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ABSTRACT As a result of increasing variability of network impedance, interest in impedance estimation
techniques is growing. This review contextualises local impedance estimation techniques by providing
a historical prospective on the uses of these techniques, from the early implementations designed to
monitor power quality to the latest techniques integrated into converters designed to update the controller
with the most recent network information. This is followed by clear and consolidated descriptions, a
complete classification and comparison tables of local estimation techniques intended to assist engineers
and researchers choose an estimation technique that is suitable to their application. The discussed techniques
are then ranked for a range of application priorities such as accuracy, least disruptive to the network,
most suitable for wide frequency spectrum estimations and rapidity of estimation. Practical applications
of impedance estimation are discussed, such as network characterisation, anti-islanding detection, filter
resonance avoidance and controller tuning. To conclude the review, future trends are identified.

INDEX TERMS frequency sweep, impedance estimation, impedance identification, impulse-response,
Kalman filter, observer, P/Q variation, phasor measurement units, pseudo random binary sequence, review.

NOMENCLATURE
For the power system and most estimation techniques:

Cf Filter capacitance.
E Stiff grid voltage magnitude.
Ic Current at generator magnitude.
In Current at grid magnitude.
Lc Inductive element of filter.
Ln Inductive element of grid impedance.
Rc Filter resistance.
Rn Grid resistance.
U PCC voltage magnitude.
V Converter or generator output voltage magnitude.
Xn Grid reactance.
β Angle of grid voltage.
Γ Quality threshold.
θ Angle of PCC voltage.
ω Frequency of the impedance undergoing analysis.

For notation used in equations for recursive least squares:

A Matrix of grid currents and ones.
Q Error between X and X̂ .
X Inductance and grid voltage vector.
X̂ Estimate of X .
Y Output vector.

For notation used in equations for Kalman Filter:

A State matrix.
B Input matrix.
C Output matrix.
I Identity matrix.
k Iteration number.
K Kalman Gain.
M Expected white noise of the estimation process.
N Expected measurement noise.
P Error covariance of states.
u Input vector.
V Predicted estimation error.
x State vector.
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x̂ State estimate vector.
y Output vector.
ŷ Output estimate vector.

I. INTRODUCTION

EARLY impedance estimation literature focused on har-
monic content due to power quality concerns [1], [2].

A guide for network harmonic impedance assessment was
written by a CIGRE/CIRED Working Group CC02 [3].
The main motivation behind the early literature and the
CIGRE/CIRED report was to improve the understanding of
the harmonic current caused by power equipment in the
network. The identification of resonant frequencies through
wide frequency spectrum impedance estimation allowed for
the design of harmonic filters and capacitor banks, reducing
the resonances and improving power quality [4]. Some of the
proposed techniques utilised harmonic excitation (frequency
sweeping) with dedicated hardware [1], [5]. Others generated
an impulse by close-trip operations of a shunt capacitor bank,
causing a large inrush of current and rich spectral excita-
tion [2], [3]. Alternatively, [6]–[8] utilise thyristor switches,
creating a short circuit and subsequent large current pulse
injection, with the intention of monitoring in real-time the
evolution of network impedance. [9], [10] exploit the reso-
nances of LCL-filters to excite the system.

With the advancement of microcontroller computational
capabilities, online impedance estimators became increas-
ingly common in the literature. Anti-islanding is a common
motivation for impedance estimation literature [11]–[16],
with the draft European standard EN50330-1 (or equivalent
German standard VDE0126) usually cited as a justification.
For completeness, EN50330-1 is now cancelled, and the
current standard regarding islanding prevention is EN62116,
Utility-interconnected photo-voltaic inverters – Test proce-
dure of islanding prevention measures [17]. The estimation
techniques employed in [12]–[14] are based on the injection
of a nonharmonic current, followed by fast Fourier transform
(FFT) of the nonharmonic frequency current and voltage
response. [15], [18] collected information about the system
by varying the outer loop active power (P) and reactive power
(Q) references.

Recent literature is particularly interested in online con-
troller tuning for improved stability [19]–[25]. Many of these
articles are driven by increased network impedance variabil-
ity and resulting voltage stability issues [26], consequently
increasing the importance of appropriate control tuning [27].
Such impedance variability is a direct result of changes in
how the network is used (renewable energy sources are being
connected in geographically remote locations) [28]–[32] and
the increase in converters connecting to the network [33]–
[35], both of which are affecting the local network impedance
from a generator’s prospective (renewable or otherwise) and
strength of the network as a whole. For completeness, there
is also an alternative approach to online controller tuning,
and that is to use impedance agnostic control [23], [36]–[42].
However, these techniques may require stability studies as

part of the commissioning, studies which could be based on
the estimation techniques discussed in this article.

Other authors are motivated by LCL-filter resonances,
a phenomenon which is difficult to mitigate in variable
impedance networks [43]–[47]. It is demonstrated in [48] that
network impedance estimation could help avoid filter reso-
nance issues by retuning the current controller appropriately.
[49] also utilises impedance estimations to improve stability
of an LCL-filter interfaced converter by adapting the phase-
locked loop (PLL) tuning accordingly.

The focus of this review is on local techniques only –
network-wide techniques are not considered in this article.
While there exists literature with categorisations of local
impedance estimation techniques [3], [52], [53], they are
either dated, incomplete or too brief. The aim of this article
is to consolidate, organise and analyse all the published
techniques and supporting documentation more thoroughly,
consistently and clearly than the existing literature in order to
assist engineers and researchers determine the most suitable
estimation technique for their application. This article is up-
to-date with the most recent literature.

This article is organised as follows. Section II provides
the reader with an overview of the classification system.
Passive and active and quasi-passive estimation techniques
are described in Sections III, IV and V, respectively. This
is followed by a comparison table (Section VI), ranking of
the techniques based on implementation objectives (Section
VII), further discussion on applications of impedance estima-
tion (Section VIII), and finally future trends (Section IX).

II. CLASSIFICATION OF LOCAL IMPEDANCE
ESTIMATION TECHNIQUES
A high level classification of the estimation techniques is
presented in Fig. 1. The specific section numbers are included
to describe the structure of the article. For a consolidated list
of the references, refer to Table 2 in Section VI.

Estimation techniques can be subdivided into active, pas-
sive or quasi-passive techniques, depending on whether the
perturbation is intentionally and periodically introduced,
whether it must occur naturally in the grid, or whether an
observer is used to trigger an active estimation technique.

As many discussed techniques are implemented in con-
verters, Fig. 2 displays the reference system diagram, where
V is the converter voltage, Ic is the converter current, Rc,
Lc and Cf are the resistance, inductance and capacitance
of the converter filter, U is the PCC voltage, Rn and Ln
are the grid resistance and inductance, and E is the grid
voltage. The various techniques view the network impedance
as an aggregated impedance, which is either assumed linear
and represented by its Thévenin equivalent (Rn and Ln are
constant), or considered to be nonlinear (Rn(ω) and Ln(ω)
are a function of frequency). The bar above the currents
and voltages is used to describe a rectangular quantity, with
a real and imaginary part. Sometimes these quantities are
represented in polar form, in which case an arrow is used.
While these quantities are interchangable, it is decided to
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FIGURE 1. Classification of local impedance estimation techniques and
relevant section.

differentiate between them in order to clarify which repre-
sentation is used in the appropriate descriptions.

Cf

In
Ic

UV

Rc Lc
PCC

FIGURE 2. Converter connected to PCC, with unknown Thévenin equivalent
impedance and equivalent grid voltage marked in the grey box.

III. PASSIVE TECHNIQUES
Passive techniques utilise existing transients, caused by suffi-
ciently large grid events, to undertake impedance estimations.
Passive techniques can be loosely categorised as local PMU
derived observers, PCC observers and Kalman Filters.

1) Local PMU derived observers
PMUs are used to produce synchrophasor measurements –
fundamental frequency voltage and current measurements
that are time synchronised [54]. Normally, synchophasors
are communicated to a central computer, and this informa-
tion can be used to undertake state estimation, fault detec-
tion/location and wide area monitoring, including protection
[55]–[57]. While the use of synchrophasors from multiple
PMUs can be used to measure line impedance [51], [58],
[59], the focus of this article is on the local techniques which
utilise local measurements only. A single PMU, benefiting
from the accurate time stamping of phasors, can be used to
estimate the Thévenin equivalent properties of the network.
The high level procedure is summarised in Fig. 3, where
the adaptive technique is based on [60], the recursive least

squares (RLS) solver is derived from [61]–[64], and the
algebraic technique is derived from [24], [65].

Logging of

voltage & current

phasors complete

with timestamp

Process with one of the

discussed methods: 

adaptive (3), (4);

RLS (7); or algebraic (9)

 
Output

estima

-tion

FIGURE 3. Flow chart typical of most local PMU derived observers.

Firstly, regarding the adaptive solver [60], the PCC voltage
phasor

−→
U can be described as:

−→
U =

−→
E − Zn

−→
In (1)

Where
−→
U is the PCC voltage phasor (

−→
U = U∠θ),

−→
E is the

equivalent grid voltage phasor (
−→
E = E∠β),

−→
In is the grid

current phasor (
−→
In = In∠0◦), and Zn is the grid impedance

(Zn = Rn + jXn). The arrow notation is used to describe
phasors, whereas the bar notation is used to describe complex
quantities. The phasor relation of

−→
U ,
−→
E and

−→
In is graphically

represented in the Fig. 4 phasor diagram.

Imag

Real

E

U

E-U

Inθ

β

FIGURE 4. Phasor diagrams for local PMU-based estimation techniques.

Given that Zn = Rn + jXn, (1) can be rearranged and
separated into real and imaginary components, as follows:

E cos(β) = RnIn + U cos(θ) (2)

E sin(β) = XnIn + U sin(θ) (3)

In the two above equations, there are four unknowns: E,
β, Rn and Xn. However, if the network is known to be
much more inductive than resistive (Xn >> Rn), then it is
acceptable to assume Rn = 0 [60]. This assumption allows
the decoupling of Xn from

−→
E by rearranging (2):

β = cos−1

(
U cos(θ)

E

)
(4)

In [60], an initial E estimate is made by taking the mean
value of the expected voltage region, and updating for a
new value with every consecutive timestep using (3) and (4).
Every updated value of E corresponds to a unique value of
Xn. The direction of the error for E is dependent on the
variations of the load impedance (analogous to the converter
output impedance which includes both the filter and the
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converter) called Zl. When Xn and Zl vary in the same
direction, estimates of E reduce; otherwise E increases.

Alternatively to the adaptive solver is the RLS solver [61]–
[64]. The RLS solver allows an under-determined system
to generate a unique set of estimations by allowing the use
of many measurement points without making the equations
over-determined. RLS is usually undertaken using rectan-
gular notation instead of phasor notation. Using the same
notation as Fig. 2, the implementation is as follows:

Y = AX̂ −Q (5)

Expanded in full matrix form
U1

U2

...
Uk

 =


In1 1
In2 1

...
...

Ink 1

 ·
[
Ẑn

Ê

]
−


q1

q2

...
qk

 (6)

Where X̂ is the estimate of X and Q is the error between
X and X̂ . The use of the bar for voltages and current
denote rectangular notation, where U = Ureal + jUimag ,
E = Ereal + jEimag , and In = Ireal + jIimag . The RLS
technique requires some manipulation [66] which results in
(7). This form allows a simple closed-form solution which
minimises the error.

X̂ = (ATA)−1(ATY ) (7)

To conclude the PMU derived observers is the algebraic
solvers, described in [24], [65]. In this instance, only two
measurement sets are used and solved algebraically, resulting
in the following equation. The initial measurement set has
the subscript 0, and the following measurement set has the
subscript 1.

Zn =
U1 − U0

In1 − In0

(8)

Both above mentioned articles [24], [65] proceed to enhanc-
ing the equation, compensating for measurement drift caused
by the deviation from fundamental frequency experienced by
the signals, as follows:

Zn =
U1e

j∆θ − U0

In1ej∆θ − In0

(9)

Where ∆θ is the shift in phase due to the deviation from
fundamental frequency.

2) PCC Observers
This subcategory is relevant to devices with measurement
capabilities that do not utilise GPS synchronisation. This
is the case for most converters and buses with current and
voltage sensors. Observers generally follows the flow chart
depicted in Fig. 5 of recognising a grid event, storing the
information, and mathematically extracting an impedance
estimation, normally in the frequency domain.

Reference [67] identifies that a sufficiently large grid event
has occurred when a 3% change in RMS voltage is registered.

Observation

of current and

voltage signals

Processing

(normally FFT)

Spectral/equiv. 

impedance 

estimation

Detection

of grid event

Storing of pre- and

post-disturbance

measurements

Collating with

existing data

FIGURE 5. Flow chart typical of most observers.

The transients caused by such an event can provide infor-
mation about the system across a wide range of frequencies.
Triggered by the transient, the estimation procedure requires
the storage of voltage and current measurements for five
fundamental periods immediately before and after the event
is detected. FFT is then used to convert pre- and post-
disturbance voltage and current from the time domain to the
frequency domain up to the 50th harmonic, and (10) is used
to estimate the impedance, where ω represents the frequency
being analysed.

Zn(ω) =
U(ω)pre − U(ω)post

In(ω)pre − In(ω)post
=

∆U(ω)

∆In(ω)
(10)

Notice that (10) is similar to (8), with the difference being
that (8) is valid for the fundamental frequency impedance
only (the Thévenin equivalent), whereas (10) can determine
the impedance at a range of frequencies, subject to the FFT
implementation.

With the observer implementation described in [67], good
estimations require data accumulated by 70 grid events over
15 days – the accuracy of the estimates are not explicitly
stated, but this is clear in the article figures. In [68], the
same authors presented the same data with the addition of
the reference impedance value.

If the impedance estimator is part of a converter controller,
the noise induced naturally by the switching of the converter
can be used as the basis of disturbances. This is the case in
[69] where the switching frequency of 10 kHz introduces
voltage and current harmonics into the system. Assuming
there is no pre-existing high frequency harmonics in the grid
voltage it is demonstrated that results can be obtained within
20 ms. [19] uses a similar process and assumptions, but
with more focus on the timing of the samples relative to the
space vector pulse width modulation (SV-PWM) switching.
An estimation time of 50 ms is achieved. Another article,
[70], also utilises PWM induced noise but this time uses the
Recursive Least Squares technique as a means of mathemati-
cally extracting the impedance information. With a switching
frequency of 2.8 kHz, the impedance estimation time is 1.2 s.

An alternative implementation of the observer monitors
the variations in active power. A sufficiently large distur-
bance within the system, such as a step change in network
impedance, will excite the system and cause the active power
injection to vary [71]. In [71], FFT is used to extract the
Thévenin equivalent impedance when a disturbance is de-
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tected using (10). This technique can be classified as passive
because the change in power set-point is not undertaken
specifically to disturb the system.

3) Kalman Filter
Some researchers have recently suggested using nonlinear
variations of the Kalman Filter in order to estimate the
impedance. Whilst this technique is a type of observer, the
computation and implementation is very different to the
above mentioned observers – therefore the Kalman Filter
is considered separately. The Kalman Filter flow chart is
presented in Fig. 6 [72]. It begins with the initialization, and
then continually loops around as long as the Kalman Filter
continues to receive new system measurements.

Initilization: 

x̂(k) & P(k) provided

Prediction:

 x̂(k+1) & P-(k+1) predicted

based on previous estimate x̂(k),

previous error covariance P(k),

new measurements u(k)

u(k)

Correction of state estimate:

K calculated based on P-(k+1),

x̂(k+1) recalculated based on the

previous x̂(k+1), K & Δy(k+1),

P(k+1) recalculated based on K

and P-(k+1)

Determination of error:

ŷ(k+1) calculated from x̂(k+1),

y(k+1) obtained from measurements,

Δy(k+1) = y(k+1) - ŷ(k+1)

k+1 becomes k

y(k+1)

FIGURE 6. Flow chart typical of the extended Kalman Filters.

The Kalman Filter works in roughly three main steps:
The first is the prediction step which involves estimating

the system states x̂ and the error covariance of the states P−,
as per (11) (12).

x̂(k + 1|k) = Ax̂(k) + Bu(k) (11)

P−(k + 1) = AP (k)AT + V MV T (12)

Where A is the state matrix, B is the input matrix, V is
the predicted estimation error and M is the expected white
noise of the estimation process.

The second step is to use the state estimations to determine
the corresponding outputs ŷ (13), and determine the error by
comparing the measured and estimated output values (14). C
is the output matrix.

ŷ(k + 1) = Cx̂(k + 1|k) (13)

∆y(k + 1) = y(k + 1)− ŷ(k + 1) (14)

The final step is to correct the state estimate. This is done
by calculating the new Kalman Gain from the prediction error
covariance and the expected measurement noise (N ) (15),
and using the Kalman Gain to undertake a final state esti-
mation (16). The prediction covariance is also subsequently
updated (17).

K(k+1) = P−(k+1)CT
(
CP−(k + 1)CT + N(k + 1)

)−1

(15)

x̂(k+ 1|k+ 1) = x̂(k+ 1|k) +K(k+ 1)∆y(k+ 1) (16)

P (k + 1) = (I −K(k + 1)C)P−(k + 1) (17)

The “extended" Kalman Filter (EKF) is an augmentation
of the Kalman Filter intended for nonlinear systems. The
EKF is implemented in [73], [74] where a Jacobian matrix is
used instead of the state matrix to account for the nonlinear-
ities, demonstrating good results for the assumed Thévenin
equivalent system. The authors of [73] do concede, however,
that system tuning is complex, requiring EKF optimisation
through trial and error for the various grid conditions and
operating points.

IV. ACTIVE TECHNIQUES
Active techniques, unlike passive techniques, do not rely on
existing grid events. Instead, these techniques intentionally
introduce a controlled perturbation or change in operating
point, increasing the information available about the network.
Active techniques can be further subcategorised into steady
state and transient techniques.

A. STEADY STATE
Steady state techniques require the network response to a
perturbation to settle prior to the collection of any measure-
ment. All steady state techniques assume stationary network
conditions for the duration of the testing.

1) Frequency sweeps
Frequency sweeps remain the most common grid characteri-
sation technique, normally employed for network studies at a
PCC [1]. Typical implementation is demonstrated in the Fig.
7.

Repeat for other 

harmonic impedance

if required

Calculate impedance

at perturbation

frequency

Process data

(FFT)

Take measurements

once steady state

conditions met

Introduce steady

state perturbation

FIGURE 7. Flow chart for frequency sweeping.

Frequency sweeps are usually undertaken by attaching
specialised hardware at the point of interest [52], injecting
small steady state sinusoidal perturbations at a wide range
of frequencies, and employing Fourier analysis to calculate
the network impedance in the frequency domain, as per
(18) where ω represents the perturbation frequency [5], [75].
Note that the perturbation frequency must be different to
the fundamental frequency. Assuming that the network is
stationary for the duration of the test, the wide spectrum
impedance analysis can provide detailed grid characterisation
complete with nonlinearities (such as resonances) at the cost
of lengthy testing duration [3]. Frequency sweeping can be
undertaken with specialised equipment installed temporarily
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in a node of the system or via standard grid-connected power
converters. [76] focuses on line impedance estimation.

Zn(ω) =
U(ω)

In(ω)
(18)

This type of analysis has been further developed, with [52]
using inexpensive hardware to estimate impedance from 20
Hz to 24 kHz, [77] using high resolution equipment to
estimate the the impedance from 2 to 150 kHz, and [78]
undertaking frequency sweeps of multiple frequencies si-
multaneously, increasing the data captured with each sweep.
Frequency sweeps are not used only in utility grids but also
in contained systems, such as on aircraft and ships [79], [80].

Wide spectrum frequency sweeps are occasionally im-
plemented in converters as a means of validating the lab-
oratory results of alternative impedance estimators – such
as [81] (impulse-response) and [82] (pseudo random binary
sequence injection).

2) Nonharmonic excitation
A number of publications choose to assume linear impedance
and only excite a single noncharacteristic frequency. This
is known as nonharmonic excitation. For example, [11],
[13], [14] inject a noncharacteristic harmonic current of 75
Hz periodically. The settled values of current and voltage
are recorded and converted into the frequency domain with
Fourier transform analysis (or wavelet transform as per [11]).
The voltage and current values at 75 Hz are extracted and
the impedance is calculated with Zn(ωh) = Rn + jωhLn
(where ωh is the nonharmonic frequency). It is assumed
that the impedance at 75 Hz and 50 Hz is the same. [12]
provides a very similar methodology, except that the period
in between disturbances is 5 seconds. [83], [84] excites at
400 and 600 Hz, except that in [84] voltage is excited instead
of the current. Interestingly, [85] excites a frequency of 10
Hz. Of the implementations discussed in this section, only
[83]–[85] calculated both resistance and reactance as separate
parameters – all other implementations only calculated the
impedance magnitude. Nonharmonic perturbations can be
injected in the dq-frame as per Fig. 8.

Current

controller
Park-1 +

Voltage

Sinusoidal

Injection

Modulation

VDCθ

idq ref

vdq ref
vabc ref

+

Current

Sinusoidal

Injection
Park

θ

OPTION 1

OPTION 2

gate

signals

idqω

FIGURE 8. Examples of current and voltage sinusoidal injection within vector
control.

More recently, some researchers have explored using the
Wavelet Transform (WT) as an alternative to FFT [11], [86].

The perturbations are the same as previously explained, with
nonharmonic frequencies of 75 and 630 Hz utilised in these
articles, and with both inductance and resistance estimated.
The WT is explained in more detail at the end of Section
IV-B1 as it is generally more appropriate to transient meth-
ods.

As an aside, the WT is not limited to impulse-response.
utilises the WT combined with a steady state nonharmonic
current injection.

3) P/Q reference variation
The final steady state technique is the P/Q reference variation
technique. In this technique, the active power and reactive
power references are intentionally varied in order to allow the
detection of both the resistive and inductive parts of the net-
work Thévenin equivalent impedance [87]. With variations in
outer loop references, the P/Q reference variation technique
causes a very small amount of noise and disruption in the
network [87]. This is described in Fig. 9.

Undertake impedance

calculation using algebraic

or RLS method

Repeat for as many

operating points

as required

Take measurements

once steady state

conditions met

Introduce P or 

Q step change

FIGURE 9. Flow chart of P/Q reference variation.

The techniques described in [25], [53], [87], [88] require
two sets of measurements, where P and Q deviations can be
either positive or negative. The impedance is subsequently
calculated algebraically as per (19) and (20), or similar. The
Park transformation values for PCC voltage and grid current
are used, such that U = Uq − jUd and In = Inq − jInd.
Subscripts 1 and 2 represent the two sets of measurements.

Rn =
(Uq1 − Uq2)(Inq1 − Inq2) + (Ud1 − Ud2)(Ind1 − Ind2)

(Inq1 − Inq2)2 + (Ind1 − Ind2)2

(19)

Ln =
1

ω0

(Ud1 − Ud2)(Inq1 − Inq2)− (Uq1 − Uq2)(Ind1 − Ind2)

(Inq1 − Inq2)2 + (Ind1 − Ind2)2

(20)
The P/Q variation technique is further expanded in [15], [89]
to use a RLS solver. The RLS solver is already described
earlier in (5), (6) and (7) and the analysis techniques are the
same. However, when implemented in a converter, the active
and reactive power can be controlled to ensure variability in
operating points. This is demonstrated in Fig. 10, where three
different measurement sets are used.

Recent publications have seen principles of the P/Q vari-
ation technique applied to relatively new concepts. [90] has
adapted the P/Q variation technique to grid forming converter
control, demonstrated to work in both voltage and power
control cases; and [91] has implemented the method to a
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FIGURE 10. PQ variation with 3 different measurement points.

system with no direct voltage measurements and only active
power variation.

B. TRANSIENT TECHNIQUES
Unlike active techniques, transient techniques utilise the
immediate transient response to a perturbation in order to
extract information about the network. The most common
form of transient technique is the impulse-response tech-
nique, but a number of articles also use the pseudo random
binary sequence injection technique.

Irrespective of the nature of the perturbation, the
impedance calculation is as follows – taking into account
both the pre-disturbance and post-disturbance measurements
[92] [8]. Notice that this is the same equation as (10) – the
calculation is the same, the difference is simply in whether
the disturbance is detected or intentionally injected.

Zn(ω) =
∆U(ω)

∆In(ω)
(21)

1) Impulse-response
The impulse-response technique involves injecting a current
or voltage perturbation pulse into the network in order to
obtain a response for a wide range of frequencies [93], with
the flow chart presented in Fig. 11. Given the short duration
of the impulse, the size of the frequency spectrum of interest
and the possibility of high signal to noise ratio (SNR), the
impulse must be large [3], [92]. This allows for full spectral
excitation in a very short period of time, making this tech-
nique particularly attractive in highly variable networks [7].
As such, additional hardware is often used to generate the
impulse (such as the 5 pu of current injected in [8]). The use
of additional hardware also allows for the disturbance to be
injected directly in the PCC of interest, making the estimation
of both the converter output impedance and grid impedance
possible. Examples of hardware for impulse generation are
shunt capacitor banks [2], [3], [92], the use of thyristor
switches to create a short circuit [8], [94], or even switching
the DC link voltage across an L filter inductor [93]. [81]
use a dedicated power converter for increased control over
the disturbance, as does [95], where the injected rectangular
impulse is designed to extract impedance information at
frequencies 2 kHz to 150 kHz.

Not all articles using the impulse-response technique
rely on additional hardware. Some have implemented the
impulse-response technique directly into a converter. Unlike
the aforementioned techniques that use dedicated impulse

Calculate impedance

for range of 

frequencies

Process data

(FFT)

Inject impulse

Take

pre-disturbance

measurements

Take

post-disturbance

measurements

FIGURE 11. Flow chart for the impulse technique.

generating hardware, converter based injections are limited
by the rating of the converter. Motivation for the impedance
estimation vary from the identification of stability margins
[96] to online PLL bandwidth adaptive control [97]. Due to
the wide number of varying features described in impulse-
response literature, Table 1 has been produced to simplify
the comparison process.

Table 1 identifies whether the impulse is a voltage or a
current; the type of filter used (L or LCL-filter); the type of
grid that is being assessed (sometimes the grid is assumed
to be a simple inductor with no resistance, but other times
it is more complex with parallel branches and multiple reso-
nances); the properties of the injection, including the per unit
value if it is provided or calculable; the injection width in
micro or milliseconds, the number of measurements taken,
the frequency range processed by the FFT, and a note on how
the technique is validated. Note that only [49], [81], [96], [98]
are online, with complete microcontroller integration of the
estimation technique.

From Table 1, it can be deduced that even converter-
implemented impulse-response techniques inject a signif-
icant disturbance into the network, with the majority of
implementations injecting at least 0.5 pu of base current or
voltage. However, this allows for a very short measurement
period and an impedance estimation covering a large range
of frequencies (almost all variations measure up to 2 kHz). In
general, measurement periods are even shorter if the impulse
is larger (i.e. 1.5 pu impulse). The types of grids varies
greatly, from simple inductors to complex networks with
parallel capacitors, therefore introducing resonant behaviour
and replicating certain grid behaviours.

With regards to the converter controller, there are two main
implementations of the converter induced impulse. Either it
is injected as a current in the d-component of the current
reference [96], or as a voltage in the q-component of the
voltage reference during the zero crossing [98]. These are
represented graphically in Fig. 12.

As an alternative to the FFT, the impulse-response tech-
nique could utilise the Wavelet Transform (WT) as a means
of analysing measurement results, as per [100]. The differ-
ence between FFT and WT is that FFT compares a given
signal to sinusoidal signals in order to decompose the signal
into individual frequencies; whereas WT compares a given
signal to wavelets [101]. There are multiple advantages to
this: the WT is more suited to analysing a transient signal;
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TABLE 1. Various implementations of the converter injected impulse-response technique

Ref Dist.
type

Filter Type of grid Injection
properties

Injection
width

Measurements Target
frequency
range

How is it
validated?

[81] V L Circuit 1: L only
Circuit 2: L
parallel with C

Triangular 500 µs 8 transient cycles
and 8 steady state
cycles

< 1 kHz Freq
sweeps

[99] V L Circuit 1: RL
Circuit 2: RL
parallel with RC
Circuit 3: Multiple
resonances

Stepped
injection with
a maximum
amplitude of
∼ 0.5 pu

∼ 80 ms 8 transient cycles
and 8 steady state
cycles

< 1 kHz Ideal trace
calculated

[96] I L Circuit with L
parallel to CR

1.5 pu ∼ 1 ms 1 transient cycle
and 1 steady state
cycle

< 2 kHz Freq
sweeps

[93] I L Circuit with
multiple resonances

60 - 100 A
(Base values
not specified)

650 µs 8 transient cycles
and 8 steady state
cycles

< 2 kHz Ideal trace
calculated

[49] I (x2) LCL Simple RL ∼ 0.5 pu 2 pulses: 0.5
ms and 0.7
ms

1 transient cycle
and 1 steady state
cycle

120 Hz -
2 kHz

Ideal trace
calculated

[98] V LCL Simple RL 0.1 pu 1 or 2 ms Not specified 150 Hz -
1.65 kHz

Known
RL

Current

controller
Park-1

θ

idq ref
vdq ref

+

id impulse

Modulation

VDC

vabc ref

gate

signals

vq 0-crossing impulse

+

OPTION 1

OPTION 2

idqω

FIGURE 12. Typical locations of converter induced impulses. pseudo random
binary sequence injection location would be similar.

and the WT is capable of identifying when a specific fre-
quency appears in a signal and when it ends [102]. This is
because the wavelet can be both compressed and expanded
to accommodate for the various frequencies, but it can also
be shifted, to undertake wavelet estimations at different time
instances – unlike sine waves which are can be compressed
and expanded but cannot be shifted (their shape does not
change). With regards to the application of post-disturbance
voltage and current analysis, as per [100], [103], the use
of the WT has significantly reduced the number of periods
required for pre- and post- disturbance analysis (from 8
periods to one period).

2) Pseudo random binary sequence
The pseudo random binary sequence (PRBS) injection is
a pre-determined sequence of wide-band excitation without
the high total harmonic distortion (THD) of the impulse-
response technique [21], [104], [105], with the flow chart
presented in Fig. 13. These signals are in effect ones and ze-
ros [106]. The length of the sequence, its magnitude and the
switching frequency determines the achievable spectral res-
olution [107]. Compared to the impulse-response technique,
this technique can work in much higher SNR conditions with
significantly lower injection amplitude [82]. The spectral en-
ergy content of the injection can also be controlled in order to

minimise interference with normal grid control and maximise
the response of the desired frequencies [108]. Similarly to the
impulse-response technique, FFT is applied to the measure-
ments in order to estimate the spectral impedance [109], with
the main advantage of improved immunity against the effect
of nonlinear distortions.

Calculate impedance

for range of 

frequencies

Process data

(FFT)

Inject PRBS

Take

pre-disturbance

measurements

Take

post-disturbance

measurements

FIGURE 13. Flow chart for the PRBS technique.

V. QUASI-PASSIVE TECHNIQUES

Quasi-passive techniques combine an observer with an active
technique. The observer is employed to identify when the net-
work impedance may have changed. If it is determined that
a change has occurred, the active technique is triggered. This
a compromise between maximising quality of estimation and
reducing the occurance of a disturbance injection: by tracking
changes to the grid, a pre-determined criterion can initiate
the active technique, introducing a disturbance on the system
only when necessary [15], [98].

In [15], the trigger is a “quality threshold" (Γ). The quality
threshold is the “voltage error", squared, divided by the
current, averaged over a sampling window (22). It requires
the latest grid impedance and grid voltage estimations as
well as voltage and current measurements. The window is
k samples long. When the estimation values are correct, Γ
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should be close to zero.

Γk =
1

2k

k+n∑
i=k−n

||Vi − In iẐn i − Êi||2

|In i|
(22)

Should a grid event affect the grid impedance, the estimation
becomes outdated and Γ will increase. Once Γ goes past a
pre-determined threshold, it triggers the estimation process
[15].

Ref. [98] proposes a Luenberger observer in order to
trigger the active technique. The Luenberger observer is very
similar to the Kalman Filter except that there is no change in
”correction" gain and a linear state matrix is employed. The
active technique is initiated when the difference between the
estimated PCC voltage (Û = f (In, Ê, Ẑn) ) and the mea-
sured PCC voltage (U ) exceeds a pre-determined magnitude
(∆U = U − Û ).

Quasi-passive techniques, however, introduce new delays
due to the time required for the observer to detect an
impedance change [15].

VI. COMPARISONS BETWEEN ESTIMATION
TECHNIQUES
Table 2 presents a summary of the impedance estimation
techniques found in the literature. The following items are
compared in the table:

• Target frequencies: this column notes whether only the
fundamental frequency (ω1) is targeted, or whether the
impedance estimation technique targets a range of fre-
quencies per impedance estimation routine.

• Disturbance amplitude: Some techniques require large
disturbances, and some require none at all – in which
case the box is marked with a line.

• Disturbance duration: The duration of the disturbance
per impedance estimation routine.

• Are various SCR networks discussed?: This column
aims to identify if the various articles for each technique
cover a range of network strengths. This aim of this is to
identify whether some techniques are more popular to
strong or weak networks.

• Are various X/R ratios discussed?: This column aims
to identify if various impedance to resistance ratios are
covered by the literature.

• Typical error: The estimations are sometimes compared
to the name plate values, mathematical models of the
experimental set-up or frequency sweep results, indicat-
ing how accurate the estimations are. Techniques that
yield an error of < 2% are considered to have low error.
Between 2% and 5%, the error is medium. Any error
larger than 5% is considered large.

• Comments: This column aims to highlight an important
aspect of the technique which is not necessarily covered
by the other columns.

• Data analysis techniques: Various analysis techniques
are used such as FFT, WT, algebraic or RLS. This is im-
portant because not all microcontrollers may be able to
handle some of the more intensive analysis techniques.
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TABLE 2. Classification of Local Impedance Estimation Techniques

Technique References Target
frequencies

Disturbance
amplitude

Duration of
disturbance

Are various
SCR networks
discussed?

Are various
X/R ratios
discussed?

Typical error Comments Data
analysis
technique

PMU (Adaptive) [60] ω1 ——— ——— Yes No, only
Xn >> Rn

Inconclusive Only relevant for
transmission level

Adaptive

PMU (RLS) [61]–[64] ω1 ——— ——— Yes Yes Low / Med Stable estimations but
not fast

RLS

PMU (Algebraic) [24], [65] ω1 ——— ——— Yes No, only
Xn/Rn = 0.2

Inconclusive Limited research
undertaken

Algebraic

Observers [19], [67]–[71],
[110]

ω1 to ω50 ——— ——— Yes Yes Dependent on
grid conditions

Dependent on grid event
occurrence

FFT

Kalman Filter [73], [74] ω1 only
ω1 to ω13

——— ——— Yes No, only
X/R ratios of
< 1.2 tested

Low / Variable Very complex KF

Frequency sweeping [1], [3], [5], [52],
[75]–[77], [79],
[80]

As required ∼ 0.01 pu 32 × Tfund

to ∼ 1 min
per harmonic

Yes Yes Low Invasive and time
consuming

FFT

Nonharmonic
excitation (FFT)

[12]–[14], [83]–
[85]

ω1 0.05 to
0.077 pu

0.02 to 0.04 s Yes No, only
X/R ratios of
< 0.3 tested

Low / Med Assumes linear
impedance

FFT

Nonharmonic
excitation (WT)

[11], [86] ω1 3 A (base
unit not
specified)

0.025 s No No Low / Med Assumes linear
impedance

WT

Simultaneous
frequency sweeping

[78] As required ∼ 0.02 pu
per freq

0.01 to 1 s No No Low Invasive FFT

P/Q reference variation [15], [18], [25],
[53], [87]–[91]

ω1 Set-point
step change
0.1% to
10%

∼ 0.1 to 1 s No No, only
X/R ratios of
< 0.75 tested

Low / Med Rate of estimation
restricted by settling
time

RLS or
Algebraic

Hardware injected
impulse-response

[2], [3], [7], [8],
[81], [92]–[94]

ω1 to 10
kHz

∼ 1.5 to
5 pu

500µs to
1.6 ms

Yes Yes Medium High THD FFT

Converter injected
impulse-response
(FFT)

[49], [96]–[99] ω1 to 2 kHz 0.1 to
1.5 pu

500µs to
80 ms

Yes Yes Medium High THD FFT

Converter injected
impulse-response
(WT)

[100], [103] ω1 to 2 kHz 20 A (base
units not
specified)

1 ms No No Inconclusive High THD but lower
processing time

WT

Pseudo random binary
sequence injection

[21], [22], [82],
[104], [105],
[107]–[109], [111]

ω1 to 3 kHz 0.1 to
0.2 pu

5 ×Tfund to
1 s

Yes Yes Low / Med Complex FFT
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VII. RANKING OF TECHNIQUES BASED ON
APPLICATION OBJECTIVES AND LIMITATIONS
All the above mentioned estimation techniques have ad-
vantages and disadvantages. The purpose of this section is
to compare the techniques by explaining which would be
more appropriate depending on the application objectives and
limitations.

1) Prioritising accuracy
1) Frequency sweeping and honharmonic injection.
2) Simultaneous frequency sweeping.
The most accurate techniques are those ones which inject

sinusoidal perturbations and utilise the steady state response
for the estimation process. This includes both the frequency
sweep technique and the nonharmonic injection technique.
However, the former comes at the cost of a lengthy mea-
surement period, and is therefore dependent on system sta-
tionarity for duration of the measurements. The latter is also
dependent on stationarity (but to a lesser extent as distur-
bance injections are shorter), but it also assumes impedance
linearity between the nonharmonic frequency and the fun-
damental frequency. Both techniques are also dependent on
injecting an invasive, but low amplitude, disturbance. Worth
considering, too, is the multi-sinusoidal injection described
in [78].

2) Prioritising reduced network disruption
1) All PMU techniques, all observers and Kalman Filter.
2) Quasi-passive techniques (nonharmonic excitation).
3) P/Q variation.
With regards to minimising the disruption on the network,

the best techniques are the passive techniques as no distur-
bance is injected. However, this comes at a cost of lower
estimation accuracy and no control over disturbance interval
(as only grid events introduce disturbances). However, if
some noise is permitted, the use of quasi-passive techniques
utilising nonharmonic excitation may be an acceptable com-
promise. Also, the P/Q variation techniques due to the low
levels of injected noise (variations in outer loop references
are much less disruptive than the injection of a sinusoidal or
impulse disturbance).

3) Maximising wide frequency-spectrum impedance
estimation

1) Impulse-response and PRBS.
2) Frequency sweeping.
The best techniques for obtaining wide frequency range

impedance estimations are the transient techniques, due to
the short duration of the procedure. However, the frequency
sweeping technique is also suitable, providing more accurate
results but taking significantly more time.

4) Prioritising rapidity of estimation
1) Impulse-response and PRBS.
2) Nonharmonic excitation.

3) P/Q variation.
The best technique for a highly variable network is one

which gives rapid estimation. As such, all transient tech-
niques are adequate. If only the fundamental impedance is
required then nonharmonic excitation or P/Q variation tech-
niques are also acceptable with relatively short estimation
times.

VIII. PRACTICAL USES FOR THE ESTIMATIONS
Estimation techniques may be suitable to a range of applica-
tions, and by discussing the techniques as a function of appli-
cation may be useful to some readers. Note, however, that a
large number of publications do not specify the intended use
of the estimations, preferring to concentrate on the estimation
process instead.

1) Network characterisation
The main priority in network characterisation is capture of
wide frequency spectrum and temporal variations of the
power network, in order to make power quality assessments
and protection / filtering design decisions. This is covered in
[8], [52], [75]–[77], [81], where the portability of the equip-
ment is particularly important. Active techniques are required
here, with the literature focused on frequency sweeps and
impulse-response.

2) Anti-islanding detection
Anti-islanding detection is mainly concerned with regular
(periodic) estimates for Thévenin equivalent impedance mag-
nitude, as this is sufficient for detection of unintentional
islanding. Therefore, the main techniques utilised in the
literature are the P/Q variation and the nonharmonic excita-
tion techniques [12]–[15]. The most recent literature on this
subject is [112], which focuses on applying an impedance
estimation to detect islanding within 100 ms.

3) LC and LCL filter resonance avoidance
A number of papers use impedance estimation techniques
to avoid resonating with the network, especially when pas-
sive damping has been avoided for efficiency reasons. The
literature surrounding this is normally most concerned with
the Thévenin equivalent impedance, resulting in the use of
the P/Q variation technique [48] and the impulse-response
technique proposed in [98]. Both of these techniques then
use this information to tune the current controller, as the
damping of filter resonances is primarily the function of the
current controller [113]. The impulse-response technique is
also used by [97] except the estimations are used to tune the
PLL and [49] which proposes “impedance compensation" in
a modoified current controller.

4) Controller tuning
With a variable grid impedance and the possibility of
control-grid resonances, some authors have suggested using
impedance estimation techniques specifically for current con-
troller tuning purposes: [19], [70] use observers and [84] uses
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nonharmonic excitation. Some PRBS-type literature claim
that their estimations can be used for adaptive control tuning
[21], [82], but it is not specified what control aspect is being
tuned. [25] uses the P/Q variation technique to update the
value of a virtual impedance within the PLL, intended to
stabilise the controller in weak grids.

IX. FUTURE TRENDS
In the last decade, the literature on local impedance esti-
mation has shifted fundamentally away from network char-
acterisation (undertaken with specialised hardware) towards
converter based online estimations for independent decision
making processes. This shift happened at first with the objec-
tive of detecting islanding situations, and then with the aim
of avoiding filter resonances and improved controller tuning.
It is therefore reasonable to assume that online adaptation of
converter control may become more widespread in the future,
as network impedance variability continues to increase.

It is the authors’ opinions that the literature on local
estimation techniques is reaching maturity. It is expected that
future literature will focus increasingly on the applications
which utilise the estimations. These applications will likely
use both wide frequency spectrum and Thévenin equivalent
impedance estimation techniques, with the wide frequency
spectrum impedance estimations employed for advanced res-
onance identification, and Thévenin equivalent impedance
estimations for improving converter performance. This will
become increasingly important as networks become more
variable.

There are many options for research for future work, but
the authors of this article would like to highlight the most
promising areas.

1) There is limited research on the wavelet transform,
which should be advantageous for both observer and
impulse-response estimation techniques. The use of the
wavelet transform would allow for improved extraction
of transient signals over FFT and could significantly
improve understanding of the network impedance.

2) The estimation of the impedance could be used to adapt
the control and establish operational boundaries that
improve stability, for example the maximum allowable
power transfer limits of a converter.

3) Quasi-passive techniques are promising due to their ac-
curate estimates and reduced perturbations. However,
very few authors have explored the trigger implemen-
tations.

4) Few articles discuss the limitations of sensors and the
computational capabilities of microcontrollers.

X. CONCLUSIONS
The motivations for local impedance estimations has evolved
over the last decades. Initially, estimation techniques were
driven by the need to understand the harmonic impedance
through network characterisation studies. This has evolved
to anti-islanding detection, LC and LCL filter resonance
avoidance and online controller tuning.

This article has presented a review of impedance esti-
mation techniques, produced a detailed classification and
comprehensive description of the main impedance estimation
techniques, and provided the reader with the tools required
to compare the techniques and select the most appropriate
technique for their application. Such considerations are, for
example, the accuracy requirements of the estimation, the
allowable noise that can be injected into the network, the
required frequency range of the impedance estimation, and
the time required for an estimation to be produced. Passive
techniques, which inject no noise into the network, are less
reliable in terms of estimation accuracy, frequency spectral
range and time taken to produce an estimation. Active tech-
niques provide much more control over the reoccurance of
an estimation, the frequency spectral range and estimation
accuracy at the cost of perturbation injection. Within active
techniques, each method has its advantages and disadvan-
tages.

As a final comment, it is worth highlighting the expected
projection of impedance estimation techniques into the fu-
ture. This will be driven, in large part, by the increased
variability of network impedance. As a result, impedance
estimations will probably be used to optimise controller
tuning to ensure stability, adequate controller response and
maximum power output.

DATA STATEMENT
There is no data supporting this review article other than the
referenced material.
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