925 research outputs found

    On vertex-degree restricted subgraphs in polyhedral graphs

    Get PDF
    AbstractFirst a brief survey of known facts is given. Main result of this paper: every polyhedral (i.e. 3-connected planar) graph G with minimum degree at least 4 and order at least k (k⩾4) contains a connected subgraph on k vertices having degrees (in G) at most 4k−1, the bound 4k−1 being best possible

    Dynamic Programming for Graphs on Surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2^{O(k log k)} n steps. Our approach combines tools from topological graph theory and analytic combinatorics. In particular, we introduce a new type of branch decomposition called "surface cut decomposition", generalizing sphere cut decompositions of planar graphs introduced by Seymour and Thomas, which has nice combinatorial properties. Namely, the number of partial solutions that can be arranged on a surface cut decomposition can be upper-bounded by the number of non-crossing partitions on surfaces with boundary. It follows that partial solutions can be represented by a single-exponential (in the branchwidth k) number of configurations. This proves that, when applied on surface cut decompositions, dynamic programming runs in 2^{O(k)} n steps. That way, we considerably extend the class of problems that can be solved in running times with a single-exponential dependence on branchwidth and unify/improve most previous results in this direction.Comment: 28 pages, 3 figure

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Average case polyhedral complexity of the maximum stable set problem

    Full text link
    We study the minimum number of constraints needed to formulate random instances of the maximum stable set problem via linear programs (LPs), in two distinct models. In the uniform model, the constraints of the LP are not allowed to depend on the input graph, which should be encoded solely in the objective function. There we prove a 2Ω(n/logn)2^{\Omega(n/ \log n)} lower bound with probability at least 122n1 - 2^{-2^n} for every LP that is exact for a randomly selected set of instances; each graph on at most n vertices being selected independently with probability p2(n/42)+np \geq 2^{-\binom{n/4}{2}+n}. In the non-uniform model, the constraints of the LP may depend on the input graph, but we allow weights on the vertices. The input graph is sampled according to the G(n, p) model. There we obtain upper and lower bounds holding with high probability for various ranges of p. We obtain a super-polynomial lower bound all the way from p=Ω(log6+ε/n)p = \Omega(\log^{6+\varepsilon} / n) to p=o(1/logn)p = o (1 / \log n). Our upper bound is close to this as there is only an essentially quadratic gap in the exponent, which currently also exists in the worst-case model. Finally, we state a conjecture that would close this gap, both in the average-case and worst-case models

    Subgraphs with Restricted Degrees of their Vertices in Large Polyhedral Maps on Compact Two-manifolds

    Get PDF
    AbstractLet k≥ 2, be an integer and M be a closed two-manifold with Euler characteristic χ(M) ≤ 0. We prove that each polyhedral map G onM , which has at least (8 k2+ 6 k− 6)|χ (M)| vertices, contains a connected subgraph H of order k such that every vertex of this subgraph has, in G, the degree at most 4 k+ 4. Moreover, we show that the bound 4k+ 4 is best possible. Fabrici and Jendrol’ proved that for the sphere this bound is 10 ifk= 2 and 4 k+ 3 if k≥ 3. We also show that the same holds for the projective plane
    corecore