75 research outputs found

    On-Chip Noise Sensor for Integrated Circuit Susceptibility Investigations

    Get PDF
    page number: 12International audienceWith the growing concerns about electromagnetic compatibility of integrated circuits, the need for accurate prediction tools and models to reduce risks of non-compliance becomes critical for circuit designers. However, on-chip characterization of noise is still necessary for model validation and design optimization. Although different on-chip measurement solutions have been proposed for emission issue characterization, no on-chip measurement methods have been proposed to address the susceptibility issues. This paper presents an on-chip noise sensor dedicated to the study of circuit susceptibility to electromagnetic interferences. A demonstration of the sensor measurement performances and benefits is proposed through a study of the susceptibility of a digital core to conducted interferences. Sensor measurements ensure a better characterization of actual coupling of interferences within the circuit and a diagnosis of failure origins

    On-die signal integrity monitoring of gigabit serial I/Os

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (leaves 93-94).This thesis describes an embedded undersampling system for capturing analog wave-forms and monitoring signal integrity throughout a signal path. It is intended for use in Gigabit serial products, such as crosspoints and other networking products. Design reuse and simple components were the most important design parameters. The system has a small layout, a simple digital interface, and does not require a separate sample-and--hold circuit. The final system has 15 mV minimum resolution, operates over common-mode logic signals from 1.8V to 1.4V, and accurately captures signals up to 2GHz.by Alexander Wyatt Moore.M.Eng

    Precise Timing of Digital Signals: Circuits and Applications

    Get PDF
    With the rapid advances in process technologies, the performance of state-of-the-art integrated circuits is improving steadily. The drive for higher performance is accompanied with increased emphasis on meeting timing constraints not only at the design phase but during device operation as well. Fortunately, technology advancements allow for even more precise control of the timing of digital signals, an advantage which can be used to provide solutions that can address some of the emerging timing issues. In this thesis, circuit and architectural techniques for the precise timing of digital signals are explored. These techniques are demonstrated in applications addressing timing issues in modern digital systems. A methodology for slow-speed timing characterization of high-speed pipelined datapaths is proposed. The technique uses a clock-timing circuit to create shifted versions of a slow-speed clock. These clocks control the data flow in the pipeline in the test mode. Test results show that the design provides an average timing resolution of 52.9ps in 0.18μm CMOS technology. Results also demonstrate the ability of the technique to track the performance of high-speed pipelines at a reduced clock frequency and to test the clock-timing circuit itself. In order to achieve higher resolutions than that of an inverter/buffer stage, a differential (vernier) delay line is commonly used. To allow for the design of differential delay lines with programmable delays, a digitally-controlled delay-element is proposed. The delay element is monotonic and achieves a high degree of transfer characteristics' (digital code vs. delay) linearity. Using the proposed delay element, a sub-1ps resolution is demonstrated experimentally in 0.18μm CMOS. The proposed delay element with a fixed delay step of 2ps is used to design a high-precision all-digital phase aligner. High-precision phase alignment has many applications in modern digital systems such as high-speed memory controllers, clock-deskew buffers, and delay and phase-locked loops. The design is based on a differential delay line and a variation tolerant phase detector using redundancy. Experimental results show that the phase aligner's range is from -264ps to +247ps which corresponds to an average delay step of approximately 2.43ps. For various input phase difference values, test results show that the difference is reduced to less than 2ps at the output of the phase aligner. On-chip time measurement is another application that requires precise timing. It has applications in modern automatic test equipment and on-chip characterization of jitter and skew. In order to achieve small conversion time, a flash time-to-digital converter is proposed. Mismatch between the various delay comparators limits the time measurement precision. This is demonstrated through an experiment in which a 6-bit, 2.5ps resolution flash time-to-digital converter provides an effective resolution of only 4-bits. The converter achieves a maximum conversion rate of 1.25GSa/s

    On-Chip Power Supply Noise: Scaling, Suppression and Detection

    Get PDF
    Design metrics such as area, timing and power are generally considered as the primary criteria in the design of modern day circuits, however, the minimization of power supply noise, among other noise sources, is appreciably more important since not only can it cause a degradation in these parameters but can cause entire chips to fail. Ensuring the integrity of the power supply voltage in the power distribution network of a chip is therefore crucial to both building reliable circuits as well as preventing circuit performance degradation. Power supply noise concerns, predicted over two decades ago, continue to draw significant attention, and with present CMOS technology projected to keep on scaling, it is shown in this work that these issues are not expected to diminish. This research also considers the management and on-chip detection of power supply noise. There are various methods of managing power supply noise, with the use of decoupling capacitors being the most common technique for suppressing the noise. An in-depth analysis of decap structures including scaling effects is presented in this work with corroborating silicon results. The applicability of various decaps for given design constraints is provided. It is shown that MOS-metal hybrid structures can provide a significant increase in capacitance per unit area compared to traditional structures and will continue to be an important structure as technology continues to scale. Noise suppression by means of current shifting within the clock period of an ALU block is further shown to be an additional method of reducing the minimum voltage observed on its associated supply. A simple, and area and power efficient technique for on-chip supply noise detection is also proposed

    A time-based approach for multi-GHz embedded mixed-signal characterization and measurement /

    Get PDF
    The increasingly more sophisticated systems that are nowadays implemented on a single chip are placing stringent requirements on the test industry. New test strategies, equipment, and methodologies need to be developed to sustain the constant increase in demand for consumer and communication electronics. Techniques for built-in-self-test (BIST) and design-for-test (DFT) strategies have been proven to offer more feasible and economical testing solutions.Previous works have been conducted to perform on-chip testing, characterization, and measurement of signals and components. The current thesis advances those techniques on many levels. In terms of performance, an increase of more than an order of magnitude in speed is achieved. 70-GHz (effective sampling) on-chip oscilloscope is reported, compared to 4-GHz and 10-GHz ones in previous state-of-the-art implementations. Power dissipation is another area where the proposed work offer a superior solution compared to previous alternatives. All the proposed circuits do not exceed a few milliWatts of power dissipation, while performing multi-GHz high-speed signal capture at a medium resolution. Finally, and possibly most importantly, all the proposed circuits for test rely on a different form of signal processing; the time-based approach. It is believed that this approach paves the path to a lot of new techniques and circuit design skills that can be investigated more deeply. As an integral part of the time-based processing approach for GHz signal capture, this thesis verifies the advantages of using time amplification. The use of such amplification in the time domain is materialized with experimental results from three specific integrated circuits achieving different tasks in GHz high-speed in-situ signal measurement and characterization. Advantages of using such time-based approach techniques, when combined with the use of a front-end time amplifier, include noise immunity, the use of synthesizable digital cells, and circuit building blocks that track the technology scaling in terms of area and speed

    Study of substrate noise and techniques for minimization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 155-158).This thesis presents a study of the effects of substrate noise on analog circuits in mixed-signal chips and techniques for minimizing these harmful effects on sensitive analog circuits. A microchip built in a 0.25um CMOS epitaxial process was designed, fabricated, and tested for this research. Through the use of an on-chip sampling scope, the effect of substrate noise generated by digital inverters with coupling capacitors to the substrate on analog circuits was characterized. Substrate noise coupled into a representative analog circuit, a switched capacitor delta-sigma modulator primarily through the asymmetrical parasitics of the input sampling circuit. Furthermore, since some of the parasitics are nonlinear with input voltage, substrate noise couples into the analog circuits producing an input signal dependent component and an input signal independent component. The substrate noise, with decay time constants of a few nanoseconds and ringing frequencies of few hundred megahertz, can decrease analog circuit performance. In the case of a delta-sigma modulator, substrate noise caused the signal to noise power ratio to decrease by more than 18dB, 3 bits in terms of analog-to-digital converter metrics. In addition, two techniques of minimizing the substrate noise and its effects were explored. The first used a replica delta-sigma modulator on the same chip to subtract the effects of substrate noise from the original delta-sigma modulator. This method proved useful for removing input signal independent substrate noise, but not input signal dependent substrate noise which dominates in-band noise for large input signal magnitudes. The second technique involved an active substrate noise cancellation system.(cont.) A discrete time feedback loop senses the substrate noise, processes it through a filter, and uses an array of digital inverters to cancel the substrate noise. The principal advantages of this technique are the shaping of substrate noise through a designed filter without a significant power penalty and design independence from the analog and digital components. Measured data shows that this technique is capable of over 20dB reduction in substrate noise on the substrate voltage itself. Measured data also shows over 10dB improvement in SNDR of the delta-sigma modulator in certain cases.by Mark Shane Peng.Ph.D

    Wireless Terahertz Communications: Optoelectronic Devices and Signal Processing

    Get PDF
    Novel THz device concepts and signal processing schemes are introduced and experimentally confirmed. Record-high data rates are achieved with a simple envelope detector at the receiver. Moreover, a THz communication system using an optoelectronic receiver and a photonic local oscillator is shown for the first time, and a new class of devices for THz transmitters and receivers is investigated which enables a monolithic co-integration of THz components with advanced silicon photonic circuits

    Design and Analysis of Power Distribution Networks in VLSI Circuits.

    Full text link
    Rapidly switching currents of the on-chip devices can cause fluctuations in the supply voltage which can be classified as IR and Ldi/dt drops. The voltage fluctuations in a supply network can inject noise in a circuit which may lead to functional failures of the design. Power supply integrity verification is, therefore, a critical concern in high-performance designs. Also, with decreasing supply voltages, gate-delay is becoming increasingly sensitive to supply voltage variation. With ever-diminishing clock periods, accurate analysis of the impact of supply voltage on circuit performance has also become critical. Increasing power consumption and clock frequency have exacerbated the Ldi/dt drop in every new technology generation. The Ldi/dt drop has become the dominant portion of the overall supply-drop in high performance designs. On-die passive decap, which has traditionally been used for suppressing Ldi/dt, has become expensive due to its area and leakage power overhead. This has created an urgent need for novel circuit techniques to suppress the Ldi/dt drop in power distribution networks. We provide accurate algorithmic solutions for determining the worst-case supply-drop and the impact of supply noise on circuit performance. We propose a path-based and a block-based approach for computing the maximum circuit delay under power supply fluctuations. We also propose an early-mode supply-drop estimation approach and a statistical approach for power grid analysis. All the proposed approaches are vectorless and account for both IR and Ldi/dt drops. We also propose a performance-aware decoupling capacitance allocation technique which uses timing slacks to drive the optimization. Finally, we present analog as well as all-digital circuit techniques for inductive supply noise suppression. The proposed all-digital circuit techniques were implemented in a test-chip, fabricated in a 0.13µm CMOS process. Measurements on the test-chip demonstrate a reduction in the supply fluctuations by 57% for a ramp loads and by 75% during resonance. We also present a low-power, all-digital on-chip oscilloscope for accurate measurement of supply noise. Supply noise measurements obtained from the on-chip oscilloscope were validated to conform well to those obtained from a traditional supply-drop monitor and direct on-chip probing.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58508/1/spant_1.pd

    Pseudo-Random Single Photon Counting for Time-Resolved Optical Measurements

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore