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Abstract

Physical design has always been an important part of
database administration. Today’s commercial database
management systems offer physical design tools, which rec-
ommend a physical design for a given workload. However,
these tools work only with static workloads and ignore the
fact that workloads, and physical designs, may change over
time. Research has now begun to focus on dynamic physical
design, which can account for time-varying workloads. In
this paper, we consider a dynamic but constrained approach
to physical design. The goal is to recommend dynamic phys-
ical designs that reflect major workload trends but that are
not tailored too closely to the details of the input workloads.
To achieve this, we constrain the number of changes that
are permitted in the recommended design. In this paper we
present our definition of the constrained dynamic physical
design problem and discuss several techniques for solving
it.

1 Introduction

There has been a substantial amount of work on the prob-
lem of automating physical database design [11, 16, 2, 4, 5],
and many database management systems now come with
database design advisors [22, 23, 1]. Such advisors gen-
erally view database physical design as a static problem.
Given a set of queries and updates describing the database
workload, plus a storage capacity constraint, a design advi-
sor recommends a set of physical database structures, such
as indexes and materialized views, that will minimize the
cost of executing the workload. However, such formula-
tions of the physical design problem do not account for the
fact that the database system’s workload may change over
time, and that it may be desirable to change the database
physical design accordingly.

To address this shortcoming, some researchers have pro-
posed dynamic, on-line approaches to the physical design
problem [18, 20, 7, 8, 19, 21]. For example, Bruno and
Chaudhuri [8] model the database workload as a sequence
of queries and updates, and they propose a mechanism that
monitors the workload and continuously adjusts the data-
base physical design based on the queries and updates that it
has observed so far. This is appealing because it attempts to
automatically adjust the database physical design to account
for changes in the workload over time. However, because
it is an on-line mechanism, it can only consider that portion
of the workload that it has already observed. It must predict
the future behaviour of the workload based on the past, and
does not exploit any a priori workload information that may
be available.

In this paper, we consider a dynamic, off-line version of
the physical design problem. We are given, in advance, a
description of the database system workload consisting of a
sequence of queries and updates, as well as a storage capac-
ity constraint. Essentially, our goal is to recommend a series
of physical designs which will result in efficient execution
of the workload.

The dynamic, off-line physical design problem was first
posed by Agrawal, Chu and Narasayya [3]. In their for-
mulation of the problem, the input workload is a sequence
of n queries and updates, and the output is a sequence of
n physical designs, one for each statement in the work-
load. This is an ideal formulation for situations in which
the given query sequence represents an exact characteriza-
tion of the expected database system workload. For exam-
ple, if a particular application program generates a specific
sequence of potentially complex queries each time it runs,
the recommended physical design sequence can be tailored
to the needs of that application. The recommended design
sequence might indicate that a particular index should be
created prior to the execution of a specific query in the se-
quence, and then dropped in favor of a different index for a
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subsequent query.
In other common scenarios, however, the given input se-

quence may not reflect an exact characterization of the data-
base system’s workload. For example, we may capture a
workload trace from a database system on a particular day,
and expect a similar but not identical workload on other
days. In that case, we can view the workload sequence not
as an exact characterization of the workload, but rather as a
representative of the type of workload that is anticipated. In
such situations, we want to recommend a dynamic physical
design that reflects trends in the input workload, but that is
not fit too tightly to the exact input query sequence. This is
the problem that we consider in this paper.

The remainder of this paper is structured as follows.
We formulate a constrained variant of the off-line dynamic
physical design problem in Section 2. The optimal solution
is described in Section 3, followed by two heuristic solu-
tions in Section 4 and an alternative optimal approach in
section 5. Section 6 presents the results of some simple
experiments with constrained dynamic designs. Section 7
provides a brief summary of related work, and Section 8)
concludes.

2 Change-Constrained Physical Design

Following Agrawal, Chu, and Narasayya [3], we assume
that we are given as input a sequence [S1, S2, . . . , Sn] of
SQL statements. Our goal is to choose a sequence of phys-
ical designs [C1, C2, . . . , Cn], where Ci is the physical de-
sign that will be used for the execution of Si. A physical
design consists of a set of structures (e.g., indexes or ma-
terialized views) chosen from a set of candidate structures.
There are several techniques that can be used to generate
such candidates [9, 22]. Like Agrawal et al., we will not be
concerned with the means by which they are determined.

We use EXEC(Si, Ci) to denote the cost of execut-
ing statement Si under physical design Ci, and we use
TRANS(Ci, Cj) to denote the cost of changing the physical
design from Ci to Cj . Finally, we assume that each phys-
ical design has a size, denoted by SIZE(Ci). The off-line,
dynamic optimization problem defined by Agrawal et al. is
to choose the designs Ci such that the sequence execution
cost

n∑

i=1

EXEC(Si, Ci) + TRANS(Ci−1, Ci)

is minimized, subject to the space constraint
∀i : SIZE(Ci) ≤ b, where b is a given space bound.

As noted in Section 1, we would like to treat input se-
quence as a representative example of some unknown work-
load process and avoid fitting it too closely. There are vari-
ous ways that one might consider doing this. For example,
instead of starting with a single given workload sequence,

one could require that a set of representative sequences be
given. Another possibility would be to provide as input
a more explicit representation (e.g., a state machine) of a
workload generation model.

In this paper, we consider a simpler strategy. Like
Agrawal et al., we assume that the input is a single sequence
of SQL statements. However, in our problem definition we
restrict the number of design changes that are allowed in the
resulting sequence of physical designs.

Definition 1 (Constrained Dynamic Physical Design)
Given a database, a query sequence [S1, S2, . . . , Sn],
an initial physical design C0, a space bound b, and a
change constraint k, find a sequence of physical designs
[C1, C2, . . . , Cn] such that ∀i : SIZE(Ci) ≤ b and
Ci−1 �= Ci for at most k values of i, and the sequence
execution cost is minimized.

Note that the input does not specify the points at which
the design is permitted to change. It specifies only the max-
imum number of changes allowed (k). We expect the opti-
mization to determine the correct number of changes as well
as when those changes should occur. By choosing k < n,
we can ensure that the resulting design sequence cannot be
tailored to fit every individual statement in the given work-
load.

How should k be chosen? It is important to note that it is
not necessary to choose a small k to limit the cost of design
changes. The impact of these costs is already accounted for
by the TRANS(Ci, Cj) terms in the sequence execution cost.
Instead, the change constraint k can be viewed as a parame-
ter that controls the tightness of fit of the resulting design
sequence. Smaller values of k ensure a looser fit. In some
situations, it may be possible to select a k based on domain
knowledge of applications that generated the representative
trace. For example, if we are aware of time-of-day phenom-
ena that cause the workload to change at lunchtime and in
the evening, we can choose a value of k equal to or a bit
larger than the number of anticipated fluctuations. A more
general strategy for choosing k would require some means
of characterizing representativeness of the given workload
trace. Although the tuning of k is an interesting issue, we
will not pursue it further in this paper

3 Optimal Change-Constrained Designs

Agrawal et al. observed that the set of possible dynamic
physical designs for a given workload and set of candidate
structures is isomorphic to the set of paths in a sequence
graph, and that the problem of finding an optimal dynamic
physical design is equivalent to finding a shortest path in
that graph [3]. Figure 1 illustrates the sequence graph for a
workload sequence consisting of n = 3 statements, under
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Figure 1: Sequence graph for three statements and one can-
didate index

the assumption that there is only a single candidate index,
denoted by IX. The leftmost node in this graph represents
the initial physical design, C0, which we have assumed to
be empty. Each of the following n columns, or stages, of
nodes represents the possible physical designs for one of
the n statements in the workload. Since there is only one
candidate design structure, there are only two nodes in each
stage, one representing the empty physical design ({}) and
the other representing the physical design consisting of the
index IX. In general, if there are m candidate physical de-
sign structures, there will be 2m possible physical designs
and hence 2m nodes in each stage of the graph. The right-
most node is the destination node. It can serve to constrain
the final configuration. We assume it to be unconstrained.

The node corresponding to physical design Ci in stage x
of the sequence graph is labelled with EXEC(Sx, Ci). The
edge from configuration Ci in stage x to configuration Cj

in stage x+ 1 is labelled with TRANS(Ci, Cj). The optimal
dynamic physical design then corresponds to the weighted
shortest path through the sequence graph from the source
node to the destination node, with the weights determined
by the node and edge labels.

The shortest path through a directed acyclic graph can
be found in O(|V | + |E|) time, where |V | is the number
of nodes and |E| is the number of edges [12]. A sequence
graph has |V | = n2m + 2 nodes and |E| = (n − 1)22m +
2m+1 edges, so a shortest path can be found in O(n22m)
time.

We generalized sequence graphs to solve our change-
constrained dynamic physical design problem. These gen-
eralized graphs called k-aware sequence graphs in the fol-
lowing. Figure 2 illustrates the k-aware sequence graph for
the same scenario used in Figure 1, for k = 2. Like the
original sequence graph, the k-aware graph contains one
stage of nodes for each statement in the workload sequence.
However, the k-aware graph is also layered, as illustrated
by the horizontal divisions in Figure 2. The layers are used
to encode the number of physical design changes that have
occurred along the paths through the graph. For example,
consider the node representing physical design Ci at stage
x in layer l. This node represents the use of design Ci to
execute statement Sx, and that a total of l design changes
have been made up to and including stage x. This node
will have an outgoing edge to the node representing Ci in

Figure 2: (k = 2)-aware sequence graph for three state-
ments and one candidate index

stage x + 1 at layer l, which represents the possibility that
design Ci will also be used to execute Sx+1, and that the
total number of design changes will remain unchanged at
l should that occur. This node will have 2m − 1 outgoing
edges to designs Cj (j �= i) at stage x + 1 in layer l + 1.
These represent the possibility that Sx+1 is executed using
a different design than Sx, and that the number of design
changes will have increased from l to l + 1 as a result.

The set of paths from source to destination through the
k-aware sequence graph with k + 1 layers is isomorphic
to the set of dynamic physical designs with at most k de-
sign changes, i.e., to the set of possible solutions to the
constrained dynamic physical design problem. A k-aware
sequence graph with k + 1 layers contains O(kn2m) nodes
and O(kn22m) edges. Thus, an optimal solution to the con-
strained dynamic physical design problem with a change
bound of k can be found in O(kn22m) time.

4 Heuristic Solutions

Unless m is very small, the shortest-path-based algo-
rithms for both the unconstrained and constrained versions
of the dynamic physical design problem are probably im-
practical because they are exponential in m. In this section,
we discuss two more efficient but heuristic approaches to
the constrained design problem.

4.1 Greedy-Seq

Agrawal et al. proposed a greedy heuristic called
GREEDY-SEQ that produces an optimized dynamic physi-
cal design in polynomial time, but does not guarantee the
optimality of the recommended design. The shortest-path-
based algorithm for finding optimal dynamic physical de-
signs is exponential because it considers an exponential (in
m) number of candidate physical designs. The idea behind
GREEDY-SEQ is to identify a much smaller set of candidate
physical designs, and then run the shortest-path-based algo-
rithm on that smaller set.

This same approach can be used to obtain a good solution
to the constrained dynamic physical design problem. In the
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constrained case, the set of candidate designs can be gen-
erated exactly as in the GREEDY-SEQ approach, in O(nm2)
time. Once the candidates have been determined, we can
generate a k-aware sequence graph using those candidates
and obtain a constrained dynamic physical design. Since
GREEDY-SEQ generates O(mn) candidate physical designs,
the resulting k-aware sequence graph will have O(kn2m)
nodes and O(kn3m2) edges, and the constrained shortest
path can be found from these candidates in O(kn3m2) time.

4.2 Sequential Design Merging

Another way to solve the constrained physical design
problem is to start with a solution to the unconstrained prob-
lem and then refine that solution until it satisfies the con-
straints. In this section we describe one such approach.
Suppose that we have a solution to the unconstrained dy-
namic physical design problem, and that the solution in-
cludes l design changes. We would like a solution to the
constrained design problem for some k < l. We will trans-
form the given solution into a solution to the constrained
problem in at most l − k steps, where each step reduces the
number of design changes by at least one. This approach is
heuristic, so it is not guaranteed to produce an optimal so-
lution to the constrained problem, even if the initial design
is optimal for the unconstrained problem.

In each step we choose a sequence of two consecutive
distinct configurations 〈Ci, Ci+1〉 from the current dynamic
physical design and replace those two configurations with
a new configuration C ′

i chosen from the same set of can-
didate configurations that was used to generate the original,
unconstrained design sequence. We choose the replacement
configuration C ′

i so that

TRANS(Ci−1, C
′
i)+EXEC(Si ∪ Si+1, C

′
i)+TRANS(C ′

i, Ci+2)

is minimal. The appropriate C ′
i can be found by enumer-

ating all candidate configurations. Note that if C ′
i = Ci−1

or C ′
i = Ci−2, then replacing 〈Ci, Ci+1〉 with C ′

i would re-
duce the number of design changes by two. Otherwise, the
number is reduced by one.

The penalty p associated with replacing 〈Ci, Ci+1〉 with
the configuration C ′

i is

p = (TRANS(Ci−1, C
′
i) + EXEC(Si ∪ Si+1, C

′
i)

+TRANS(C ′
i, Ci+2))

− (TRANS((Ci−1, Ci) + EXEC(Si, Ci)
+TRANS(Ci, Ci+1)
+EXEC(Si+1, Ci+1) + TRANS(Ci+1, Ci+2))

From among all pairs 〈Ci, Ci+1〉 in the given sequence, we
choose the pair for which the penalty is smallest and replace
the pair with the appropriate C ′

i to produce a dynamic de-
sign with fewer changes.

Consider the following simple example. We are given a
sequence of n = 3 statements, the set of candidate config-
urations is {∅, {IX}}, the initial configuration is ∅, and the
change bound is k = 1. Suppose that the best unconstrained
design is [∅, {IX}, ∅], which includes l = 2 configuration
changes. With one merging step we can produce design
with at most k = 1 configuration changes. The merging
step identifies the best single configuration to replace the
sequence 〈∅, {IX}〉 and the best single configuration to re-
place the sequence 〈{IX}, ∅〉. Call these configurations C ′

1

and C ′
2, respectively. Then we can easily determine the re-

placement penalty of each of these choices. If C ′
1 has the

smaller penalty, we will replace 〈∅, {IX}〉 with 〈C ′
1, C

′
1〉.

Otherwise, we will replace 〈{IX}, ∅〉 with 〈C ′
2, C

′
2〉.

Assuming that the current design sequence includes x
design configuration changes, and that there are 2m can-
didate design configurations, a single step of the merging
algorithm will required O(x2m) time, since each candidate
must be checked as a potential replacement for a pair of
consecutive designs. If the initial, unconstrained design in-
cludes l design changes and a design with at most k < l
changes is desired, then (l − k) merging steps will be re-
quired, resulting in a total time complexity of

l∑

x=k

O(x2m) = O(2m(l2 − k2))

Note that if the initial unconstrained design is generated
using fewer than 2m candidate designs, then the complexity
of sequential merging is reduced accordingly.

5 Ranking shortest paths

Our constrained dynamic physical design problem can
also be seen as an instance of the constrained shortest path
problem. A very simple and general solution to the con-
strained shortest path problem is to turn it into the shortest
path ranking problem (mentioned inter alia in [15]). Short-
est path ranking algorithms generate paths in ascending or-
der of length until a given stopping condition is reached.
For our purposes, we rank paths until we found one having
k or fewer designs. In other words, we generate and check
possible design sequences in order of their total estimated
costs. The first sequence containing k or fewer designs is
the optimal solution to the constrained problem, since we
have seen only sequences with more than k designs and any
sequence we would see if we went on is by definition longer.

Shortest path ranking has been well studied. One of the
fastest algorithms is based on the idea of adding to the graph
nodes that represent possible alternatives to the previous
shortest path and deleting that path, so that it is no longer a
possible solution. This is known as path deletion [14]. The
initial shortest path is determined with the normal shortest
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path algorithm. The complexity of finding the next shortest
path in the ranking depends on the number of nodes in the
previous shortest path and on the number of their incoming
edges. In a sequence graph, the number of nodes in a path
is always n. The number of incoming edges per node will
not exceed number of candidate configurations 2m. Thus,
one iteration requires O(n2m) time.

We have 2m(2m−1)k−1 ways to pick a sequence of k de-
signs out of 2m candidates and

(
n−1
k−1

)
ways to pick k−1 de-

sign change points. Hence, 2m(2m − 1)k−1
(
n−1
k−1

)
solutions

have exactly k designs and
∑k

i=1 2m(2m − 1)i−1
(
n−1
i−1

)

have k or fewer designs. In the worst case all possible
paths with more than k designs are shorter than those with
k or fewer designs, so the worst case time complexity is
O((n2m)(2mn − ∑k

i=1 2m(2m − 1)i−1
(
n−1
i−1

)
)). Although

the worst case can be quite bad, particularly for small k, in
practice this approach may be better. It can also be used
as a means of generating an initial design sequence for use
with the sequential merging technique that was discussed in
Section 4.2.

6 Experiments

We conducted a series of experiments that were primar-
ily intended to illustrate the behavior of a constrained dy-
namic physical design optimizer. In particular, we are inter-
ested in contrasting the dynamic physical designs produced
by a constrained optimizer with those produced by an un-
constrained optimizer. We have also compared the costs of
generating constrained designs to those of generating un-
constrained designs.

6.1 Experimental Setup

Our experiments were conducted on a machine with an
Intel Xeon 2.80 GHz dual core processor and 4GB of RAM,
running under Microsoft Windows 2003. We used Mi-
crosoft’s SQL-Server 2005 as our database system. We de-
fined a test database consisting of a single table with four
integer columns (a,b,c,d) and 2.5 million rows. The table
was populated using independently and uniformly selected
random values in the range [0, 500000).

We constructed workloads using simple SQL point
queries of the form

SELECT <col> FROM ...
WHERE <col> = <randValue>

Using this template, we created specific queries by sub-
stituting one of the four column names for <col> and
a randomly selected integer in the range [0, 500000) for
<randValue>. Using queries of this form, we defined the

Queried < col >
a b c d

Query Mix A 55% 25% 10% 10%
Query Mix B 25% 55% 10% 10%
Query Mix C 10% 10% 55% 25%
Query Mix D 10% 10% 25% 55%

Table 1: Workload Query Mixes

four different query mixes described in Table 1. For exam-
ple, Query Mix A consists of randomly generated queries
of the above form, with 55% of the queries against column
a, 25% against column b, 10% against column c, and 10%
against column d. To build time-varying workloads, we pe-
riodically switch among the query mixes defined in Table 1.
These workloads are not intended to be representative of the
workloads produced by any particular application. Rather,
they are intended to provide us with a simple and controlled
means of exercising the dynamic physical design advisors.

In our experiments, we restricted the design advisors to
a small design space to simplify our presentation. Specifi-
cally, a physical design configuration consists of at most one
index, and the available indexes are single-column indexes
on each of the four columns, denoted by I(a), I(b), I(c),
and I(d), and two additional two-column indexes: I(a, b)
and I(c, d). Thus, there are a total of seven possible con-
figurations, including the empty configuration. In all of our
experiments, we fixed the initial and final configuration to
be empty.

6.2 Constrained Designs

For our first experiment, we defined a dynamic work-
load W1 with three major phases. We call changes from one
phase to another major shifts. In addition, the workload ex-
hibits smaller fluctuations, called minor shifts, within each
phase.

The second column of Table 2, which is labeled W1, de-
fines this workload. The first phase of W1 lasts for 5000
queries, at which point a major shift to the second phase oc-
curs. The second phase lasts for 5000 queries, followed by
a major shift to the third phase. Within each phase, there
are minor shifts every 1000 queries. Specifically, in the first
and third phases we alternate between query mixes A and
B, while in the second phase we alternate between query
mixes C and D.

In this experiment, we directly compare the dynamic
physical design produced for W1 by an unconstrained de-
sign advisor with the design generated for W1 by a con-
strained advisor with k = 2. Note that we have chosen the
constraint k to match the number of major shifts in W1. We
expect to see the unconstrained design closely track both
the major and minor workload shifts. In contrast, we expect
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query design design
number W1 k = ∞ k = 2 W2 W3

1-500 A I(a, b) I(a, b) A B
501-1000 A I(a, b) I(a, b) B B

1001-1500 B I(b) I(a, b) A A
1501-2000 B I(b) I(a, b) B A
2001-2500 A I(a, b) I(a, b) A B
2501-3000 A I(a, b) I(a, b) B B
3001-3500 B I(b) I(a, b) A A
3501-4000 B I(b) I(a, b) B A
4001-4500 A I(a, b) I(a, b) A B
4501-5000 A I(a, b) I(a, b) B B
5001-5500 C I(c, d) I(c, d) C D
5501-6000 C I(c, d) I(c, d) D D
6001-6500 D I(d) I(c, d) C C
6501-7000 D I(d) I(c, d) D C
7001-7500 C I(c, d) I(c, d) C D
7501-8000 C I(c, d) I(c, d) D D
8001-8500 D I(d) I(c, d) C C
8501-9000 D I(d) I(c, d) D C
9001-9500 C I(c, d) I(c, d) C D
9501-10000 C I(c, d) I(c, d) D D

10001-10500 A I(a, b) I(a, b) A B
10501-11000 A I(a, b) I(a, b) B B
11001-11500 B I(b) I(a, b) A A
11501-12000 B I(b) I(a, b) B A
12001-12500 A I(a, b) I(a, b) A B
12501-13000 A I(a, b) I(a, b) B B
13001-13500 B I(b) I(a, b) A A
13501-14000 B I(b) I(a, b) B A
14001-14500 A I(a, b) I(a, b) A B
14501-15000 A I(a, b) I(a, b) B B

Table 2: Dynamic Workloads and Physical Designs

to see the constrained design track only the major shifts and
ignore the minor ones.

The third column of Table 2, labeled k = ∞, describes
the recommended unconstrained dynamic physical design.
As expected, the design changes with each minor workload
shift. Between each minor shift, the design consists of the
index that provides benefit to the dominant query type in
the query mix during that interval. The fourth column of
Table 2, labeled k = 2, shows the constrained design. As
anticipated, it reflects only the major shifts in the workload.
Note that the unconstrained design is, by definition, an op-
timal design for workload W1, and the constrained design
is suboptimal. Nonetheless, the unconstrained design may
be interesting because it is suitable for other workloads that
are similar to, but not identical to, W1. We illustrate this in
the next experiment.

6.3 Workload Variations

In this experiment, we constructed two additional work-
loads, W2 and W3 and measured the performance of those
workloads using the dynamic physical designs that were
recommended based on W1. Workloads W2 and W3 are
similar to W1, in that they have the same major shifts and
three phase structure as W1. However, W2 and W3 have dif-
ferent minor shifts than W1. W2 and W3 are defined in the
two rightmost columns of Table 2. Workload W2 undergoes
more frequent minor shifts than W1, e.g., in the first phase
it alternates between Query Mix A and Query Mix B every
500 queries, rather than every 1000 queries. Workload W3

has the same number of minor shifts as W1, but their query
mixtures are out of phase, e.g., W3 uses query mix B when
W1 uses query mix A, and vice versa.

Figure 3 shows the total execution time for each of
the three workloads using both the constrained and uncon-
strained designs that were recommended based on W1. All
of the times are shown relative to the execution time of W1

under the optimal, unconstrained dynamic physical design.
As was indicated in Section 6.2, the constrained W1-

based design is suboptimal for W1. As shown in Figure 3,
W1 is 14% slower under the constrained design. However,
the situation is different for W2 and W3. Both of these
workloads are better off using the constrained design than
the unconstrained design, because the constrained design is
not tied as tightly as the unconstrained design to the original
W1 workload.

Of course, these workloads were contrived for the pur-
poses of this experiment, and we can not claim that the
kinds of fluctuations exhibited by these workloads reflect
any realistic application. Our objective is simply to illus-
trate that a constrained dynamic physical design that does
not fit the design workload too closely may be beneficial
for other, similar workloads.

6.4 Design Optimization Cost

In our final experiment, we consider the cost of pro-
ducing constrained dynamic physical designs. We imple-
mented both the optimal technique described in Section 3
and the sequential design merging heuristic described in
Section 4.2. Figure 4 shows the time required to generate
a design recommendation for each of these techniques, as a
function of the change constraint k. These times are shown
relative to the cost of generating an optimal unconstrained
design recommendation.

The time required to generate optimal constrained design
recommendations increases linearly with k, as expected.
This is because the size of the k-aware sequence graph
grows with k. In contrast, the time required for the merg-
ing heuristic is inversely related to k, since a larger k means
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Figure 3: Relative Execution Times of Different Workloads
Under Constrained and Unconstrained W1 Designs

Figure 4: Runtimes of Constrained Design Optimizers Rel-
ative to Runtime of Unconstrained Design Optimizer

that fewer merging steps are required. Together, this sug-
gests that a hybrid technique that switches to the merging
approach for larger k will be an appropriate means of gen-
erating constrained designs.

7 Related Work

As was noted in Section 1, there has been a substantial
amount of work done on the problem of automatic physical
design tuning. The classical and well understood approach
results in advisory tools that take a workload description
(a set of SQL queries) as input and return a recommended
static physical design. Initial solutions only considered the
problem of index selection [11, 16, 17, 9, 22] and recom-
mendation of a set of materialized views [2], while state-
of-the-art techniques [1, 13, 23] consider a broad range of
database objects, such as indexes, materialized views, and
partitions. All of these techniques assume a static work-
load and leave it to the database administrator to trigger the
advisory tool in order to compute a new configuration. A
first step towards a dynamic system is incorporated in de-
sign refinement strategies [10, 5, 6] by incrementally updat-
ing configurations in order to partially reflect changes in the
workload. However, the techniques do not tackle the prob-
lem of computing the ’best’ number of anticipated changes.
Rather, they focus on the problem of merging existing and
new configurations.

While offline physical design advisor tools can already
be found in commercial solutions, research has turned its
focus towards on-line design tuning [18, 20, 7, 8, 19, 21].

The basic idea is to constantly monitor the database system,
analyze the current workload, and adjust the physical de-
sign accordingly. Design alerters [7] periodically check the
quality of the existing physical configuration and send an
alert to the database administrators if the quality appears to
be deteriorating. Within our framework, we might rely on
these technologies to trigger an off-line dynamic optimizer
such as the one presented here.

8 Conclusion

In this paper, we defined the notion of change-
constrained dynamic physical design. The objective is a
dynamic physical design method that reflects trends in a
given workload one the one hand, but does not fit the ex-
act input query sequence too tightly. We presented several
techniques for solving the problem, including an optimal
solution based on k-aware sequence graphs.

There are a number of open questions that arise from this
work. One question is how to choose an appropriate change
constraint (k). A second question is how to characterize
scenarios or classes of workloads for which constrained dy-
namic physical designs will be beneficial.
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