
Grid Load Balancing Using Ant Colony Optimization

Husna Jamal Abdul Nasir

College of Arts and Sciences,

Universiti Utara Malaysia,

06010 Sintok, Kedah, Malaysia.

 E-mail: oxalic2131@gmail.com

Ku Ruhana Ku-Mahamud

College of Arts and Sciences,

Universiti Utara Malaysia,

06010 Sintok, Kedah, Malaysia.

E-mail: ruhana@uum.edu.my

Abstract –An enhanced ant colony optimization technique for

jobs and resources scheduling in grid computing is proposed in

this paper. The proposed technique combines the techniques

from Ant Colony System and Max – Min Ant System and

focused on local pheromone trail update and trail limit. The

agent concept is also integrated in this proposed technique for

the purpose of updating the grid resource table. This facilitates

in scheduling jobs to available resources efficiently which will

enable jobs to be processed in minimum time and also balance

all the resource in grid system.

Keywords - Enhanced Ant Colony Optimization, Grid

Resource Management, Load Balancing, Stagnation, System

Architecture

I. INTRODUCTION

Cluster and grid computing are several ways for
establishing distributed system [5]. In a cluster computing
environment, several personal computers or workstation are
combined through local networks in order to develop
distributed applications. Cluster computing give rise to the
application being inflexible in variation because they are
limited to a fixed area. Grid computing is developed through
a combination of various resources from different
geographic locations.

Grid computing is based on large-scale resources sharing
in a widely connected network such as the Internet [6]. This
makes grid computing different from conventional
distributed computing and cluster computing. However,
computational grid has different constraints and
requirements to those of traditional high performance
computing systems. In grid system, resource management
and scheduling are key grid services, where issues of task
allocation and load balancing represent a common problem
for most grid systems. In grid computing environment, load
balancing algorithm should be ‘fair’ in distributing jobs
across the resources. The objectives of the load balancing
algorithm are to equally spread the job on each resource,
minimizing the total task execution time of each job and
maximizing the utilization of each resource. In order to
achieve these objectives, the difference between the
heaviest-loaded node and the lightest node should be
minimized.

Load balancing algorithm can be classified into static or
dynamic, and centralized and decentralized. In the static
load balancing algorithm, all information about jobs,
resources and communication network are known in

advance and jobs are assigned to suitable resources before
execution begin. Once started, they keep running on the
same resource without interruption. However, static load
balancing has one major disadvantage which is all
information about jobs and resources are remaining
constants during the process. In contrast, dynamic load
balancing attempt to use the runtime state information to
make a load balancing decision more informative.
Reevaluation is allowed of already taken assignment
decisions during job execution in dynamic load balancing
algorithm [8]. In these comparisons, static load balancing
algorithm is easier to be implemented and has minimal
runtime overhead compare to dynamic load balancing
algorithm. However, dynamic load balancing may result in
better performance.

In the centralized approach, one node in the grid system
acts as a scheduler and makes load balancing decisions for
all resources. All information from other nodes will be sent
to this node. However, in the decentralized approach, all
nodes in the grid system are involved in the load balancing
decision. This is very costly and difficult to obtain and
maintain the dynamic state information of the whole system.
In decentralized approach, only partial local information is
determined to make sub-optimal decisions.

This paper proposes an enhance ACO technique that can
balance the entire resources in grid computing environment
and at the same time minimize the computational time of
jobs. Section 2 describes the grid load balancing algorithms
while ACO algorithms in grid environment will be
discussed in section 3. The proposed technique will be
discussed in section 4 and the experimental result is
presented in Section 5. Lastly, concluding remarks are
highlighted in Section 6.

II. GRID LOAD BALANCING

Grid load balancing is one of the most difficult problems
that must be handled in grid computing system. Load
balancing aims to distribute workload evenly across two or
more computers, network links, CPUs, hard drives, or other
resources, in order to get optimal resource utilization,
maximize throughput, minimize response time, and avoid
overload. The problem of balancing resources is defined as
Nondeterministic Polynomial (NP)-complete problem [12].
Grid resource management is a very challenging task since
the resources that need to be shared are distributed and
heterogeneous [2]. Resource management involves the

Second International Conference on Computer and Network Technology

978-0-7695-4042-9/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCNT.2010.10

207

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/12117354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

process of scheduling jobs to suitable resources as
illustrated in Fig. 1. During the scheduling process, jobs are
needed to be matched with suitable resources that can fulfill
their requirements as well as balancing loads on resources.

 Figure 1: Grid Scheduling Process

There are many types of algorithms that have been used
in resource balancing in grid computing system. The
research by [1] addresses the use of Genetic Algorithm
(GA) and Tabu Search (TS) to solve the grid load balancing
problem in the dynamic environment. In the study, GA and
TS performed better than the Best-Fit, Random, Min-min,
Max-min and Sufferage algorithms in terms of time taken to
schedule submitted jobs and job completion time. GA and
TS can balance the extra overhead by considering the ever-
decreasing costs of storage and processing power. However,
these algorithms require extra storage and processing
requirement at the scheduling nodes.

A hybrid load balancing policy that can be integrated in
static and dynamic load balancing technique is studied in [3]
with the objectives to allocate effective nodes, identify
system imbalance immediately when a node become
ineffective and fill in with new nodes. Result proved that
this technique is more effective than the FCFS and GA in
term of selecting nodes, reducing task completion time and
avoiding the occurrence of task re-distribution and re-
execution. Thus it can maintain load balancing on each
resource and improve the performance of the system.
Suitable resources will be allocated according to task
properties which can reduce wrong selection of ineffective
nodes decision.

The study by [12] uses a combination of intelligent
agents and multi-agent approaches that work in grid load
balancing area. In static grid load balancing, the iterative
heuristic algorithm is better than the FCFS algorithm. The
study highlights that a peer to peer service advertisement
and discovery technique are more effective in dynamic grid
load balancing environment. Instead of using a centralized
control, distributed agent can reduce the network overhead
significantly and allow the system to operate well in
distributed environment which can help the user to achieve
good resource utilization and minimizing the processing
time of each job.

A hybrid load balancing strategy of sequential tasks that
uses a combination of static and dynamic load balancing

strategies which combines a FCFS algorithm with a special
designed GA was proposed in [2]. The FCFS algorithm can
make decision instantly which can reduce the system
response time, resulting in a shorter makespan. GA was
used to control the overall performance over a list of tasks
and targets the balance of the resources in grid computing
area. A sliding-window technique is used to trigger the
switch between the two algorithms and to make a rapid task
assignment as well. From the experiment conducted, hybrid
GA provides better performance than dynamic GA and
FCFS in different conditions such as makespan and the
current work load. Other technique such as Ant Colony
Optimization has also been used in solving the load
balancing problem [14].

III. ACO ALGORITHMS IN GRID ENVIRONMENT

Ant Colony Optimization (ACO) is inspired by a colony
of ants that work together to find the shortest path between
their nest and food source. Every ant will deposit a chemical
substance called pheromone on the ground after they move
from the nest to food sources and vice versa. Optimal path
will be chosen based on the pheromone value. The path with
high pheromone value is shorter than the path with low
pheromone value. This behavior is the basis for a
cooperative communication. There are various types of
ACO algorithm such as Ant Colony System (ACS), Max-
Min Ant System (MMAS), Rank-Based Ant System (RAS)
and Elitist Ant System (EAS) [9].

ACO has been applied in solving many problems in
scheduling such as Job Shop Problem, Open Shop Problem,
Permutation Flow Shop Problem, Single Machine Total
Tardiness Problem, Single Machine Total Weighted
Tardiness Problem, Resource Constraints Project
Scheduling Problem, Group Shop Problem and Single
Machine Total Tardiness Problem with Sequence
Dependent Setup Times [9]. A recent approach of ACO
researches in the use of ACO for scheduling job in grid
computing [17]. ACO algorithm is used in grid computing
because it is easily adapted to solve both static and dynamic
combinatorial optimization problems. In a research by [21],
ACO has been used as an effective algorithm in solving the
scheduling problem in grid computing.

Balanced job assignment based on ant algorithm for
computing grids called BACO was later proposed by [14].
This research aims to minimize the computation time of job
executing in Taiwan UniGrid environment which also
focused on load balancing factors of each resource. By
considering the resource status and the size of the given job,
BACO algorithm chooses optimal resources to process the
submitted jobs. The local and global pheromone update
technique is used to balance the system load. Local
pheromone update function updates the status of the
selected resource after job has been assigned and the job
scheduler depends on the newest information of the selected
resource for the next job submission. Global pheromone
update function updates the status of each resource for all
jobs after the completion of the jobs. By using these two
update techniques, the job scheduler will get the newest
information of all resources for the next job submission.

PHASE 1 – RESOURCE DISCOVERY

RESOURCE AUTHORIZATION

REQUIREMENT FILTERING

PHASE 2 – SYSTEM SELECTION

INFORMATION GATHERING

RESOURCE SELECTION

PHASE 3 – JOB EXECUTION

CLEAN-UP TASK

 JOB COMPLETION

MONITORING PROGRESS

PREPARATION TASK

JOB SUBMISSION

208

From the experimental result, BACO is capable of balancing
the entire system load regardless of the size of the jobs.

The study to improved ant algorithm for job scheduling
in grid computing which is based on the basic idea of ACO
was proposed in [4]. The pheromone update function in this
research is performed by adding encouragement,
punishment coefficient and load balancing factor. The initial
pheromone value of each resource is based on its status
where job is assigned to the resource with the maximum
pheromone value. The strength of pheromone of each
resource will be updated after completion of the job. The
encouragement and punishment and local balancing factor
coefficient are defined by users and are used to update
pheromone values of resources. If a resource completed a
job successfully, more pheromone will be added by the
encouragement coefficient in order to be selected for the
next job execution. If a resource failed to complete a job, it
will be punished by adding less pheromone value. The load
of each resource is taken into account and the balancing
factor is also applied to change the pheromone value of each
resource.

An ant colony optimization for dynamic job scheduling
in grid environment was proposed by [17] which aimed to
minimize the total job tardiness time. The process to update
the pheromone value on each resource is based on local
update and global update rules as in ACS. In the study,
ACO algorithm performed the best when compared to First
Come First Serve, Minimal Tardiness Earliest Due Date and
Minimal Tardiness Earliest Release Date techniques.

The study by [21] proposed a bio-inspired adaptive job
scheduling mechanism in grid computing with the aim to
minimize the execution time of the computational jobs by
effectively taking advantage of the large amount of
distributed resource. Various software ant agents were
designed with simple functionalities. Comparison was also
performed between the bio inspired adaptive scheduling
with the random mechanism and heuristic mechanism.
Experimental results showed that bio-inspired adaptive job
scheduling has good adaptability and robustness in a
dynamic computational grid.

Simple grid simulation architecture for resource
management and task scheduling was proposed in [22]. The
study validated the scalability of ant algorithm where the ant
algorithm for grid task scheduling is integrated into the
simulation architecture and good results were obtained in
terms of resource average utilization, response time and task
fulfill proportion.

From the above research, ACS is the most popular
variant of ACO that has been successfully used in grid
computing to solve the scheduling and load balancing
problems. However, the algorithm in this application
domain can be enhanced to provide better performance for
load balancing.

IV. PROPOSED ACO FOR GRID LOAD BALANCING

This proposed technique will focused on reducing the
computational time of each job and at the same time to
balance the entire resources available in grid environment.
The technique will select the resources based on the

pheromone value on each resource. A matrix that contains
the pheromone value on each resource will be used in this
technique to facilitate the selection of suitable resources to
process submitted jobs. The technique utilized four main
components namely the grid information server, grid
resource broker, jobs and resources, and works as follow:

1) User will send request to process a job. Details about

the job such as the total number of jobs, size of each
job, and CPU time needed by jobs will be included in
the request.

2) Grid resource broker starts to calculate the relevant
parameter to schedule the job after receiving the
message from the user. The information server also
provides the resource information to grid resource
broker.

3) The largest entry in the pheromone value (PV) matrix
will be selected by proposed technique as the resource
to process the submitted job. A local pheromone update
is performed after a job is assigned to a resource.

4) A global pheromone update is performed after a
resource completed processing a job.

5) The execution results will be sent to the user.

In this proposed technique, an ant represents a job in the
grid system. The grid resource broker will find available
resources from grid information server. Ant will move
randomly in grid system and check the status of each
resource. Pheromone value on a resource indicates the
capacity of each resource in grid system. Pheromone value
will be determined by two types of pheromone update
technique which are local pheromone update in ACS [7] and
global pheromone update in MMAS [18].

The initial pheromone value of each resource for each
job is calculated based on the estimated transmission time
and execution time of a given job when assigned to this
resource. The estimated transmission time can be

determined by

r

j

bandwidth

S
 where jS is the size of a

given job j and rbandwidth is the bandwidth available

between the grid resource broker and the resource. The
initial pheromone value is defined by:

1

)1(*

−

−
+=

rr

j

r

j

ij
loadMIPS

C

bandwidth

S
PV (1)

where ijPV is the pheromone value for job j assigned to

resource r, jC is the CPU time needed of job j, rMIPS is

the processer speed of resource r and load−1 is the current

load of resource r. The load, processor speed and bandwidth
can be obtained from grid information server.

Assume there are n jobs and m resources in the PV
matrix:

209

 PV =

mnmm

n

PVPVPV

PVPVPV

..

........

........

..

21

11211

The largest entry from PV matrix will be selected in each

iteration. Assuming PVij is selected then job j will be
processed by resource r. The local pheromone update is
performed after job j has been assigned to resource r. This
formula only applied to unassigned jobs in the PV matrix.
The local pheromone update is formulated as follow:

() 0..1 τξτξτ +−= jrjr (2)

where ξ,0< ξ<1 and 0τ are two parameters. The value of

0τ is set to be the same as the initial value for the

pheromone trails. A good value for
ξ

was found to be 0.1,

while a good value for 0τ was found to be
nnnC/1 , where

n is the number of resources and
nnC is the resource with

high pheromone value. The effect of the local pheromone
update is to make an already chosen resource less desirable
for a following ant [9]. So, the exploration of not yet visited
resource is increased.

When a job is completely processed, global pheromone
update is performed to recalculate the entire PV matrix.
After all ants have constructed a solution, the pheromone
trails are updated according to the following formula:

() () bs

jrjrjr t τρτρτ ∆+−=+ .11 (3)

where ∆ τjr
best

 = 1/L
best .

The ant which is allowed to add
pheromone may be the iteration-best solution or global best
solution. If a specific resource is often used in the best
solution, it will receive a larger amount of pheromone and
stagnation will occur. So, lower and upper limits on the
possible pheromone strengths on any resource are imposed
to avoid stagnation. The imposed trails limits have the
effects of limiting the probability ρiu of selecting resource u
when ants is in resource i to an interval [pmin,pmax], with
0<pmin≤pij≤pmax≤1. With this minimum trail limit, the
resource is less desire to be selected by the jobs since it will
select the resource that has the upper trail limit.

V. EXPERIMENTAL RESULT

In the experiment, there are three jobs (j1, j2, and j3) that
need to be processed and also three resources (r1, r2, and r3)
are available in grid system. The initial status of each
resource is shown in Table I and size of each job is 5MB,
3MB and 1MB. The CPU cycles needed for each job are
5M, 3M and 1M respectively.

TABLE I. INITIAL STATUS OF EACH RESOURCE

Status r1 r2 r3

Processor Speed (MIPS) 217 464 195

Load 15% 10% 20%

Bandwidth (Megabits/s) 10.62 24.50 12.62

The initial pheromone values of each entry are shown in

the following PV matrix:

PV =

===

===

===

68.1189.334.2

14.2371.763.4

04.1035.301.2

333231

232221

131211

PVPVPV

PVPVPV

PVPVPV

The maximum pheromone value (PV23) in the PV matrix

will be selected by grid resource broker. So j3 will be
processed by r2. After assigning j3 to r2, the local pheromone
update is performed to the second row of r2. Column 3 is no
longer needed because j3 has been assigned. The new PV
matrix is as follows:

PV =

==

==

==

89.334.2

94.617.4

35.301.2

3231

2221

1211

PVPV

PVPV

PVPV

After r2 finished processing j3, the global pheromone

update is performed to get the newest pheromone value for
the next job submission. The newest status of each resource
after the execution of j3 is as shown in Table II. The load
status of each resource will be changed according to the size
of the current load. On the other hand, the ρ value is used in

evaporation process.

TABLE II. NEWEST STATUS OF EACH RESOURCE

Status r1 r2 r3

Processor Speed (MIPS) 217 464 195

Load 15% 25% 20%

Bandwidth (Megabits/s) 8.67 15.87 10.26

ρ 0.00 0.05 0.00

The ρ value of r2 is 0.05 and ρ values for r1 and r3 are

zero since they have not been assigned any job for
execution. The new PV matrix is as follows:

PV =

==

==

==

22.393.1

81.488.2

73.264.1

3231

2221

1211

PVPV

PVPV

PVPV

The remaining job will be assigned in the same way. The

local pheromone update will be performed after a grid
resource broker assigned a job to a resource. After a

Local update

njjj ..21

mr

r

r

..

2

1

3

2

1

r

r

r

321 jjj

210

resource finished processing a job, all entries of the PV
matrix will be updated by the global pheromone update
rules.

VI. CONCLUSION

The load balancing process in this proposed technique is
based on the combination of local pheromone update and
trail limits. The local pheromone trail update will reduce the
amount of pheromone in assigned resource, to ensure the
resource is less desirable for other ants while the trail limit,
which is the allowed range of the pheromone strength, is
limited to maximum and minimum trail strength. This is a
technique to control the value of pheromone updated on
each resource. The proposed technique is simple to be
implementing due to the existing of information of each
resources and jobs. By implementing this technique, the
load on each resource can be balanced and the execution
time of each job can be minimized.

REFERENCES

[1] A. Colorni, M. Dorigo, and V. Maniezzo, "Distributed optimization
by ant colonies," presented at Proceedings of the First European
Conference on Artificial Life, Paris, France, Amsterdam: Elsevier
Publishing, pp. 134-142, 1991.

[2] G. Pavani and H. Waldman, "Grid resource management by means of
ant colony optimization," 3rd International Conference on Broadband
Communications, Networks and Systems (BROADNETS), 2006.

[3] H. Singh and A. Youssef, "Mapping and scheduling heterogeneous
task graphs using genetic algorithms," presented at 5th IEEE
Heterogeneous Computing Workshop (HCW’96), 1996.

[4] H. Yan, X. Shen, X. Li, and M. Wu, "An improved ant algorithm for
job scheduling in grid computing," presented at Proceedings of the
Fourth International Conference on Machine Learning and
Cybernetics, vol. 5, pp. 2957-2961, 2005.

[5] I. Foster and C. Kesselman, The grid: blueprint for a new computing
infrastructure. San Francisco: Morgan Kaufmann, 2004.

[6] K. Yang, X. Guo, A. Galis, B. Yang, and D. Liu, "Towards efficient
resource on-demand in grid computing," ACM SIGOPS Operating
Systems Review, vol. 37(2), pp. 37-43, 2003.

[7] L. Gambardella and M. Dorigo, "Solving symmetric and asymmetric
TSPs by ant colonies," presented at Proceedings of the IEEE
Conference on Evolutionary Computation, Nagoya, Japan (ICEC96),
pp. 622-627, 1996.

[8] M. Chtepen, “Dynamic scheduling in grids system,” Sixth Firw PhD
Symposium, Faculty of Engineering, Ghent University, pp. 110, 2005.

[9] M. Dorigo and T. Stützle, Ant colony optimization, Cambridge,
Massachusetts, London, England: MIT Press, 2004.

[10] M. Dorigo, "Optimization, learning and natural algorithms,” Ph. D.
dissertation, Politecnico di Milano, Milan, Italy, 1992.

[11] M. Dorigo, V. Maniezzo, and A. Colorni, "The ant system: An
autocatalytic optimizing process," Thechnical Report 91-016 Revised,
Dipartimento di Electronica, Politecno di Milano, 1991.

[12] O. Ibarra and C. Kim, "Heuristic algorithms for scheduling
independent tasks on nonidentical processors," Journal of the ACM
(JACM), vol. 24(2), pp. 280-289, 1977.

[13] R. Armstrong, D. Hensgen, and T. Kidd, "The relative performance of
various mapping algorithms is independent of sizable variances in
run-time predictions," presented at 7th IEEE Heterogeneous
Computing Workshop (HCW’98), 1998.

[14] R. Chang, J. Chang, and P. Lin, "Balanced Job Assignment Based on
Ant Algorithm for Grid Computing," presented at Proceedings of the
2nd IEEE Asia-Pacific Service Computing Conference, pp. 291-295,
2007.

[15] R. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman,
D. Hensgen, E. Keith, T. Kidd, M. Kussow, and J. Lima, "Scheduling
resources in multi-user, heterogeneous, computing environments with
SmartNet," presented at 7th IEEE Heterogeneous Computing
Workshop (HCW’98), 1998.

[16] S. Fidanova and M. Durchova, "Ant algorithm for grid scheduling
problem," Lecture Notes in Computer Science, vol. 3743, pp. 405-412,
2006.

[17] S. Lorpunmanee, M. Sap, A. Abdullah, and C. Chompoo-inwai, "An
ant colony optimization for dynamic job scheduling in grid
environment," International Journal of Computer and Information
Science and Engineering, vol. 1(4), pp. 207-214, 2007.

[18] T. Stutzle and H. Hoos, "MAX-MIN ant system," Future Generation
Computer Systems, vol. 16, pp. 889-914, 2000.

[19] V. Naik, P. Garbacki, K. Kummamuru, and Y. Zhao, "On-line
evolutionary resource matching for job scheduling in heterogeneous
grid environments," Proceedings of the 12th International Conference
on Parallel and Distributed Systems(ICPADS’06), 2006.

[20] X. Bai, H. Yu, Y. Ji, and D. Marinescu, "Resource matching and a
matchmaking service for an intelligent grid," International Journal of
Computational Intelligence, vol. 1(3), pp. 197-205, 2004.

[21] Y. Li, "A Bio-inspired Adaptive Job Scheduling Mechanism on a
Computational Grid," International Journal of Computer Science and
Network Security (IJCSNS), vol. 6(3), pp. 1-7, 2006.

[22] Z. Xu, X. Hou, and J. Sun, "Ant algorithm-based task scheduling in
grid computing," presented at Electrical and Computer Engineering
IEEE CCECE, Canadian Conference, pp. 1107-1110, 2003.

211

