2,536 research outputs found

    Optofluidic fabrication for 3D-shaped particles.

    Get PDF
    Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated

    Hybrid optical and magnetic manipulation of microrobots

    Get PDF
    Microrobotic systems have the potential to provide precise manipulation on cellular level for diagnostics, drug delivery and surgical interventions. These systems vary from tethered to untethered microrobots with sizes below a micrometer to a few microns. However, their main disadvantage is that they do not have the same capabilities in terms of degrees-of-freedom, sensing and control as macroscale robotic systems. In particular, their lack of on-board sensing for pose or force feedback, their control methods and interface for automated or manual user control are limited as well as their geometry has few degrees-of-freedom making three-dimensional manipulation more challenging. This PhD project is on the development of a micromanipulation framework that can be used for single cell analysis using the Optical Tweezers as well as a combination of optical trapping and magnetic actuation for recon gurable microassembly. The focus is on untethered microrobots with sizes up to a few tens of microns that can be used in enclosed environments for ex vivo and in vitro medical applications. The work presented investigates the following aspects of microrobots for single cell analysis: i) The microfabrication procedure and design considerations that are taken into account in order to fabricate components for three-dimensional micromanipulation and microassembly, ii) vision-based methods to provide 6-degree-offreedom position and orientation feedback which is essential for closed-loop control, iii) manual and shared control manipulation methodologies that take into account the user input for multiple microrobot or three-dimensional microstructure manipulation and iv) a methodology for recon gurable microassembly combining the Optical Tweezers with magnetic actuation into a hybrid method of actuation for microassembly.Open Acces

    Surface tension-powered self-assembly of micro structures - The state-of-the-art

    No full text
    Published versio

    Engineering fluid flow using sequenced microstructures

    Get PDF
    Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation

    Microsystems technology: objectives

    Get PDF
    This contribution focuses on the objectives of microsystems technology (MST). The reason for this is two fold. First of all, it should explain what MST actually is. This question is often posed and a simple answer is lacking, as a consequence of the diversity of subjects that are perceived as MST. The second reason is that a map of the somewhat chaotic field of MST is needed to identify sub-territories, for which standardization in terms of system modules an interconnections is feasible. To define the objectives a pragmatic approach has been followed. From the literature a selection of topics has been chosen and collected that are perceived as belonging to the field of MST by a large community of workers in the field (more than 250 references). In this way an overview has been created with `applications¿ and `generic issues¿ as the main characteristics

    Microassembly technology for modular, polymer microfluidic devices

    Get PDF
    Assembly of modular, polymer microfluidic devices with different functions to obtain more capable instruments may significantly expand the options available for detection and diagnosis of disease through DNA analysis and proteomics. For connecting modular devices, precise, passive alignment structures can be used to prevent infinitesimal motions between the devices and minimize misalignment. The motion and constraint of passive alignment structures were analyzed using screw theory. A combination of three v-groove and hemisphere-tipped post joints constrained all degrees of freedom of the two mating modules without overconstraint. Simulations and experiments were performed to assess the predictability of dimensional and location variations of injection molded components. A center-gated disk with micro scale assembly features was replicated. Simulations using a commercial package (Moldflow) overestimated replication fidelity. Mold surface temperatures and injection speeds significantly affected the experimental replication fidelity. The location of features for better replication, at each mold surface temperature, moved from the edge of the mold cavity to the injection point as the mold surface temperature increased from 100˚C to 150˚C. Prototype modular devices were replicated using double-sided injection molding for the experimental demonstration. Dimensional and location variations of the assembly features and alignment standards were quantified for an assembly tolerance analysis. Monte Carlo methods were applied to the assembly tolerance analysis to simulate propagation and accumulation of variation in the assembly. In simulations, mean mismatches with standard deviations ranged from 115±29 to 118±30 µm and from 17±11 to 19±13 µm along the X- and Y-axes, respectively. Vertical gaps with standard deviations at the X- and Y-axes were 312±37~319±37 µm, compared to the designed value of 287µm. The measured lateral mismatches were 103±7~116±11 µm and 15±9~20±6 µm along the X- and Y-axes, respectively. The vertical gaps ranged from 277±4 µm to 321±7 µm at the X- and Y-axes, respectively. The present study combined an investigation of microassembly technology with a better understanding of the micro injection molding process, to assist in realizing cost-effective mass production of modular, polymer microfluidic devices enabling biochemical analysis

    3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents

    Get PDF
    A design methodology is reported to fabricate functional compound micromachines using 3D direct laser writing and selective physical vapor deposition of magnetic materials. Microtransporters with a wirelessly controlled Archimedes screw pumping mechanism are engineered. Spatiotemporally controlled collection, transport, and delivery of microparticles as well as magnetic nanohelices inside microfluidic channels are demonstrated
    corecore