2,367 research outputs found

    Asynchronous Circuit Stacking for Simplified Power Management

    Get PDF
    As digital integrated circuits (ICs) continue to increase in complexity, new challenges arise for designers. Complex ICs are often designed by incorporating multiple power domains therefore requiring multiple voltage converters to produce the corresponding supply voltages. These converters not only take substantial on-chip layout area and/or off-chip space, but also aggregate the power loss during the voltage conversions that must occur fast enough to maintain the necessary power supplies. This dissertation work presents an asynchronous Multi-Threshold NULL Convention Logic (MTNCL) ā€œstackedā€ circuit architecture that alleviates this problem by reducing the number of voltage converters needed to supply the voltage the ICs operate at. By stacking multiple MTNCL circuits between power and ground, supplying a multiple of VDD to the entire stack and incorporating simple control mechanisms, the dynamic range fluctuation problem can be mitigated. A 130nm Bulk CMOS process and a 32nm Silicon-on-Insulator (SOI) CMOS process are used to evaluate the theoretical effect of stacking different circuitry while running different workloads. Post parasitic physical implementations are then carried out in the 32nm SOI process for demonstrating the feasibility and analyzing the advantages of the proposed MTNCL stacking architecture

    Power conversion techniques in nanometer CMOS for low-power applications

    Get PDF
    As System-on-Chip (SoCs) in nanometer CMOS technologies grow larger, the power management process within these SoCs becomes very challenging. In the heart of this process lies the challenge of implementing energy-efficient and cost-effective DC-DC power converters. To address this challenge, this thesis studies in details three different aspects of DC-DC power converters and proposes potential solutions. First, to maximize power conversion efficiency, loss mechanisms must be studied and quantified. For that purpose, we provide comprehensive analysis and modeling of the various switching and conduction losses in low-power synchronous DC-DC buck converters in both Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM) operation, including the case with non-rail gate control of the power switches. Second, a DC-DC buck converter design with only on-chip passives is proposed and implemented in 65-nm CMOS technology. The converter switches at 588 MHz and uses a 20-nH and 300-pF on-chip inductor and capacitor respectively, and provides up to 30-mA of load at an output voltage in the range of 0.8-1.2 V. The proposed design features over 10% improvement in power conversion efficiency over a corresponding linear regulator while preserving low-cost implementation. Finally, a 40-mA buck converter design operating in the inherently-stable DCM mode for the entire load range is presented. It employs a Pulse Frequency Modulation (PFM) scheme using a Hysteretic-Assisted Adaptive Minimum On-Time (HA-AMOT) controller to automatically adapt to a wide range of operating scenarios while minimizing inductor peak current. As a result, compact silicon area, low quiescent current, high efficiency, and robust performance across all conditions can be achieved without any calibration

    Switched Capacitor Voltage Converter

    Get PDF
    This project supports IoT development by reducing the power con- sumption and physical footprint of voltage converters. Our switched- capacitor IC design steps down an input of 1:0 - 1:4 V to 0:6 V for a decade of load current from 5 - 50A

    A novel control mechanism for hybrid 5-level DC-DC converter for higher switching frequency and lower voltage ripple

    Get PDF
    The introduction and development of hybrid DC-DC converters present a valuable opportunity in on-chip power management, as they combine the advantages of buck and switched-capacitor converters while alleviating shortcomings such as conversion efficiency and sizing requirements. In this paper, a new control methodology is presented for the recently developed 5-level hybrid DC-DC converter, which utilizes the Virtex 5 LX50T FPGA to drive the converter. This control method allows for a higher switching frequency of 1MHz and an improved conversion efficiency while also allowing for dynamic voltage control based on the desired output voltage. Simulations as well as a test circuit are used to illustrate the proper control functionality, with tabulated results that showcase the efficiency advantage over prior control methods as well as the buck and 3-level hybrid converters

    Multilevel multistate hybrid voltage regulator

    Get PDF
    In this work, a new set of voltage regulators as well as some controlling methods and schemes are proposed. While normal switched capacitor voltage regulators are easy integrable, they are suffering from charge sharing losses as well as fast degradation of efficiency when deviating from target operation point. On the other hand, conventional buck converters use bulky magnetic components that introduce challenges to integrate them on chip. The new set of voltage regulators covers the gap between inductor-based and capacitor-based voltage regulators by taking the advantages of both of them while avoiding or minimizing their disadvantages. The voltage regulator device consists of a switched capacitor circuit that is periodically switching its output between different voltage levels followed by a low pass filter to give a regulated output voltage. The voltage regulator is capable of converting an input voltage to a wide range of output voltage with a high efficiency that is roughly constant over the whole operation range. By switching between adjacent voltage levels, the voltage drop on the inductor is limited allowing for the use of smaller inductor sizes while maintaining the same performance. The general concept of the proposed voltage regulator as well as some operating conditions and techniques are explained. A phase interleaving technique to operate the multilevel multistate voltage regulator has been proposed. In this technique, the phases of two or more voltage levels are interleaved which enhances the effective switching frequency of the charge transferring components. This results in a further boost in the proposed regulator\u27s performance. A 4-level 4-state hybrid voltage regulator has been introduced as an application on the proposed concepts and techniques. It shows better performance compared to both integrated inductor-based and capacitor-based voltage regulators. The results prove that the proposed set of voltage regulators offers a potential move towards easing the integration of voltage regulators on chip with a performance that approaches that of off-chip voltage regulators

    A Fully-Integrated Quad-Band GSM/GPRS CMOS Power Amplifier

    Get PDF
    Concentric distributed active transformers (DAT) are used to implement a fully-integrated quad-band power amplifier (PA) in a standard 130 nm CMOS process. The DAT enables the power amplifier to integrate the input and output matching networks on the same silicon die. The PA integrates on-chip closed-loop power control and operates under supply voltages from 2.9 V to 5.5 V in a standard micro-lead-frame package. It shows no oscillations, degradation, or failures for over 2000 hours of operation with a supply of 6 V at 135Ā° under a VSWR of 15:1 at all phase angles and has also been tested for more than 2 million device-hours (with ongoing reliability monitoring) without a single failure under nominal operation conditions. It produces up to +35 dBm of RF power with power-added efficiency of 51%
    • ā€¦
    corecore