6 research outputs found

    Poster session: Constrained dynamic physical database design

    Get PDF
    Physical design has always been an important part of database administration. Today's commercial database management systems offer physical design tools, which recommend a physical design for a given workload. However, these tools work only with static workloads and ignore the fact that workloads, and physical designs, may change over time. Research has now begun to focus on dynamic physical design, which can account for time-varying workloads. In this paper, we consider a dynamic but constrained approach to physical design. The goal is to recommend dynamic physical designs that reflect major workload trends but that are not tailored too closely to the details of the input workloads. To achieve this, we constrain the number of changes that are permitted in the recommended design. In this paper we present our definition of the constrained dynamic physical design problem and discuss several techniques for solving it

    Autonomous Database Management at Scale: Automated Tuning, Performance Diagnosis, and Resource Decentralization

    Full text link
    Database administration has always been a challenging task, and is becoming even more difficult with the rise of public and private clouds. Today, many enterprises outsource their database operation to cloud service providers (CSPs) in order to reduce operating costs. CSPs, now tasked with managing an extremely large number of database instances, cannot simply rely on database administrators. In fact, humans have become a bottleneck in the scalability and profitability of cloud offerings. This has created a massive demand for building autonomous databases—systems that operate with little or zero human supervision. While autonomous databases have gained much attention in recent years in both academia and industry, many of the existing techniques remain limited to automating parameter tuning, backup/recovery, and monitoring. Consequently, there is much to be done before realizing a fully autonomous database. This dissertation examines and offers new automation techniques for three specific areas of modern database management. 1. Automated Tuning – We propose a new generation of physical database designers that are robust against uncertainty in future workloads. Given the rising popularity of approximate databases, we also develop an optimal, hybrid sampling strategy that enables efficient join processing on offline samples, a long-standing open problem in approximate query processing. 2. Performance Diagnosis – We design practical tools and algorithms for assisting database administrators in quickly and reliably diagnosing performance problems in their transactional databases. 3. Resource Decentralization – To achieve autonomy among database components in a shared environment, we propose a highly efficient, starvation-free, and fully decentralized distributed lock manager for distributed database clusters.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153349/1/dyoon_1.pd

    Flexibility in Data Management

    Get PDF
    With the ongoing expansion of information technology, new fields of application requiring data management emerge virtually every day. In our knowledge culture increasing amounts of data and work force organized in more creativity-oriented ways also radically change traditional fields of application and question established assumptions about data management. For instance, investigative analytics and agile software development move towards a very agile and flexible handling of data. As the primary facilitators of data management, database systems have to reflect and support these developments. However, traditional database management technology, in particular relational database systems, is built on assumptions of relatively stable application domains. The need to model all data up front in a prescriptive database schema earned relational database management systems the reputation among developers of being inflexible, dated, and cumbersome to work with. Nevertheless, relational systems still dominate the database market. They are a proven, standardized, and interoperable technology, well-known in IT departments with a work force of experienced and trained developers and administrators. This thesis aims at resolving the growing contradiction between the popularity and omnipresence of relational systems in companies and their increasingly bad reputation among developers. It adapts relational database technology towards more agility and flexibility. We envision a descriptive schema-comes-second relational database system, which is entity-oriented instead of schema-oriented; descriptive rather than prescriptive. The thesis provides four main contributions: (1)~a flexible relational data model, which frees relational data management from having a prescriptive schema; (2)~autonomous physical entity domains, which partition self-descriptive data according to their schema properties for better query performance; (3)~a freely adjustable storage engine, which allows adapting the physical data layout used to properties of the data and of the workload; and (4)~a self-managed indexing infrastructure, which autonomously collects and adapts index information under the presence of dynamic workloads and evolving schemas. The flexible relational data model is the thesis\' central contribution. It describes the functional appearance of the descriptive schema-comes-second relational database system. The other three contributions improve components in the architecture of database management systems to increase the query performance and the manageability of descriptive schema-comes-second relational database systems. We are confident that these four contributions can help paving the way to a more flexible future for relational database management technology
    corecore