14 research outputs found

    Real-time power system impedance estimation for DG applications: Using PV-inverter based harmonic injection method

    Get PDF
    On-line power system (PS) Thévenin equivalent impedance (TEI) estimation involves the reduction of the PS's complex circuit into a simple form that provides valuable insight into its state and behaviour. It finds application in numerous areas such as voltage stability monitoring and islanding detection. In the context of distributed generation (DG), on-line TEI estimation can be easily implemented in existing hardware to add functionality and improve the operation of power converters – the key components of DG systems. Two distinct methods of on-line PS TEI estimation exist. The passive method involves only measurement of voltage and current, whereas the active method involves injection of current into the PS and measurement of the response. This work is focused on the active method. Through a review of the available literature, limitations of past work are highlighted. It is shown that the nature of current injection varies greatly in different works and that evaluation of implementation performance is generally not thorough. Little consideration has been made of the effect of injection current level and frequency on the performance of on-line TEI estimation. Furthermore, the behaviour of the grid and its impact has not been thoroughly investigated. In this work, the active method is implemented in a three-phase PV-inverter and thoroughly tested in terms of its TEI estimation accuracy. Dependence of said accuracy on parameters such as the level of injected current and its frequency is shown to be high through tests performed on the live PS at two locations. These parameters are optimised such that TEI accuracy is maximised and the performance of the device is shown to be good compared to calibration equipment. The accuracy of PS TEI tracking is evaluated and quantified. Considerations are also made of the device's hardware limitations and their effect. A process by which a device's TEI estimation accuracy can be thoroughly evaluated is developed through this work. The behaviour of the PS's TEI is also investigated over long periods and characterised. It is found that the TEI remains steady around an average level in both test locations, with a low standard deviation. Consistency in results is found to be high between the two tests

    Review of local network impedance estimation techniques

    Get PDF
    As a result of increasing variability of network impedance, interest in impedance estimation techniques is growing. This review contextualises local impedance estimation techniques by providing a historical prospective on the uses of these techniques, from the early implementations designed to monitor power quality to the latest techniques integrated into converters designed to update the controller with the most recent network information. This is followed by clear and consolidated descriptions, a complete classification and comparison tables of local estimation techniques intended to assist engineers and researchers choose an estimation technique that is suitable to their application. The discussed techniques are then ranked for a range of application priorities such as accuracy, least disruptive to the network, most suitable for wide frequency spectrum estimations and rapidity of estimation. Practical applications of impedance estimation are discussed, such as network characterisation, anti-islanding detection, filter resonance avoidance and controller tuning. To conclude the review, future trends are identified

    Control of voltage source converters connected to variable impedance grids

    Get PDF
    The increase in new renewable energy resources is key to achieving carbon reduction targets, however it also introduces new grid integration challenges. The best renewable resource in Scotland is found in remote parts of the country, and as a result new renewable based generation is increasingly subjected to high and variable levels of impedance. Impedances that cause resonances are also increasingly common, given the higher order characteristics of impedance when transformers, filters, subsea cables, compensators and so on are present in the network. For a better understanding of impedance related stability issues, the estimation of the grid impedance using both Thévenin equivalent and wide spectrum techniques is studied in this thesis and integrated into the converter’s control. These estimations inform the controller of the grid conditions, allowing for controller adaptation. In instances where weak grid conditions are severe and the local grid impedance is dominant, a disturbance rejection mechanism called the pre-emptive voltage decoupler (PVD) is proposed. The PVD feeds forward the active current reference and measured voltage, and adapts the reactive current reference as a function of the impedance estimation, to pre-emptively compensate the local voltage for changes in active power transfer. This is justified through small signal analysis using linearised state space models and validated in the laboratory using large inductors and a converter. The control is also made more resilient with an instability detector, proposed to prevent instability when significant grid disturbances occur. Through early detection of sudden power angle changes, stability can be maintained. This is achieved by momentarily reducing the power reference and re-establishing grid parameters. The implementation of the proposed changes improves the steady state stability region from -0.75 – 0.55 pu to -0.85 – 0.75 pu. Further, the nonlinear transient performance is much more resilient, and uninterrupted power flow can be maintained. When the local grid is not dominant, and higher order grid impedances cause undesired resonances, a detection of the resonant frequency allows for an adaptation of the outer loop gains, thus damping the resonances and improving stability. Such grids are also prone to instability, but a reduction of the power reference does not improve stability, on the contrary the reduction of the power reference shifts eigenvalues into the right hand plane. A better preventative measure is to reduce the outer loop gains, and once the frequency of the problematic resonances is identified, final decisions on outer loop tuning can be taken. With this implementation, the stability of the system is maintained and the power output can be recovered within about 1 second.The increase in new renewable energy resources is key to achieving carbon reduction targets, however it also introduces new grid integration challenges. The best renewable resource in Scotland is found in remote parts of the country, and as a result new renewable based generation is increasingly subjected to high and variable levels of impedance. Impedances that cause resonances are also increasingly common, given the higher order characteristics of impedance when transformers, filters, subsea cables, compensators and so on are present in the network. For a better understanding of impedance related stability issues, the estimation of the grid impedance using both Thévenin equivalent and wide spectrum techniques is studied in this thesis and integrated into the converter’s control. These estimations inform the controller of the grid conditions, allowing for controller adaptation. In instances where weak grid conditions are severe and the local grid impedance is dominant, a disturbance rejection mechanism called the pre-emptive voltage decoupler (PVD) is proposed. The PVD feeds forward the active current reference and measured voltage, and adapts the reactive current reference as a function of the impedance estimation, to pre-emptively compensate the local voltage for changes in active power transfer. This is justified through small signal analysis using linearised state space models and validated in the laboratory using large inductors and a converter. The control is also made more resilient with an instability detector, proposed to prevent instability when significant grid disturbances occur. Through early detection of sudden power angle changes, stability can be maintained. This is achieved by momentarily reducing the power reference and re-establishing grid parameters. The implementation of the proposed changes improves the steady state stability region from -0.75 – 0.55 pu to -0.85 – 0.75 pu. Further, the nonlinear transient performance is much more resilient, and uninterrupted power flow can be maintained. When the local grid is not dominant, and higher order grid impedances cause undesired resonances, a detection of the resonant frequency allows for an adaptation of the outer loop gains, thus damping the resonances and improving stability. Such grids are also prone to instability, but a reduction of the power reference does not improve stability, on the contrary the reduction of the power reference shifts eigenvalues into the right hand plane. A better preventative measure is to reduce the outer loop gains, and once the frequency of the problematic resonances is identified, final decisions on outer loop tuning can be taken. With this implementation, the stability of the system is maintained and the power output can be recovered within about 1 second

    CONTINGENCY ANALYSIS USING SYNCHROPHASOR MEASUREMENTS

    Get PDF
    The rapid progress of synchrophasor technology greatly promotes many applications of wide-area measurement systems. Traditionally, contingency analysis is based on off-line studies conducted long in advance. This is becoming increasingly unreliable for real-time operations. New technologies, which rely on accurate, high resolution, and real-time monitoring of actual system conditions using phasor measurements are needed to support the real-time operations. In this research an algorithm is developed, using phasor measurements, that allows real-time analysis and correction of contingencies in power systems. The focus is specifically on overloaded lines. An off-line study performed with POWERWORLD software is used for contingency analysis, and contingency indicative phasor limits are investigated using current magnitude and voltage angle. These limits are applied to a rotating phasor chart. An algorithm which predicts sensitivity is applied in the off-line analysis in order to determine the buses that need to be monitored. An actual system with available real-time PMU data is used to verify the phasor chart obtained using off-line data. The chart is completed for on-line data, and the off-line and on-line charts are compared for further verification

    Synopsis of Phasor Monitoring Applications for Wide Area Control and Protection

    Get PDF
    The phenomenon of voltage collapse in electric power systems has received a considerable amount of attention in the last decade. Although the occurrences of the voltage blackouts have decreased in the recent years, the problem of voltage stability still poses a considerable threat to the security and the reliability of modern electricity grids. The ultimate objective of this thesis is to further investigate and expand upon the existing body of knowledge on the voltage collapse phenomenon and develop protection and control schemes for mitigating such undesirable events in modern electric grids. In doing so, the research done in this thesis work builds on an earlier work done in the area of Voltage Instability Prediction (VIP). Although proven to be a successful metric in determining the proximity of large nonlinear systems to a potential voltage instability event, much remains to be explored in the area of Voltage Instability Prediction. In particular the issues of estimating the static stability margins, the locational dependence of accuracy of such VIP derived margins, the exploitation of redundant local measurements and a compelling argument in favor of combining/fusing the individual VIP margins into a single system-wide measure of voltage collapse margin form the main focus of investigation of this work. To lower the individual entropy of the VIP derived margins, a data fusion algorithm built on the foundations of Dempster-Shafer’s evidential reasoning method is proposed. The research is concluded on a positive note with the final results further pushing the envelope of knowledge in the field of voltage stability studies in power systems

    On-line Dynamic Security Assessment in Power Systems.

    Get PDF

    Performance Improvement of Wide-Area-Monitoring-System (WAMS) and Applications Development

    Get PDF
    Wide area monitoring system (WAMS), as an application of situation awareness, provides essential information for power system monitoring, planning, operation, and control. To fully utilize WAMS in smart grid, it is important to investigate and improve its performance, and develop advanced applications based on the data from WAMS. In this dissertation, the work on improving the WAMS performance and developing advanced applications are introduced.To improve the performance of WAMS, the work includes investigation of the impacts of measurement error and the requirements of system based on WAMS, and the solutions. PMU is one of the main sensors for WAMS. The phasor and frequency estimation algorithms implemented highly influence the performance of PMUs, and therefore the WAMS. The algorithms of PMUs are reviewed in Chapter 2. To understand how the errors impact WAMS application, different applications are investigated in Chapter 3, and their requirements of accuracy are given. In chapter 4, the error model of PMUs are developed, regarding different parameters of input signals and PMU operation conditions. The factors influence of accuracy of PMUs are analyzed in Chapter 5, including both internal and external error sources. Specifically, the impacts of increase renewables are analyzed. Based on the analysis above, a novel PMU is developed in Chapter 6, including algorithm and realization. This PMU is able to provide high accurate and fast responding measurements during both steady and dynamic state. It is potential to improve the performance of WAMS. To improve the interoperability, the C37.118.2 based data communication protocol is curtailed and realized for single-phase distribution-level PMUs, which are presented in Chapter 7.WAMS-based applications are developed and introduced in Chapter 8-10. The first application is to use the spatial and temporal characterization of power system frequency for data authentication, location estimation and the detection of cyber-attack. The second application is to detect the GPS attack on the synchronized time interval. The third application is to detect the geomagnetically induced currents (GIC) resulted from GMD and EMP-E3. These applications, benefited from the novel PMU proposed in Chapter 6, can be used to enhance the security and robust of power system

    Phasor Parameter Modeling and Time-Synchronized Calculation for Representation of Power System Dynamics

    Get PDF
    The electric power grid is undergoing sustained disturbances. In particular, the extreme dynamic events disrupt normal electric power transfer, degrade power system operating conditions, and may lead to catastrophic large-scale blackouts. Accordingly, control applications are deployed to detect the inception of extreme dynamic events, and mitigate their causes appropriately, so that normal power system operating conditions can be restored. In order to achieve this, the operating conditions of the power system should be accurately characterized in terms of the electrical quantities that are crucial to control applications. Currently, the power system operating conditions are obtained through SCADA system and the synchrophasor system. Because of GPS time-synchronized waveform sampling capability and higher measurement reporting rate, synchrophasor system is more advantageous in tracking the extreme dynamic operating conditions of the power system. In this Dissertation, a phasor parameter calculation approach is proposed to accurately characterize the power system operating conditions during the extreme electromagnetic and electromechanical dynamic events in the electric power grid. First, a framework for phasor parameter calculation during both electromagnetic and electromechanical dynamic events is proposed. The framework aims to satisfy both P-class and M-class PMU algorithm design accuracy requirements with a single algorithm. This is achieved by incorporating an adaptive event classification and algorithm model switching mechanism, followed by the phasor parameter definition and calculation tailored to each identified event. Then, a phasor estimation technique is designed for electromagnetic transient events. An ambient fundamental frequency estimator based on UKF is introduced, which is leveraged to adaptively tune the DFT-based algorithm to alleviate frequency leakage. A hybridization algorithm framework is also proposed, which further reduces the negative impact caused by decaying DC components in electromagnetic transient waveforms. Then, a phasor estimation technique for electromechanical dynamics is introduced. A novel wavelet is designed to effectively extract time-frequency features from electromechanical dynamic waveforms. These features are then used to classify input signal types, so that the PMU algorithm modeling can be thereafter tailored specifically to match the underlying signal features for the identified event. This adaptability of the proposed algorithm results in higher phasor parameter estimation accuracy. Finally, the Dissertation hypothesis is validated through experimental testing under design and application test use cases. The associated test procedures, test use cases, and test methodologies and metrics are defined and implemented. The impact of algorithm inaccuracy and communication network distortion on application performance is also demonstrated. Test results performance is then evaluated. Conclusions, Dissertation contributions, and future steps are outlined at the end

    Analysis and Design of Wideband Matched Feeds for Reflector Antennas

    Get PDF

    Data-Driven and HVDC Control Methods to Enhance Power System Security

    Get PDF
    corecore