance the extra
overhead by considering the ever decreasing costs of storage and
processing power. However, these algorithms required extra storage
and processing requirement at the scheduling nodes.

Balanced Ant Colony Optimization (BACO) algorithm proposed by
Chang et al. (2007) chooses optimal resources to process jobs based
on resource status and size of submitted job. The researchers aimed
to balance the entire resources and at the same time minimize the
makespan of the jobs in grid computing system. The performance of
the BACO algorithm was compared with the improved Ant Colony
Optimization algorithm, Fastest Processor to Largest Task First
algorithm, and random algorithms. Experimental results showed
that the BACO algorithm performed better than the other algorithms
in terms of standard deviation and makespan. However, BACO
algorithm did not consider the capacity of each resource during the
scheduling process.

Rose et al. (2008) proposed the allocation strategies for utilization
of space shared resources in bag of tasks grids. In this research, an
adaptor automatically fi ts grid requests to the resource in order to
decrease turn-around time of application. The jobs from the user are
received by the grid broker. The request adaptor receives the grid
broker requirements and tries to provide workers by the submission
of space shared requests crafted by heuristics. Each processor can
run several tasks during the requested time but only one at a given
moment. In order to choose the suitable parameters for requests, the
request adaptor should obtain some information about the space shared
resource state, space shared resource scheduler administrative policies
and the grid application. The performance of the proposed allocation
strategies was compared with Transparent Allocation Strategy (Netto
et al., 2005). Experimental results showed that the proposed strategy
enable users to natively submit tasks without having to submit their
requirement. However, the proposed strategy only can process one
job at a time and does not consider the jobs requirement.

A hybrid load balancing strategy of sequential tasks that uses a
combination of static and dynamic load balancing strategies which
combines a FCFS algorithm with a special designed GA was proposed

18

by Li et al. (2009). The FCFS algorithm can make decisions instantly
which can reduce the system’s response time, resulting in a shorter
makespan. GA was used to control the overall performance over a
list of tasks and target the balance of the resources in grid computing
area. A sliding-window technique was used to trigger the switch
between the two algorithms and to make a rapid task assignment as
well. From the experiment conducted, it was found that hybrid GA
provided better performance than dynamic GA and FCFS in different
conditions such as makespan and the current work load. Besides, the
proposed strategy did not consider the requirement of each submitted
job and the capacity of available resources.

The study by Sadhasivam and Meenakshi (2009) proposed a load
balanced, effi cient scheduling with parallel job submission in
computational grids using Parallel Particle Swarm Optimization
(PPSO). The researchers aimed to maximize the speed of completion
of processes, minimize the communication overhead, enhance
resource utilization, and parallel effi ciency. PPSO approach is used
to group the jobs and to submit them in parallel to available grid
resources. In order to improve the job submission time and to ensure
security, the trust based parallel job submission was also proposed.
PPSO groups the jobs based on resource utilization and trust level of
the users/resources. All information about jobs and resources such as
the total number of jobs, processing requirement of each job, trust of
each job, total number of available resources, processing capabilities
of each resource and the granularity time was determined in order to
optimize the utilization of the resources and also to minimize the job
execution time. The groups of jobs were then submitted in parallel to
the resources in the grid environment. The performance of PPSO in
terms of its simulation time and resource utilization was compared
with job grouping scheduling framework using PSO. Experimental
results showed that PPSO was better than classical PSO from both
aspects.

The use of artifi cial life technique for distributed grid job scheduling
was proposed by Moallem and Ludwig (2009). The research proposed
two distributed artifi cial life inspired load balancing algorithms based
on ACO algorithm and PSO algorithm. The researchers aimed to
minimize the processing time of the submitted jobs and also to balance
the entire resources. The performance of the proposed algorithm was

19

compared with the random approach. Experimental results showed
that the proposed algorithm worked well in distributing the submitted
jobs to resources. However, the ant algorithm did not schedule jobs
well to a small number of resources.

Adaptive hierarchical scheduling policy for enterprise grid computing
systems was proposed by Abawajy (2009). This research proposed an
approach by combinding both time sharing and space sharing policy.
An adaptive hierarchical scheduling (AHS) policy was introduced
with special attention to input/output and service demands of parallel
jobs in homogeneous and heterogeneous systems with background
workload. In order to assign resource to parallel jobs, AHS integrates
affi nity scheduling, job assignment, and self scheduling approach
into a framework. The performance of the proposed algorithm was
compared with static space-time sharing policy. Experimental results
showed that the proposed algorithm performs better than the static
space-time sharing policy in term of arrival time and utilization.
However, AHS policy did not consider the processing time of each job.

A decentralized Recent Neighbor (RN) load balancing algorithm
for computational grid was proposed by Balasangameshwara and
Raju (2010). The researchers aimed to solve the grid load balancing
problem by assigning loads in grid system without neglecting the
communication overhead in collecting the load information. RN
algorithm performs intra-cluster and inter-cluster load balancing in
dynamic grid environment. Experimental results showed that RN
was better in terms of its response time and resource utilization when
compared to the other algorithms. However, the proposed algorithm
only considered the processing power of resources without considering
the other aspects such as the bandwidth and current load of resources
that can affect the performance of the algorithm.

Many researchers proposed the load balancing algorithms which
consider the utilization of each resource in order to solve the grid load
balancing problem. Based on the previous research discussed above,
ACO has proven to be the most promising algorithm that has been
successfully used in solving the load balancing problem. However,
the improvement of existing algorithms is still needed in order to
get a better load balancing algorithm than can reduce the stagnation
problem in grid computing.

20

ANT COLONY OPTIMIZATION

ACO is a biologically inspired algorithm that can provide the user
with an opportunity to solve optimization problem and design the
meta-heuristics algorithm (Dorigo & Stützle, 2004). This algorithm
is a new evolutionary approach where several ants work together to
search for a good solution. Every ant builds up a solution step by
step by its own decision points until a complete solution is found.
Ants put an amount of pheromone on the edges of the path to mark
their solution (paths). The strength of pheromone is used to build the
solution. The next ant will be attracted by the pheromone, so it will
search for the solution.

The main part of the ACO is the use of a combination of priori
information (heuristics) and posteriori information (pheromone)
(Dorigo & Stützle, 2004). Priori information is about the quality
of candidate solutions (called greedy strategy) while posteriori
information is about the goodness of the previously obtained
solution (called positive feedback or autocatalytic process). ACO
not only uses heuristics to create a solution but also uses the
accumulated experiences about obtaining good solutions in the
previous process.

Ant System (AS) is the fi rst member of among several of the well
known ACO algorithms to be introduced and the prototype of a
number of ant algorithms. It was initially proposed by Colorni et al.
(1991) and Dorigo (1992) and it aimed to search for an optimal path
in a graph based on the behavior of ants seeking a path between their
colony and a source of food. AS is also the fi rst ACO algorithm which
was applied to the Traveling Salesman Problem (TSP) (Dorigo et al.,
1996). Three different versions of ant system were proposed, i.e. ant-
density, ant-quantity and ant-cycle. In ant-density and ant-quantity,
the ants update the pheromone directly after a move from a city to
an adjacent city. But in ant-cycle, the pheromone update was only
done after all the ants had constructed the tours. The two main phases
of the AS algorithm constitute the ants’ solution construction and
the pheromone update. The performance of AS when compared to
other algorithms tends to decrease dramatically as the size of the test-
instances increases.

21

ACS proposed by Dorigo and Gambardella (1997a, 1997b) is the fi rst
extension of AS to improve its performance. ACS differs in three
main aspects from the ant system. Firstly, ACS uses a more aggressive
action choice rule as compared to AS. Secondly, the pheromone is
added only to arcs belonging to the global-best solution. Thirdly, each
time an ant uses an arc (i,j) to move from city i to city j, it removes
some pheromone from the arc. In ACS, ants choose the next city using
the pseudo-random-proportional action choice rule. This probabilistic
rule is a trade-off between exploration and exploitation. Exploration
gives the chance to add new edge to the solution. Exploitation uses
the accumulated information from previous iterations preferring the
choice of an edge with maximum combination of pheromone trails
and heuristic values. An ant with probability q exploits the available
information about previous good solutions or with probability (1- q)
explores new areas of the solution space focusing on shorter edges
with pheromone rate. In ACS, only the global best ant is allowed to
add pheromone after each iteration. The trail update only applies to
the arcs of the global-best tour, not to all the arcs like in AS. Only
the global best solution receives feedback. Additionally, with regards
to the global updating rule, in ACS, the ants use a local update rule
that they apply immediately after having crossed an arc during the
tour construction. The effect of the local updating rule is to make an
already chosen arc less desirable for a following ant. In this way, the
exploration of yet to be visited arcs is increased.

Bullnheimer et al. (1996) proposed ranked AS (AS
rank

) as an extension
of AS

elitist
proposed by Dorigo et al. (1996). In AS

rank
, the global

best tour is always used to update the pheromone trails, similar to
the elitist strategy of AS. Additionally, a number of the best ants of
the current iteration are allowed to add pheromone. To this end, the
ants are sorted by tour length and the quantity of pheromone an ant
may deposit is weighted according to the rank r of the ant. Only the
(w-1) best ants of each iteration are allowed to deposit pheromone.
The global best solution which gives the strongest feedback is given
weight, w. The rth best ant of the current iteration contributes to
pheromone updating with a weight given by max {0, w-r}. Among the
AS-based algorithms, both AS

rank
 and AS

elitist
performed signifi cantly

better than AS, with AS
rank

giving slightly better results than AS
elitist.

Max-Min AS (MMAS) was proposed by Stützle and Hoos (2000) as
another improvement over AS-based algorithm and it has showed a

22

higher performance than other ACO algorithms for TSP. The solutions
in MMAS are constructed in the same way as in AS. Additionally,
MMAS uses the pseudo-random-proportional action choice rule of
ACS. Using that action choice rule, very good solution could be
found faster, but the fi nal solution quality achieved was worse. The
main modifi cations in MMAS with respect to AS are the following
aspects: 1) to exploit the best solution found, after each iteration, only
one ant is allowed to add pheromone; 2) to avoid search stagnation,
the allowed range of the pheromone trail strengths is limited to
the interval [T

min,
T

max
]; 3) the pheromone trails are initialized to

the upper trail limit which causes a higher exploration at the start
of the algorithm; 4) the pheromone trails are updated after all ants
have constructed a solution; and 5) the ant which is allowed to add
pheromone may be the global best solution or iteration best solution.
Therefore, if the same arcs are often used in the best solutions, it will
receive a larger amount of pheromone. The lower and upper limits on
the possible pheromone strengths on any arc are imposed in MMAS
to avoid search stagnation. This trail limit has the effect of indirectly
limiting the probability T

ij
of selecting a city j when an ant is in city i

to an interval [T
min,

T
max

] with 0< T
min

 ≤ T
ij
≤ T

max
≤1. The pheromone

trails in MMAS are initialized to their upper pheromone trail limits.

Best Worst AS (BWAS) was proposed by Cordon et al. (2000) as
another extension of the basic idea of AS by including some concepts
from evolutionary computation algorithms. BWAS is similar to AS
(same transition rule) in constructing ants’ solutions. BWAS enhances
the ants’ solution by using local optimizer to bring each solution to
its local optimum. There are basically three core activities performed
offl ine by daemon actions. First, daemon actions perform positive and
negative pheromone updates by reinforcing the edges of global best
solution through the addition of an amount of pheromone proportional
to the quality of this solution. Furthermore, daemon actions penalize
the edges belonging to the worst solution obtained from the current
iteration and do not share in the global best solution by evaporating
extra amount of pheromone. Second, like MMAS, a mechanism to
avoid stagnation is incorporated in BWAS. Stagnation usually takes
place when there are big differences between the pheromone trails of
edges of the best solutions (very high) and the pheromone trails of other
edges (very small). In such situations, BWAS considers restarting the
search process by reinitializing all pheromone trails to an initial value.
Third, to encourage the exploration of new areas of the solution space,

23

a mutation operation is applied on the pheromone trails by performing
small changes in early iterations (no chance of stagnation) and strong
changes in latter iteration when there is a higher chance of stagnation.
The mutation range depends on the average of pheromone trails on the
edges of the global best solution. Cordon et al. (2002) conducted an
analysis of the above three components, considering each component
separately as well as different combination of them on the TSP and
quality of service access point. Their analysis studies showed that
BWAS with the above three components gave much better solutions
than BWAS with one or two of these components.

Kaegi and White (2003) proposed Local Best Tour Ant System
(LBTAS) as a new version of AS which considered the use of local
information to guide the ants’ search process. The basic change was
that each ant updates the pheromone trails according to its own best
tour from the beginning of the algorithm. This modifi cation avoids
the use of global information by observing all ants’ tours and selects
the best global one as in ACS and MMAS. In LBTAS, each ant works
individually on a copy of AS and indirectly cooperates with other ants.
The early results of applying LBTAS on some versions of TSP were
promising when compared with original AS and AS

elitist
. Kaegi and

White (2003) were of the opinion that adding local search procedure
to LBTAS improves its chance to outperform other versions of AS.

ANT BASED GRID SCHEDULING ALGORITHM

In a grid computing system, when a job is submitted, it needs to
be processed by the available resources. Best resources in terms of
processing speed, memory and availability status are more likely
to be selected for the submitted jobs during the scheduling process
(Lorpunmanee et al., 2007). The best resources are categorized as
optimal resources. In a research by Li (2006), ACO has been used
as an effective algorithm in solving the scheduling problem in grid
computing. The process undertaken by ACO considers the value of
pheromone, a chemical substance used for indirect communications
between the ants for resource selection.

Simple grid simulation architecture for resource management and
dynamic grid scheduling was proposed in Xu et al. (2003). This study
also validated the scalability of ant algorithm. The ant algorithm for

24

grid task scheduling was integrated into the simulation architecture.
The initial pheromone value was calculated based on the number of
processing elements (PEs), MIPS, size of job, and transfer time. A set
of experiments was conducted to see the performance of the proposed
algorithm. Good results were obtained in terms of resource average
utilization and response time.

The study to improve ant algorithm for dynamic job scheduling in
grid computing which is based on the basic idea of ACS was proposed
by Yan et al. (2005). The pheromone update function in this research
was performed by adding encouragement, punishment coeffi cient and
load balancing factor. The initial pheromone value of each resource
was based on its status where job was assigned to the resource with
the maximum pheromone value. The strength of pheromone of each
resource was updated after completion of the job. The encouragement
and punishment and local balancing factor coeffi cient were defi ned
by users and were used to update pheromone values of resources. If
a resource completed a job successfully, more pheromone was added
by the encouragement coeffi cient in order to be selected for the next
job execution. If a resource failed to complete a job, it was punished
by adding less pheromone value. The load of each resource was taken
into account and the balancing factor was also applied to change the
pheromone value of each resource.

The study by Li (2006) proposed a bio-inspired adaptive job
scheduling mechanism in static grid computing. The purpose of this
research was to minimize the execution time of the computational
jobs by effectively taking advantage of the large amount of distributed
resource. Various software ant agents were designed with simple
functionalities. The pheromone update function was done based
on the execution of each resource. In the research, comparison was
made between the bio inspired adaptive scheduling with the random
mechanism and heuristic mechanism. Experimental results showed
that a bio-inspired adaptive job scheduling had good adaptability and
robustness in a dynamic computational grid.

Ant algorithm to solve static grid scheduling problem was proposed
by Fidanova and Durchova (2006). The researchers aimed to fi nd a
good scheduling algorithm that can minimize the processing time of
the jobs. In this proposed algorithm, the scheduler allocated submitted

25

jobs to available resources based on the prediction of the computing
power of the resource. There were two types of mapping heuristics
which are online mode and batch mode. The proposed algorithm
was based on batch mode as the scheduler considers a meta-task for
matching and scheduling at each mapping event. The pheromone
value was calculated based on the evaporation rate value and the
function free factor which is the time when the machine will be free.
The performance of the proposed algorithm was compared with the
online mode algorithm in terms of their execution time. Experimental
results showed that the proposed algorithm performed better than
online mode algorithm from the execution time aspects. However,
there was no pheromone update function in this proposed algorithm.
The job was only submitted if the resource is fully free to be used.
This affected the execution time of the algorithm.

For dynamic job scheduling in grid environment, an ACO based
algorithm was proposed by Lorpunmanee et al. (2007) which aimed
to minimize the total job tardiness time. The process to update the
pheromone value on each resource was based on local update and
global update rules as in ACS. The performance of the proposed
algorithm was compared with existing algorithms which are First
Come First Serve, Minimal Tardiness Earliest Due Date and Minimal
Tardiness Earliest Release Date algorithms. Experimental results
showed that the proposed algorithms performed better than the other
algorithms because it considered the load of each resource during the
resource selection process.

The dynamic grid scheduling algorithm based on adaptive ant
colony algorithm was proposed by Liu and Wang (2008). The aim
of the research was to minimize the searching time and avoid the
stagnation problem in grid computing system. In the algorithm, the
evaporation rate value was adaptively changed and a minimum value
for evaporation rate was assigned. The evaporation rate used by the
algorithm was under control and was never reduced to 0. The local
and global pheromone updates were used in order to control the
pheromone value of each resource. The performance of the proposed
algorithm was compared with the basic ant colony algorithm.
Experimental results showed that an adaptive ant colony algorithm
performed better than the basic ant colony algorithm in terms of the
searching time.

26

An improved ant algorithm for static grid scheduling problem was
proposed by Bagherzadeh and MadadyarAdeh (2009). The researchers
aimed to minimize the processing time of jobs and to balance the entire
resources in grid computing system. The proposed ant algorithm was
based on batch mode, where jobs and resources were collected and
mapped at prescheduled time. The pheromone update mechanism was
done at the end of the iteration instead of the selection process. This
allows faster convergence of the proposed algorithm to the optimal
solution. The performance of the proposed algorithm was compared
to the existing algorithms which are Opportunistic Load Balancing,
Minimum Execution Time, Minimum Completion Time, Switching
Algorithm, K-Percent Best, MinMin, MaxMin, MaxStd, Dupplex,
and previous ACO. Experimental results showed that the proposed
ant algorithm performed better than the other algorithms in terms of
makespan and utilization.

The research by Wenming et al. (2009) proposed the trust based
ACO for dynamic grid resource scheduling. The researchers aimed
to minimize the completion time of jobs and utilization of resources.
The local pheromone update and global pheromone update were
used in the algorithm in order to achieve the load balance system by
incorporating resource oriented trust mechanism. Local pheromone
update would reduce the pheromone value on the path, thus freeing the
ant to explore the new path that is to be used. The global pheromone
update was done by updating the pheromone value on the shortest
path after the task had been fi nished. From those points, the optimal
solution could be obtained and the system load balancing could be
achieved. The performance of the trust based ant colony algorithm
was compared with MinMin algorithm. Experimental results showed
that the trust based ant algorithm performed better than MinMin
algorithm in terms of completion time.

From the above research, ACS is found to be the most popular variant
of ACO that has been successfully used in grid computing to solve
the scheduling problems which eventually reduced the stagnation
problem. However, more work is needed to enhance the performance
of the algorithm in this application domain.

27

ANT BASED GRID LOAD BALANCING ALGORITHM

A study by Salehi and Deldari (2006) proposed a new dynamic
algorithm that is based on an echo intelligent system, autonomous and
cooperative ants. Ant level load balancing was proposed to improve
the performance of the mechanism. In this proposed algorithm, the
ants can procreate and also can commit suicide depending on the
existing condition. Ants were created on demand to achieve load
balancing during their adaptive lives. The ants may bear offspring
when they detected the system is drastically unbalanced and commit
suicide when they detect equilibrium in the environment. The ants
will care for every node visited during their steps and record node
specifi cations for future decision making. Theoretical and simulation
results indicated that this new algorithm surpasses its predecessor.
However, the pheromone values were not updated in this proposed
algorithm which enabled the assignment of jobs to the same resource.
Therefore, stagnation occurred in the grid computing system.

Balanced job assignment based on ant algorithm for computing grids
called BACO was proposed by Chang et al. (2007). The research
aimed to minimize the computation time of job executing in Taiwan‘s
UniGrid environment which also focused on load balancing factors of
each resource. By considering the resource status and the size of the
given job, BACO algorithm chose optimal resources to process the
submitted jobs. The local and global pheromone update techniques
were used to balance the system load. Local pheromone update
function updated the status of the selected resource after a job had
been assigned and the job scheduler depends on the latest information
of the selected resource for the next job submission. The global
pheromone update function updated the status of each resource for
all jobs after the completion of the jobs. By using these two update
techniques, the job scheduler will obtained the latest information of all
resources for the next job submission. From the experimental results,
BACO was capable of balancing the entire system load regardless of
the size of the jobs in the static scheduling benchmark.

An enhanced ant algorithm for dynamic task scheduling in grid
computing was proposed by Sathish and Reddy (2008) which gave
better throughput with a controlled cost. The proposed scheduling
algorithm increased the performance in terms of low processing time

28

and low processing cost when applied to a grid application with a
large number of jobs such as the parameter sweeps application. This
algorithm worked effectively in minimizing the processing time
and processing cost of the jobs. The simulation results of various
scheduling algorithm such as the modifi ed ant algorithm and the cost
controlled algorithm were also compared. The results showed that
this enhanced algorithm worked better than the ant algorithm. By
considering the processing cost, this enhanced ant algorithm was more
suitable for a wide use. However, this algorithm did not consider the size
of the jobs which leads to appropriate assignment of jobs to resources.

Load balancing in non-dedicated grids using ACO was proposed
by Chen (2008). The proposed static algorithm was based on ACO
algorithm in solving the load balancing problem in grid computing
system. In the algorithm, the effi ciency of the resources was maintained
by immigrating jobs from overloaded resources to under loaded
resources. The inherent features of a non dedicated grid computing
system, such as dynamics and heterogeneity, were embedded in the
model while the pheromone update function was done according to
the Gauss Function and the evaporation rate. The performance of
the proposed algorithm was compared with the First In First Out
algorithm, the Tabu algorithm, and the Tabu + Granularity-based
Job Allocation Policy algorithm. Experimental results showed that
the proposed algorithm performed better than the other algorithms
in terms of makespan and resource usage. However, the proposed
algorithm did not consider the requirement of each submitted jobs
and the capacity of resources.

In Moallem and Ludwig (2009), two distributed artifi cial life-inspired
algorithms were introduced and they are ACO and PSO in solving
the static grid load balancing problem. Distributed load balancing
are categorized as a robust algorithm that can adapt to any topology
changes in a network. In the proposed algorithm, an ant acted as a
broker to fi nd the best node in terms of the pheromone value stored
in the pheromone table. The node with the lightest load was selected
as the best node. The position of each node in the fl ock could be
determined by its load in PSO. The particle compared the load of
nodes with its neighbours and moved towards the best neighbour by
sending assigned jobs to it. The proposed algorithm performed better
than ACO for job scheduling where jobs were submitted from different

29

sources and different time intervals. PSO showed better results than
ACO in terms of the makespan. However, PSO used more bandwidth
and communication compared to ACO. The main drawback of the
Ant Colony was that jobs are not scheduled effi ciently and therefore
load among the resources were not balanced. This problem can be
fi xed by increasing the number of ants that can explore the entire grid
system to fi nd resources with the lightest load.

ACO algorithm for dynamic load balancing in distributed systems
through the use of multiple ant colonies was proposed by Ali et al.
(2010). In this algorithm, information on resources was dynamically
updated at each ant movement. Load balancing system was based on
multiple ant colonies information. Multiple ant colonies were adopted
in order that each node sent a colored colony throughout the network.
Coloured ant colonies were used to prevent ants of the same nest from
following the same route and also forcing them to be distributed all
over the nodes in the system. Each ant acted like a mobile agent which
carried newly updated load balancing information to the next node.
This proposed algorithm was compared to the work-stealing approach
for load balancing in grid computing. Experimental results showed
that multiple ant colonies worked better than work-stealing algorithm
in terms of their effi ciency. However, the multiple ant colonies did
not consider resources capacity and jobs characteristics. This can
make matching the jobs with the best resources a diffi cult task for the
scheduling algorithm.

Based on the previous research discussed above, it is found that
many researchers have used an ACO approach in solving the grid
load balancing problem. The pheromone update function is applied
in order to manage the pheromone value of each resource during
selection process. However, more work is needed to enhance the
performance of the algorithm in this application domain.

SUMMARY

Resource scheduling is the process of managing submitted jobs
to available resources in grid computing system. The scheduling
algorithm must consider the characteristics of each job and the
capacity of resources in scheduling the submitted jobs to the available

30

resources. In current situations, many effective algorithms are applied
in order to solve the grid resource scheduling problem. The most
promising technique that has been used is the ACO technique. ACO
technique can solve the scheduling problem, stagnation problem and
minimize the computational time in grid computing environment. The
local pheromone update and the global pheromone update are used to
update the pheromone value of each resource.

31

3

METHODOLOGY AND PROPOSED
FRAMEWORK

This chapter presents the methodology and proposed framework
that have been used in this research. The activities of the research
methodology will be discussed in detail followed by the description
of the proposed framework.

RESEARCH METHODOLOGY

The experimental research methodology that has been used by a
large number of ACO researchers like Dorigo et al. (1991a, 1991b,
1996) and Gambardella (1997a, 1997b), Stützle and Hoos (2000) and
Kawamura et al. (2000), has been chosen to be used in this research.
There are fi ve steps in this methodology (refer Figure 3.1) which are
analyzing the research problem, developing the proposed framework,
constructing the simulation environment, conducting a set of
experiments and evaluating the results. This methodology is adapted
because it suits the proposed algorithm, provides a good output, and is
easy to use in solving the grid resource management problem.

Analyzing the Research Problem

The fi rst step in this research is to analyze available ACO algorithms
applied in grid computing and to determine existing problems.
This include cases where the ACO algorithms only considered the
computational time of each processed job without considering the
matching problem between job requirement and resource capacity

32

which leads to stagnation problem in grid computing. These problems
were captured when studying the mechanisms used by existing
ACO algorithms to control the activities of ants namely the resource
selection mechanism and the pheromone updating mechanism. These
mechanisms infl uence the ant’s decision making process and are
used to organize the attraction of ants toward the previously obtained
solution. Thus, stagnation in the grid computing will be minimized
when good resource selection and pheromone updating mechanisms
can reduce the attraction of ants to a single solution.

The research problem is determined at the end of this step, i.e. after
the stagnation in grid computing was clearly defi ned and the available
approach that attempts to reduce this problem was identifi ed. The
initial pheromone value and the global pheromone update were
modifi ed to get a better scheduling result and which, at the same time,
could balance the entire resources in grid computing system.

Figure 3.1. Steps of experimental research methodology.

Developing the Proposed Framework

The proposed framework is developed in this step. Details of the
framework will be discussed in Chapter 4.

Developing the proposed

Constructing the simulation

Conducting a set of experiments

Evaluating the results

Analyzing the research problem

33

Constructing the Simulation Environment

A computer simulation was developed for the proposed algorithm
and the environment to be applied. Full implementation of the
proposed algorithm, ant algorithm by Moallem (2009), Particle
Swarm (Moallem and Ludwig, 2009), Space Share and Time Share
were carried out using Java programming under Gridsim toolkit. The
computational time of each job and the load of each resource were
measured during the simulation process.

Conducting the Experiment

A set of experiments wase conducted. These experiments were used to
test the performance of the proposed algorithm. Tests were carried out
on job processing time and utilization of resources in grid computing.
The objectives of the experiments are to evaluate the performance
of the proposed algorithm in term of processing time and utilization
of each resource and comparing the results with existing algorithms.
A set of experiments was also conducted to determine how different
values of evaporation rate will affect the performance of the proposed
algorithm. In all the experiments, the number of machine per resource
is 1 and the number of PEs per machine is randomly chosen from 1 to
5. The PE ratings and bandwidth for each machine will vary.

Four experiments have been conducted in order to evaluate the
performance of the proposed algorithm in term of processing time and
utilization. Three experiments were conducted in order to evaluate the
performance of the proposed algorithm in the load balancing aspect.
Various numbers of resources and jobs have been used in all the
experiments.

Evaluating the Results

Performance of the proposed algorithm during different experiments
was reported and compared with the performance of other available
algorithms. This process is important to show the relative strength
and weakness of the proposed algorithm. The result of this proposed
algorithm was compared with ant algorithm by Moallem (2009)
and other algorithms such as Particle Swarm (Moallem & Ludwig,

34

2009), Space Shared (Rose et al., 2008), and Time Shared (Abawajy,
2009). The results of these algorithms were taken from the literature
wherever possible; otherwise they were taken from the implementation
developed in this research.

The comparisons presented in this report are designed so that
all algorithms run exactly the same parameters. This gives a fair
judgment of the results of these algorithms. Thus, the comparison of
performances gives an indication on how successful the organization
of ant’s population is in the proposed algorithm and how effective the
mechanisms are being incorporated.

THE PROPOSED FRAMEWORK

The main aim of the research is to develop enhancement of the ant
colony algorithm that can balance the load among resources in the grid
system. The proposed algorithm hereafter will be known as enhanced
ant colony optimization (EACO). There are three mechanisms in the
framework that are used to organize the work of ant colony to form
the proposed algorithm. The mechanisms are initial pheromone value
mechanism, resource selection mechanism and pheromone updating
mechanism The initial pheromone value mechanism will solve the
matching problem between submitted jobs and the available resources
while the resource selection mechanism will solve the scheduling
problem where by the best resource will be selected to process
jobs. Pheromone updating mechanism will solve the load balancing
problem of each resource. Figure 3.2 shows the basic components of
this framework.

Initial Pheromone Value Mechanism

An initial pheromone value is calculated after each job enters the grid
information system. The effect of the initial pheromone value is to
match all submitted jobs to suitable resources. This value is calculated
by considering the jobs characteristics and the capacity of resources.
The initial pheromone value of each resource for each job is calculated
based on the estimated transmission time and the execution time of a
given job when assigned to this resource.

35

Figure 3.2. The proposed EACO framework.

Resource Selection Mechanism

When an ant wants to move to another resource, it must make a
probabilistic decision to select a suitable resource. The probabilistic
decision is based on heuristic information (computational time) and
pheromone information. Pheromone represents information about
previous experiences of the ant while heuristic represents a priori
information about the goodness of a solution. In this situation, ants
use the exploration control mechanism when they explore new
resource in the grid environment. On the other hand, ants that want
to use the previously selected resources will use the exploitation
control mechanism.

Pheromone Updating Mechanism

The proposed pheromone updating mechanism encourages a balanced
form of exploitation of previous experiences and exploration of new
nodes. The global pheromone updating mechanism has been used
in encouraging the exploration of new areas of the search space by
reducing the importance of the visited nodes. That was used in this
proposed algorithm. In global pheromone updating mechanism, the
best ant will deposit an amount of pheromone on its own nodes.
The best ant refers to the ant that obtains the best solution in the
current iteration of the algorithm execution or the ant that obtains the
best solution since the start of the algorithm execution. The global

Calculate
initial

pheromone
value for

all
available
resources

Choose the
best

resource to
process the

job based on
their

pheromone

Update the
pheromone

value on
resource

after job is
finished

For
submitted
job

Resource will
be released to

be used by
another job

36

pheromone update concludes that each ant reduces the amount of
pheromone on nodes that it has visited to give more chance to other
nodes to be chosen by the next ants.

SUMMARY

The proposed framework which consists of three mechanisms has been
used to organize the work of ant colony in the resource scheduling
algorithm with the aim to balance the load of all resources. The initial
pheromone value is calculated by considering the jobs characteristics
and the capacity of resources. The initial pheromone mechanism
will solve the matching problem between the submitted jobs and the
available resources.

The resource selection mechanism will be performed when ants try to
search for a new solution. However, this should be done under certain
control to avoid exploring a very wide area of search space that might
be far from the optimal solution. On the other hand, an exploitation of
the search history is necessary to search for previous good solution.
However, very strong exploitation is not required to prevent the
stagnation problem of certain resources. The resource selection
mechanism will solve the scheduling problem in grid computing.

The global pheromone update mechanism will be performed after all
jobs are completely processed. The best ant will deposit an amount
of pheromone on its own nodes during the global pheromone update
mechanism. The pheromone updating mechanism will solve the load
balancing problem of each resource.

37

4

ENHANCEMENT OF ANT COLONY
OPTIMIZATION ALGORITHM

This chapter presents the proposed enhanced ant based grid resource
scheduling algorithm called EACO. The proposed algorithm takes
into consideration the capacity of resources and the characteristics
of jobs in determining the best resource to process a job. The grid
resource scheduling scenario is discussed in detail, followed by the
description of the proposed algorithm. The enhancement of the ant
colony algorithm design and implementation are also presented.

GRID RESOURCE SCHEDULING SCENARIO

In a distributed system, there might be issues in which a job waits for
a service at the queue of one resource, while at the same time another
resource which is capable of processing a job is idle. The purpose of
a resource scheduling algorithm is to prevent these problems from
occuring as much as possible (Livny & Melman, 1981).

Information collection, decision making and data migration are three
phases in grid resource scheduling process. In the collection phase,
the grid broker collects all information of each resource and detects
whether there is a load imbalance among resources. Optimal job
distribution is calculated during the decision making process while an
exact amount of jobs is transferred to other suitable resources during
the job migration process.

38

Grid scheduling are divided into three classes of architecture and they
are centralized, decentralized and hierarchical. In centralize approach,
all jobs are submitted to a single scheduler that is responsible to
schedule all jobs to the available resources. This method is optimal
to use since all information are available at one place but this method
is not very scalable in grid computing because bottleneck problems
occur when the scheduler tries to keep all information on the state of
the resources. Thus, scalability is a problem in centralized method
that infl uences a single point of failure to the system.

There is no central scheduler in decentralized scheduling method and
scheduling is implemented by the resource requestors and owners
independently. This scheduling method is scalable in grid computing
system and is suitable for peer-to-peer architectures and dynamic
environments. In this method, individual scheduler must cooperate
with each other in making scheduling decisions. The proposed EACO
algorithm is based on decentralized scheduling method.

In hierarchical scheduling method, the schedulers are organized in a
hierarchy with resources with high level entities being scheduled at
higher levels and resources with low level entities being scheduled
at lower levels. This method is a combination of centralized and
decentralized scheduling methods.

ENHANCED ANT COLONY OPTIMIZATION

EACO is developed by integrating the idea of how ants cluster the
objects. Figure 4.1 shows behaviour of ants in clustering the objects.
Ant will move randomly until it encounters an object. The ant will
disregard this object if it is carrying another object, or will pick it
up and will continue on its way. It can be seen that each ant seems
to cooperate in piling up dead corpses in the nest. This proposed
algorithm uses the inspiration of how ants are able to cluster objects and
tries to use it in the inverse version to spread jobs in the grid system.
The ants try to distribute as many jobs as possible rather than piling them.

The proposed algorithm is inspired by a colony of ants that works
together to fi nd the shortest path between their nest and food source.
Every ant will deposit a chemical substance called pheromone on the
ground after they move from the nest to food sources and vice versa.

39

Therefore, they will choose the shortest or optimal path based on the
pheromone value. The path with high pheromone value is shorter than
the path with low pheromone value. This behavior is the basis for a
cooperative communication.

Figure 4.1. Ant behaviour of clustering the objects.

EACO Graph Model

The EACO graph model was developed in order to manage the
resources in grid computing system (refer Figure 4.2). This directed
graph model consists of a set of jobs with requirement associated with
it and resources with their capacity. Jobs are submitted by different
users from different geographic locations. Each job has its own
characteristics and requirements that need to be satisfi ed by available
resources in grid system such as their size and CPU time needed for
each job. There are many types of resources such as application,
database, printer, and server. Resources are distributed in different
geographic area and owned by different owners with their own rules.
Each resource type has its static and dynamic attribute. For example,
the static attributes for the resource type server are host name, CPU
speed and CPU architecture. On the other hand, the dynamic attributes
for resource type server are current CPU load, memory usage and
availability status.

40

Figure 4.2. EACO Graph Model.

As can be seen from the graph model, there are four types of vertices
that are related to each other. Due to that special kind of relation, the
graph can be seen as three sub- graphs, each of which is a bipartite
graph related to each other:

 Sub-graph E1, a bipartite graph that connects Job and
Requirement, E1 = {Job, Requirement}.

 Sub-graph E2, a bipartite graph that connects Resource and
Capacity, E2 = {Resource, Capacity}.

 Sub-graph E3, a bipartite graph that connects Job and Resource,
E3 = {Job, Resource}.

By using the computational model as described above, the main
aim of grid resource management process can be accomplished by
choosing appropriate path from job to resource. The task in this model
is perfectly matched with the task done in the Simple AS algorithm
(Colorni et al. 1991; Dorigo, 1992), where ants must go back and
forth between food and nest, passing more preferred path, and then
deciding which path should be chosen.

By using the simple AS algorithm, the grid system element that is
represented by sequence of vertices in the path between nest and food
will be selected based on the amount of pheromone deposited by the
ant that moves from nest to food. Therefore, before the path selection
is performed, there should be a process to construct the pheromone
trail.

Resource Capacity

Food

E3

Requirement

Nest

E1 E2

Job

41

The construction of pheromone trail is done by moving the ants from
nest to food. The pheromone value of each job to be processed by each
resource will be calculated. Resource with high pheromone value will
be selected to process the submitted jobs. If the job is fi nished, the ant
will update the pheromone value and the resource will be released to
be used by another job.

Proposed EACO Algorithm

The proposed algorithm, EACO, is inspired by a colony of ants that
work together in foraging behavior. The EACO takes into consideration
the job requirements and resources capacity in determining the best
resource to process a job. The EACO algorithm selects the resources
based on the pheromone value on each resource which is recorded
on a pheromone value table (PVT). The proposed EACO algorithm
consists of 5 steps namely obtain job requirements, create an ant for
a job, calculate the initial pheromone value and store in PVT for all
resources, assign resource with highest pheromone value in PVT to the
job, and perform global pheromone update after complete processing
the job. The pseudo code of EACO algorithm is shown in Figure 4.3.

Figure 4.3. Pseudo code of the EACO algorithm.

Get number of resources from num_resource
Get number of jobs from num_gridlet
Compute evaporation rate value;

evap_rate = calculateEvapRate(num_resource, num_gridlet);
For each num_resource:
 Bandwidth = getBandwidth();

MIPS = getMIPS();
load = getLoad();
createResource(id, bandwidth, MIPS, load);

For each num_gridlet:
job_size = getJobSize();
cpu_time = getCPUTime();
createGridlet();
createAnt();

Calculate PV for each resource and job combination, and store into pv_table

While process_iteration < num_gridlet

 For (R = 0; R < num_resource; R++)
 For (J = 0; J < num_gridlet; J++)
 getHighestPV();
 process (R, J);

 global_update(evap_rate, R, J);
 process_iteration++;

42

Jobs are submitted by different users to the grid environment.
Submitted jobs are independent of each other and contain different
requirements. For each job, the scheduler will record details the size
of the job and CPU time needed by the job.

An ant which is to represent a job in the grid system is created for
every job that is submitted to the system. The task for the ant is to
move from one resource to another with the aim to evaluate the
best resource to be assigned to the job. The calculation of the initial
pheromone value is presented in the third step.

The initial pheromone value is calculated by considering the job
requirements and resource capacity. The ant that represents a job
will move from one resource to another to calculate the pheromone
value. Pheromone value on a resource indicates the capacity of each
resource in grid system. The initial pheromone value of each resource
for each job is calculated based on the estimated transmission time
and execution time of a given job when assigned to this resource. The

estimated transmission time can be determined by where S
j

is the size of a given job j and

is the bandwidth available between the

grid resource broker and the resource. The initial pheromone value is
defi ned by:

 (4.1)

where PV
j
 is the pheromone value for job j assigned to resource r,

C
j
is the CPU time needed of job j, MIPS

r
 is the processor speed of

resource r and 1-load is the current load of resource r. The load,
processor speed and bandwidth can be obtained from grid information
server. Pheromone value will be stored on the PVT as a reference to
the other ants.

The ant decides which resource to choose in its next step by looking
at the PVT. Assume that there are n jobs and m resources in PVT as
shown below:

1

)1(* rr

j

r

j
rj loadMIPS

C
bandwidth

S
PV

r

j

bandwidth
S

43

The largest entry from PVT will be selected in each iteration. The
job will be assigned and processed by the resource represented by the
largest entry in PVT.

In the fi nal step of the algorithm, the global pheromone update is
performed to recalculate the entire PVM when a job is completely
processed. The global pheromone update is adapted from the ACS
algorithm that has been proposed by Dorigo and Gambardella (1997a,
1997b). After all ants have constructed a solution, the pheromone
value is updated according to the following formula:

 (4.2)

where ∆
rj

bs = 1/Lbest and is the evaporation rate value that adaptively
change with grid condition. Many researchers used the static
evaporation rate value which is 0.5 while a dynamic evaporation
rate changer was proposed in this research by considering the size of
the submitted jobs and the available resources. Increasing the ratio
of the resources to the jobs will increase the evaporation rate of the
EACO algorithm while decreasing the ratio of the resources to the
jobs will decrease the evaporation rate of the EACO algorithm. The
evaporation rate value is defi ned by

 (4.3)

where R is the number of resource, J is the number of job and n is
defi ned by

 (4.4)

The dynamic value of the evaporation rate will ensure that the ant will
move faster as the number of job increases. The ant which is allowed
to add pheromone may be the iteration-best solution or global best
solution. If a specifi c resource is often used in the best solution, it will

PV =

mnmm

n

PVPVPV

PVPVPV

..
........
........

..

21

11211

mr

r
r

..
2

1

njjj ..21

)/(1.11 bs
rjrjrj tPV

05.0/*45.0*/ RJJR n

3 1)/(RJn

44

receive a larger amount of pheromone and stagnation will occur. The
effect of the global pheromone update is to make an already chosen
resource less desirable for the following ant (Dorigo et al., 1991b). So,
the exploration of the not yet visited resource is increased. Once the
job is fi nished, the resource will be released to be used by the other jobs.

ENHANCED ACO DESIGN AND IMPLEMENTATION

The proposed algorithm was implemented in the grid simulation
toolkit, called Gridsim toolkit. Gridsim was selected because it is
one of the current and complete frameworks for simulating the grid
environment. Gridsim toolkit is a Java based toolkit that supports
simulation and modelling of heterogeneous Grid resources, users and
application models. Additionally, Gridsim toolkit also provides the
service to create application jobs, thr mapping of jobs to resource
and their management. In Gridsim toolkit, researchers can integrate
the scheduling algorithm to be used in managing resources in grid
computing system. In addition, Gridsim toolkit supports modelling of
heterogeneous types of resources and resources can be modelled as
space shared or time shared mode. Resources can be mapped in any
time zone and at the same time weekend and holidays can be located
depending on resource’s local time to model non-Grid workload.
Resource can be booked for advance reservation and resource
capability can be defi ned.

Application that runs in Gridsim toolkit can be simulated with
different parallel application. Application can also be CPU or I/O
intensive and can be heterogeneous. There is no limit to the number
of jobs that can be submitted to a resource and multiple users can
submit jobs for execution simultaneously in the same resource.
Static and dynamic schedulers are supported by Gridsim toolkit and
network speed between resources can be determined. Statistics of all
operations can also be recorded and can be analyzed using the Gridsim
statistics analysis methods. In the study, EACO was implemented
in the Gridsim toolkit in order to solve the dynamic grid resource
management problem.

There are several steps suggested by Gridsim team (Buyya & Murshed,
2002) in order to simulate a grid scheduling algorithm using Gridsim
toolkit. The steps are as follows:

45

i. Create resources with different capabilities and confi gurations,
for example single or multiprocessor, time shared or space
shared resource manager, connections links and speed, etc.

ii. Create users with different requirements and characteristics.
Each user can submit jobs (Gridlets) at different intervals with
different characteristics.

iii. Create a user entity that creates and interacts with the grid
resource broker entity to coordinate an experiment. It can also
directly interact with the resource entity and grid information
service entity in order to get the grid information and
submitting or receiving processed jobs. On the other hand,
the implementation of a separate resource broker entity is
encouraged.

iv. Implement a grid resource broker entity that performs
application scheduling on resources. To do this, based on time,
for example, access the grid information service, and then inquire
about the resource capabilities including time. Depending
on the processing requirements, a schedule is developed
for assigning Gridlets to resources and coordinating the
execution.

The AllocPolicy class in the Gridsim toolkit must be overridden in
order to implement the EACO algorithm. In the design specifi cations
of Gridsim toolkit, each resource is attached to the allocation policy.
The enhancement is made to adapt the idea of the proposed scheduling
algorithm. Figure 4.4 depicts the UML class diagram of the design.
As can be seen in the fi gure, the EACO algorithm is inheriting the
AllocPolicy class. There is also a class called MyGridSimulator
which extends the Gridsim class in the Gridsim toolkit that creates
all resources and submits the jobs to the grid. The characteristics of
each resource in the grid system are provided in the Resource
Characteristics class.

Each resource was created and initialized with a specifi c scheduling
algorithm. Jobs are sent to the grid computing system and they are
delivered to their resources according to the scheduling algorithm
defi ned for the system. Resources and jobs can be created by using
different parameters according to the simulation needs.

46

Figure 4.4. The UML class diagram of the design.

By extending the AllocPolicy class, the AntColonyAllocPolicy has
been created which tries to select the best resources to process the job.
It can be implemented by coordinating jobs in one resource together
within one class. Figure 4.5 shows the class diagram of AntColony
AllocPolicy which is inherited from the AllocPolicy class in the
Gridsim toolkit.

Figure 4.5. The UML class diagram of the EACO algorithm.

47

In this proposed algorithm, Round Robin scheduling policy is adopted
to manage jobs which are assigned to one resource. Whenever a job
is submitted to a resource, it uses a Round Robin policy to execute it
inside the resource. In a Round Robin policy, jobs in the executing list
get an equal time stamp to execute in a resource. In order to do this,
there is a list containing executing jobs which is (gridletInExecList) in
the AntColonyAllocPolicy class. There is also PVT which is fi lled by
visiting ants and their pheromone value. Class Ant is an inner class of
AntColonyAllocPolicy which controls the movement of the ant from
one resource to the other resource. All ants have a small memory to
carry a history of the visited resource and also the gridlet that it is
scheduling.

Figure 4.6 depicts a sequence diagram of simulation process which
shows how the EACO scheduling works. A step by step explanation
of the simulation process is as follows:

1. MyGridSimulator is responsible for simulating the jobs which
are submitted to the grid system. When MyGridSimulator sends
a job to a grid system, the job will be sent to its scheduling
policy.

2. AntColonyAllocPolicy will create a new Ant object in response
to receiving a job and sends it out to explore the grid system to
fi nd the best resource to process the job.

3. The ant moves in the grid system by calculating the pheromone
value of the visited resources and stores it to the pvList. The ant
decides which resource will process a job by reading the pvList
information.

4. The ants decides which resource to choose either by looking
at the previous resource that was used to process jobs or by
choosing another resource by referring to the pheromone
value associated with it. This is to prevent the ant from getting
caught in local minimum. The ant needs to send a request to
GridInformationService which contains the information about
the resources in the grid in order to choose a random resource.

5. When the ant fi nds a suitable resource, them the job will be
processed using the function processGridletSubmission().

6. When a job is completed, the global pheromone update is
performed to recalculate the pheromone value of the resource
using the function updatePV (global_update).

48

Figure 4.6. UML sequence diagram of the EACO algorithm.

SUMMARY

One of the main diffi culties in selecting the resource is when the
requirement of each job is uniform. The proposed EACO takes into
consideration the capacity of the resources and characteristics of the
jobs in determining the best resource to process a job. EACO selects the
the resources based on the pheromone value on each resource which is
recorded in a matrix form. The initial pheromone value of each resource
for each job is calculated based on the estimated transmission time and
execution time of a given job if it is assigned to the resource. Resources
with high pheromone value are selected to process the submitted jobs.
The global pheromone update is done after the jobs have completely
being processed with the aim to reduce the pheromone value of the
resources.

49

5

ENHANCED ANT COLONY
OPTIMIZATION ALGORITHM

This chapter presents the experimental results of EACO and several
existing grid scheduling algorithms in terms of their processing time
and their utilization of each resource. Details of the system model that
focuses on how the environment setting is chosen and how the grid
system is constructed will be presented, followed by the application
model of the grid system. The characteristics of the jobs that are
submitted to the grid system, and the performance evaluation criteria
that are used to evaluate the performance are also explained. Lastly,
experimental results and analysis are discussed.

SYSTEM MODEL

In the grid computing environment, there are a set of resources
that are connected via different communication networks with
different speeds. Each resource may have one or multiple numbers of
machines and each machine may have single or multiple processing
elements. The speed of a processor or computational power is defi ned
by the number of cycles per unit time. As the processors in each
machine can be heterogeneous, so, they may have different processing
power.

In the experiments that were conducted, each resource is assumed to
consist of one machine and each machine may have one or several
processors. The processors in the same or different machines can consist
of different processing power. A machine in the grid system may also

50

have a local user that uses the machine for other computations. From
that point, onward, at any one time, a machine may have background
workload associated with it. It will affect the computational time
of jobs assigned to it. In order to solve this problem, the Gridsim
toolkit provides the users with the ability to defi ne the background
workload according to the historical and statistical information for
each machine. Each resource has an associated background load that
is taken from the average load that the resource has experienced at
similar times (such as weekends or working days).

APPLICATION MODEL

In order to develop an application model, it is assumed that the
applications which are being run or the jobs which are submitted to
the grid system consist of a set of independent jobs with no particular
order of execution. Jobs that are submitted consist of different
computational time, therefore each job will require a different data
transmission time and computation time for completing.

The length of each job is presented in MIPS and each job has different
input and output size requirements. Jobs in the grid computing system
can be classifi ed into one of the two categories namely computational
intensive task or data intensive task. This research focuses on
computationally intensive tasks as it is more common in today’s real
life applications and the waste of computational power of resources is
more costly than their memory (Moallem, 2009).

PERFORMANCE EVALUATION CRITERIA

The performance evaluation criteria that are used to evaluate the
performance of the proposed algorithm are the processing time and
utilization of each resource. Minimizing the variations in workloads
on all machines is one of the aims of a load balancing algorithm.
Standard deviation in workload distribution is often used to determine
the performance and stability of the algorithm. A good load balancing
scheme is indicated by a small standard deviation value. Standard
deviation was calculated using equation 5.1 where x is the resource
utilization and n is the size of resource

51

 (5.1)

Processing Time

Processing time of each algorithm is one of the most common measures
in order to evaluate the performance of a scheduling algorithm. The
processing time is the total application execution time which is
measured from the time the job is sent to the grid system until the job
comes out of the grid. As jobs and topologies are generated randomly,
every simulation will roughly yield different results. In order to get
better results, the average processing time of 10 runs is recorded.
Equation 5.2 shows how the processing time of each submitted job
is calculated.

 Processing Time = Finish Time – Submission Time (5.2)

Utilization

The utilization of each resource in the grid system is dependent on the
time to process all jobs which are assigned to the machine by the grid
scheduler and the total time to process all the jobs in the system. The
utilization of each resource can be calculated using the equation 5.3.

 (5.3)

where total busy time is the time each resource consumes to process
all assigned jobs and total time processing all the jobs is the total time
taken for all the jobs to be processed by all resources

EXPERIMENTAL DESIGN

A set of experiments was conducted in order to evaluate the
performance of EACO. The performance of EACO algorithm was
compared with ant based algorithm that was proposed by Moallem
(2009), PSO algorithm (Moallem & Ludwig (2009), Space Shared
algorithm (Rose et al., 2008) and Time Shared algorithm (Abawajy,

100*
sin

(%)
jobsallgprocestimetotal

timebusytotalnutilizatio utilization

52

2009) in terms of processing time and resource utilization. In this
study, the ant based algorithm by Moallem (2009) is referred to as
AntZ algorithm. PSO and AntZ have been implemented in Gridsim.
The results from these algorithms were compared with the ones
in Moallem (2009) in the process of validating. The Space Shared
algorithm and the Time Shared algorithm were already provided by
the Gridsim toolkit.

The characteristics of the resources are shown in Table 5.1. Each
resource has one machine and each machine has a random number
of PEs ranging between 1 and 5. Each PE has a different processing
power.

Table 5.1

Resource Characteristics

Number of machines per resource 1
Number of PEs per machine 1-5
PE ratings 10 or 50 MIPS
Bandwidth 1000 or 5000 B/S

Jobs which are submitted to the grid system are supposed to be
independent of each other. Table 5.2 shows the characteristics of
the submitted jobs in order to compare the processing time of each
algorithms.

Table 5.2

Jobs Characteristics

Length 0 – 50000 MI
File Size 100 + (10% to 40%)
Output Size 250 + (10% to 50%)

EXPERIMENTAL RESULTS

Results of the experiments were compared with the AntZ algorithm,
the Space Shared algorithm and the Time Shared algorithm in terms
of processing time and the utilization of each resource.

53

Processing Time

Figure 5.1 depicts a comparison between the processing times of
the EACO algorithms with the AntZ algorithm, the PSO algorithm,
the Space Shared algorithm and the Time Shared algorithm with the
parameter specifi cations described in Table 5.3. Experimental results
showed that EACO outperformed the others. This is expected as the
EACO algorithm keeps track of the state of all resources at each point
in time which makes it able to make more optimal decisions at any
time. The Particle Swarm algorithm has the smallest processing time
after the EACO algorithm followed by the AntZ algorithm, the Time
Shared algorithm, and the Space Shared algorithm.

Figure 5.1. Processing time for different number of jobs and
resources.

Table 5.3

Experimental Setting for Different Number of Jobs and Resources

Experiment No. of Jobs No. of Resources
1 100 10
2 200 20
3 300 30

Processing Time

(continued)

54

Experiment No. of Jobs No. of Resources

4 400 40

5 500 50

6 600 60

7 700 70

8 800 80

9 900 90

10 1000 100

The effects of submitting the same number of jobs into the grid
system that has the same number of resources was investigated in
the next experiment. The specifi cations and parameter settings that
were used in the experiment are listed in Table 5.4. Figure 5.4 depicts
the performance of EACO and the other algorithms in comparing the
processing time for the same number of jobs and resources. Again it
can be seen that the EACO algorithm performed better than the other
algorithms.

Figure 5.2. Processing time for equal number of jobs and resources.

Processing Time

55

Table 5.4

Experimental Setting for the Same Number of Jobs and Resources

Experiment No. of Jobs No. of Resources
1 100 100
2 200 200
3 300 300
4 400 400
5 500 500
6 600 600
7 700 700

Figure 5.3 shows how increasing the number of jobs, while having
the same number of resources that are available in grid system will
affect the performance of the grid in terms of processing time. In this
experiment, 10 resources are available in the grid system with varying
number of jobs. The specifi cations and parameter settings are listed
in Table 5.5. As can be seen, all the algorithms show a linear growth
in response to the increasing number of jobs. Experimental results
showed that the EACO algorithm had smoother growth compared to
the other algorithms in terms of processing time.

Figure 5.3. Processing time for 10 resources with different number
of jobs.

Processing Time

56

Table 5.5

Experimental Settings for 10 Resources with Different Number of Jobs

Experiment No. of Jobs No. of Resources
1 50 10
2 100 10
3 200 10
4 300 10
5 500 10
6 700 10
7 1000 10

In the next experiment, the effect of increasing the number of
resources on the performance of the algorithms was investigated. In
this experiment, a fi xed number of jobs were sent to the grid system
while the number of resources that were available to process a job
was increased. The specifi cations and parameter settings are listed in
Table 5.6. As can be seen in Figure 5.4, increasing the number of
resources has a decreasing exponential effect on the processing time.
The EACO algorithm performed better than the other algorithms in
response to the increasing number of resources.

Figure 5.4. Processing time for the same number of jobs with
different number of resources.

Processing Time

57

Table 5.6

Experimental Setting for the Same Number of Jobs with Different
Number of Resources

Experiment No. of Jobs No. of Resources
1 1000 10
2 1000 30
3 1000 50
4 1000 70
5 1000 100

Utilization

Experiments were also conducted to see whether jobs were distributed
evenly among the resources. For this purpose, the utilization of
the resources was measured. Figure 5.5 shows the utilization of 10
resources in processing 100 jobs. The mean utilization for the 10
resources is 10%. The utilization of 7 resources is within 1 standard
deviation away from the mean. This shows that the EACO algorithm
successfully scheduled the jobs among the resources which led to a
balanced load network.

Figure 5.5. Utilization of 10 resources in processing 100 jobs for
EACO algorithm.

Utilization

58

A set of experiments was also conducted in order to compare the
utilization of each resource between the EACO algorithm and the
AntZ algorithm (refer Figure 5.6). Experimental results showed that
the EACO algorithm performed better than the AntZ algorithm. The
standard deviation for the EACO algorithm is 0.48109736 while the
standard deviation for the AntZ algorithm is 3.89609944. This is
expected as the EACO algorithm is keeping track of the state of all
the resources at each point in time which makes it able to make more
optimal decisions at each point in time.

Figure 5.6. Utilization of 10 resources in processing 100 jobs for
EACO and AntZ algorithms.

A set of experiments was conducted to see the utilization of 10 resources
in processing 500 jobs (refer Figure 5.7). The mean utilization for
the 10 resources is 10%. The utilization of 8 resources is within 1
standard deviation away from the mean. This showed that the EACO
algorithm successfully balanced the load among the resources.

Experiments was also conducted to compare the utilization of each
resource between the EACO algorithm and the AntZ algorithm in
order to process 500 jobs with 10 resources (refer Figure 5.8). The
standard deviation for the EACO algorithm is 0.24781421 while the
standard deviation for the AntZ algorithm is 3.6131422.These results
also proved that the EACO algorithm performed better than the AntZ
algorithm. Utilization of each resource was investigated for 1000 jobs
(refer Figure 5.9). The results showed that the mean utilization for

Utilization

59

the 10 resources is 10. Seven (7) resources have utilization within 1
standard deviation away from the mean. This showed that the loads/
jobs were better scheduled.

Figure 5.7. Utilization of 10 resources in processing 500 jobs for
EACO algorithm.

Figure 5.8. Utilization of 10 resources in processing 500 jobs for
EACO and AntZ algorithms.

Utilization

Utilization

60

Figure 5.9. Utilization of 10 resources in processing 10 jobs for
EACO algorithm.

Comparison on utilization of each resource between the EACO
algorithm and the AntZ algorithm in processing 1000 jobs with 10
resources was also conducted. Experimental results showed that the
EACO algorithm was better than the AntZ algorithm as the standard
deviation for the EACO algorithm is 0.28084636 and the standard
deviation for the AntZ algorithm is 2.77428296 (refer Figure 5.10).
These results showed that the EACO algorithm successfully balanced
the load among the resources in a large scale manner.

Figure 5.10. Utilization of 10 resources in processing 1000 jobs
For EACO and AntZ algorithms.

Utilization

Utilization

61

SUMMARY

In this chapter, the experimental results of applying EACO with
preferred values for different control parameters is compared with an
existing grid resource management algorithms in terms of processing
time and utilization of each resource. All algorithms ran exactly the
same scheduling parameters such as the number of jobs, the number
of resources, the number of machines per resource, the number of PEs
per machine, the PE ratings, the bandwidth, the size of jobs, and the
CPU time needed by each job.

Experimental results showed that EACO performed better than the
other algorithms in terms of processing time. In all conditions, EACO
showed a lower processing time compared to the other algorithms.
This is expected as the EACO algorithm is keeping track of the state
of all resources at each point in time which makes it able to make
more optimal decisions at each time. These results proved that EACO
is promising in solving the matching and scheduling problems in grid
computing.

The performance of the proposed algorithm was also investigated
in the load balancing aspect. Experimental results showed that the
EACO algorithm performed better than the AntZ algorithm, the
Space Shared algorithm and the Time Shared algorithm in terms of
utilization of each resource. The EACO algorithm has successfully
scheduled the jobs among resource in all conditions which leads to a
balanced load network.

62

6

CONCLUSION AND FUTURE WORK

EACO offers the opportunity to enhance the results of the ACO
algorithms reported in the literature. The results of EACO showed
that this approach can be superior to the best known ACO algorithms
like ACS and MMAS. The enhancement of the ant based resource
scheduling algorithm in grid computing was able to minimize job
computational time, match jobs with suitable resources, and balance
the resources in grid environment.

The research has considered:

1. A directed graph model that consists of four vertices which
are job, requirement, resource and capacity. The graph model
refl ects the behavior of ants that must go back and forth between
the food and nest in foraging for food.

2. A formula to calculate an initial pheromone value that can match
jobs and resources according to the jobs characteristics and the
resources capacity. The initial pheromone value considered
the size and CPU time needed by jobs and also considered the
bandwidth, the MIPS and the current load of resources. This
value will be stored in PVT as a reference to the following ants.

3. A resource selection strategy that can be used to assign
submitted jobs to resources. Ants can decide which resource
to choose either by looking at the previous resource that was
used to process jobs or choose a resource randomly by the
probability of mutation factor in this strategy.

63

4. A pheromone update technique that can be used to update
current status of each resource during scheduling process.
The calculation pheromone is performed after a resource
has fi nished processing a job and the pheromone update is
performed globally. The effect of the global pheromone update
is to make an already chosen resource less desirable for the
next ant.

5. A simulation model that can be used to simulate the grid
environment and evaluate the proposed enhanced ACO algorithm
in terms of processing time and the utilization of each resource.

CONTRIBUTION OF THE RESEARCH

The main contribution of the research is to show how the ant tries to
match submitted jobs with available resources. To achieve this, the
initial pheromone value is calculated by considering the characteristics
of each job and the capacity of each resource such as the size and the
CPU, the time needed by each job and also the bandwidth, the MIPS
and the current load of each resource. By considering these aspects,
jobs can be scheduled well to the suitable resources. It can reduce the
processing time of each resource and also balance the entire resources.

The pheromone updating mechanism is used to support the idea of
diversifi cation as the pheromone updating is the means to store new
experiences of ants. The global pheromone update in the EACO
algorithm plays an important part by reducing the pheromone value on
the resource that completely processed a job. The effect of this aspect is
to make an already chosen resource less desirable for the next ant.

A range for the best value of each evaporation rate which is the
control parameter is defi ned. Evaporation rate is different for different
sets of jobs to be processed. A dynamic evaporation rate that can
automatically change the evaporation rate based on the number of jobs
submitted and the number of available resources was proposed. By
considering this aspect, the EACO algorithm successfully scheduled
jobs among the resources which lead to a balanced load network.

The contributions mentioned above were able to minimize job
computational time, match jobs with suitable resources and balance
entire resources in grid environment.

64

FUTURE WORK

In grid environments, computational performance changes from
time to time, network connections may become unreliable, resources
may join or leave the system at any time and resources may become
unavailable without any notifi cations will require a dynamic scheduling
algorithm in managing jobs and resources. Future work can enhance
the proposed EACO to consider the changes such as resource failure.
In this case the dynamic algorithm will stop and migrates jobs to other
available resources in a dynamic evaporation rate environment.

Another potential future work is to apply the proposed algorithm
on multiple ant colonies in solving the grid resource management
problem. Using multiple ant colonies might improve the performance
of the scheduling algorithm as ant populations will be divided into
appropriate number of colonies to fi nd the appropriate ways for these
colonies to organize their activities with high level cooperation.

65

REFERENCES

Abawajy, J. (2009). Adaptive hierarchical scheduling policy for
enterprise grid computing systems. Journal of Network and
Computer Applications, 32(3), 770-779.

Abraham, A., Liu, H., Zhang, W., & Chang, T. (2006). Scheduling
jobs on computational grids using fuzzy particle swarm
algorithm. Proceedings of the 10th International Conference
on Knowledge-Based Intelligent Information and Engineering
Systems, 500-507.

Ali, A., Belal, M., A., & Al-Zoubi, M., B. (2010). Load balancing of
distributed systems based on multiple ant colonies optimization.
American Journal of Applied Sciences, 7(3), 433-438.

Bagherzadeh, J., & MadadyarAdeh, M. (2009). An improved ant
algorithm for grid scheduling problem. Proceedings of the 14th
International CSI Computer Conference, 323-328.

Bai, X., Yu, H., Ji, Y., & Marinescu, D. (2004). Resource matching
and a matchmaking service for an intelligent grid. International
Journal of Computational Intelligence, 1(3), 197-205.

Balasangameshwara, J., & Raju, N. (2010). A decentralized recent
neighbour load balancing algorithm for computational grid.
International Journal of ACM Jordan, 1(3), 128-133.

Baru, C., Moore, R., Rajasekar, A., & Wan, M. (1998). The SDSC
storage resource broker. Proceedings of the 1998 Conference
of the Centre for Advanced Studies on Collaborative Research,
1-12.

Bullnheimer, B., Hartl, R.F., & Strauss, C. (1996). A new ranked-
based version of the ant system: A computational study. Central
European Journal of Operations Research and Economics,
7(1), 25-38.

Cao, J., Spooner, D., Jarvis, S., & Nudd, G. (2005). Grid load balancing
using intelligent agents. Future Generation Computer Systems,
21(1), 135-149.

66

Carretero, J., & Xhafa, F. (2006). Use of genetic algorithms
for scheduling jobs in large scale grid applications.
ŪKIO TECHNOLOGINIS IR EKONOMINIS VYSTYMAS,
12(1), 11-17.

Chang, R., Chang, J., & Lin, P. (2007). Balanced job assignment based
on ant algorithm for computing grids. Proceedings of the 2nd
IEEE Asia-Pacifi c Service Computing Conference, 291-295.

Chen, T., Zhang, B., Hao, X., & Dai, Y. (2006). Task scheduling
in grid based on particle swarm optimization. Proceedings of
the 5th International Symposium on Parallel and Distributed
Computing (ISPDC’06), 238-245.

Chen, Y. (2008). Load balancing in non-dedicated grids using ant
colony optimization. Proceedings of the 4th International
Conference on Semantics, Knowledge and Grid, 279-286.

Chtepen, M., Dhoedt, B., & Vanrolleghem, P. (2005). Dynamic
scheduling in grid systems. 6th FirW PHD Symposium,
110 -111.

Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed
optimization by ant colonies. Proceedings of European
Conference on Artifi cial Life. Paris, France, Amsterdam:
Elsevier Publishing, 134-142.

Cordon, O., Fernandez, I., Herrera, F., & Moreno, L. (2000). A new
ACO model integrating evolutionary computation concepts:
The best-worst ant system. Proceedings of ANTS2000 – From
Ant Colonies to Artifi cial Ants: A Series of International
Workshops on Ant Algorithms, 22-29.

Cordon, O., Herrera, F., & Stutzle, T. (2002). A review on the ant
colony optimization metaheuristic: Basis, models and new
trends. Mathware and Soft Computing, 9(2/3), 141-175.

Dorigo M., V. Maniezzo & A. Colorni (1991a). Positive feedback as
a search strategy. Technical Report No. 91-016, Politecnico di
Milano, Italy.

67

Dorigo M., V. Maniezzo & A. Colorni (1991b). The ant system: An
autocatalytic optimizing process. Technical Report No. 91-016
Revised, Politecnico di Milano, Italy.

Dorigo, M. (1992). Optimization, learning and natural algorithms.
(Unpublished PhD thesis). Politecnico di Milano, Italy.

Dorigo, M., & Gambardella, L. (1997a). Ant colonies for the travelling
salesman problem. BioSystems, 43(2), 73-81.

Dorigo, M., & Gambardella, L. (1997b). Ant colony system: A
cooperative learning approach to the travelling salesman
problem. IEEE Transactions on Evolutionary Computation,
1(1), 53–66.

Dorigo, M., & Socha, K. (2006). An introduction to ant colony
optimization. Handbook of Approximation Algorithms and
Metaheuristics, 26.21–26.14.

Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. Cambridge,
Massachusetts, London, England: MIT Press.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system:
Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics–Part B, 26(1),
29–41.

Fattahi, S. M., & Charkari, N. M. (2009). Distributed ACS Algorithm
for Resource Discovery in Grid. International Conference on
IT to Celebrate S. Charmonman’s 72nd Birthday, 37.1-37.7.

Fidanova, S., & Durchova, M. (2006). Ant algorithm for grid
scheduling problem. Large-Scale Scientifi c Computing, 405-412.

Foster, I., & Kesselman, C. (1997). Globus: A metacomputing
infrastructure toolkit. International Journal of High
Performance Computing Applications, 11(2), 115-128.

Foster, I., & Kesselman, C. (2004). The grid: Blueprint for a new
computing infrastructure. Morgan Kaufmann.

68

Frey, J., Tannenbaum, T., Livny, M., Foster, I., & Tuecke, S. (2002).
Condor-G: A computation management agent for multi-
institutional grids. Journal of Cluster Computing, 5(3), 237-246.

Grimshaw, A., Ferrari, A., Knabe, F., & Humphrey, M. (1999). Wide
area computing: Resource sharing on a large scale. Computer,
32(5), 29-37.

Grosan, C., Abraham, A., & Helvik, B. (2007). Multi-objective
evolutionary algorithms for scheduling jobs on computational
grids. Proceedings of the International Conference on Applied
Computing, 459-463.

Ibarra, O., & Kim, C. (1977). Heuristic algorithms for scheduling
independent tasks on nonidentical processors. Journal of the
Association for Computing Machinery (JACM), 24(2), 280-289.

Kaegi, S., & White, T. (2003). Using local information to guide ant
based search. Proceedings of the 16th International Conference
on Industrial & Engineering Applications of Artifi cial
Intelligence and Expert Systems (IEA/AIE), 692-701.

Kawamura, H., Yamamoto, M., Suzuki, K., & Ohuchi, A. (2000).
Multiple ant colonies algorithm based on colony level
interactions. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 83(2), 371-379.

Kong, X., Shen, H., Chen, X., Wang, C., & Song, C. (2010). Dynamic
grid scheduling algorithm based on self-adaptive Tabu Search.
Proceedings of the International Conference on Computer
Design and Applications (ICCDA), 2, V2-271-V2 274.

Kousalya, K., & Balasubramanie, P. (2008). A solution to grid
scheduling problem using an improved ant algorithm. Journal
of the Advances in Computational Sciences and Technology,
1(2), 113-126.

Kousalya, K., & Balasubramanie, P. (2009). To improve ant
algorithm’s grid scheduling using local search. International
Journal of Computational Cognition, 7(4), 47-57.

69

Krauter, K., Buyya, R., & Maheswaran, M. (2002). A taxonomy and
survey of grid resource management systems for distributed
computing. Journal of Software: Practice and Experience,
32(2), 135-164.

Li, Y. (2006). A bio-inspired adaptive job scheduling mechanism on a
computational grid. International Journal of Computer Science
and Network Security, 6(3B), 1-7.

Li, Y., Yang, Y., & Zhu, R. (2009). A hybrid load balancing strategy
of sequential tasks for computational grids. Proceedings of the
International Conference on Networking and Digital Society,
112-117.

Liu, A., & Wang, Z. (2008). Grid task scheduling based on adaptive ant
colony algorithm. Proceedings of the International Conference
on Management of e-Commerce and e-Government, 415-418.

Livny, M., & Melman, M. (1982). Load balancing in homogeneous
broadcast distributed systems. ACM SIGMETRICS Performance
Evaluation Review, 11(1), 47-55.

Lorpunmanee, S., Sap, M., N., Abdullah, A., H., & Chompoo-inwai, C.
(2007). An ant colony optimization for dynamic job scheduling
in grid environment. International Journal of Computer and
Information Science and Engineering, 1(4), 207-214.

Moallem, A. (2009). Using swarm intelligence for distributed job
scheduling on the grid (unpublished master thesis). University
of Saskatchewan, Canada.

Moallem, A., & Ludwig, S. (2009). Using artifi cial life techniques for
distributed grid job scheduling. Proceedings of the 2009 ACM
Symposium on Applied Computing, 1091-1097.

Naik, V., K., Garbacki, P., Kummamuru, K., & Zhao, Y. (2006).
On-line evolutionary resource matching for job scheduling
in heterogeneous grid environments. Proceedings of the 12th
International Conference on Parallel and Distributed Systems
(ICPADS’06), 103-108.

70

Perretto, M., & Lopes, H. (2005). Reconstruction of phylogenetic
trees using the ant colony optimization paradigm. Genetic and
Molecular Research, 4(3), 581–589.

Rose, C., A., F., D., Ferreto, T., Calheiros, R., N., Cirne, W., Costa, L.,
B., & Fireman, D. (2008). Allocation strategies for utilization of
space-shared resources in bag of tasks grids. Future Generation
Computer Systems, 24(5), 331-341.

Sadhasivam, S., & Meenakshi, K. (2009). Load balanced, effi cient
scheduling with parallel job submission in computational grids
using parallel particle swarm optimization. World Congress on
Nature & Biologically Inspired Computing, 175-180.

Salehi, M., & Deldari, H. (2006). Grid load balancing using an
echo system of intelligent ants. Proceedings of the 24th
IASTED International Conference on Parallel and Distributed
Computing and Networks, 47-52.

Sathish, K., & Reddy, A. (2008). Enhanced ant algorithm based load
balanced task scheduling in grid computing. International
Journal of Computer Science and Network Security, 8(10),
219-223.

Sharma, A., & Bawa, S. (2008). Comparative analysis of resource
discovery approaches in grid computing. Journal of Computers,
3(5), 60-64.

Somasundaram, T. S., Balachandar, R., Kandasamy, V., Buyya, R.,
Raman, R., Mohanram, N., et al. (2006). Semantic-based grid
resource discovery and its integration with the grid service
broker. International Conference on the Advanced Computing
and Communications, 1-8.

Stützle, T., & Hoos, H. (2000). MAX-MIN ant system. Future
Generation Computer Systems, 16(9), 889-914.

Subrata, R., Zomaya, A., & Landfeldt, B. (2007). Artifi cial life
techniques for load balancing in computational grids. Journal
of Computer and System Sciences, 73(8), 1176-1190.

71

Tangmunarunkit, H., Decker, S., & Kesselman, C. (2003). Ontology-
based resource matching in the grid–the grid meets the semantic
web. The Semantic Web-ISWC 2003, 706-721.

Wang, Q., Gao, Y., & Liu, P. (2006). Hill climbing-based decentralized
job scheduling on computational grids. Proceedings of the
First International Multi-Symposiums on Computer and
Computational Sciences, 1, 705-708.

Wenming, H., Zhenrong, D., & Peizhi, P. (2009). Trust-based ant
colony optimization for grid resource scheduling. Proceedings
of the Third International Conference on Genetic and
Evolutionary Computing, 288-292.

Xu, Z., Hou, X., & Sun, J. (2003). Ant algorithm-based task scheduling
in grid computing. Proceedings of the Canadian Conference on
Electrical and Computer Engineering, 2, 1107- 1110.

Yan, H., Shen, X., Li, X., & Wu, M. (2005). An improved ant
algorithm for job scheduling in grid computing. Proceedings of
the Fourth International Conference on Machine Learning and
Cybernetics, 5, 2957-2961.

Yan, K., Wang, S., Wang, S., & Chang, C. (2009). Towards a hybrid
load balancing policy in grid computing system. International
Journal of Expert Systems with Applications, 36(10), 12054-
12064.

YarKhan, A., & Dongarra, J. (2002). Experiments with scheduling
using simulated annealing in a grid environment. Proceedings
of the Third International Workshop on Grid Computing,
232-242.

Zhan, Z., Zhang, J., Li, Y., & Chung, H. (2009). Adaptive particle
swarm optimization. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 39(6), 1362-1381.

Zhu, Y., & Hu, Y. (2004). Towards effi cient load balancing in
structured P2P systems. Proceedings of the 18th International
Parallel and Distributed Processing Symposium, 20-29.

72

Zhu, Y., Xu, W., & Shen, P., (2009). Research of grid resource
discovery method based on Adjacency list and ant colony
Algorithm. International Conference on Intelligent Human-
Machine Systems and Cybernetics, 201-205.

