Dynamic Programming for Graphs on Surfaces*

Juanjo Rué!, Ignasi Sau?, Dimitrios M. Thilikos?

! Laboratorie d’Informatique, Ecole Polytechnique, 91128 Palaiseau-Cedex, France.
ruel982@lix.polytechnique.fr
2 Department of Computer Science, Technion, Haifa, Israel.
ignasi@cs.technion.ac.il
3 Dept. of Mathematics, National and Kapodistrian University of Athens, Greece.
sedthilk@math.uoa.gr

Abstract. We provide a framework for the design and analysis of dy-
namic programming algorithms for surface-embedded graphs on n ver-
tices and branchwidth at most k. Our technique applies to general fami-
lies of problems where standard dynamic programming runs in 20 (%18 k).
n steps. Our approach combines tools from topological graph theory and
analytic combinatorics. In particular, we introduce a new type of branch
decomposition called surface cut decomposition, capturing how partial
solutions can be arranged on a surface. Then we use singularity analysis
over expressions obtained by the symbolic method to prove that partial
solutions can be represented by a single-exponential (in the branchwidth
k) number of configurations. This proves that, when applied on surface
cut decompositions, dynamic programming runs in 200 .y steps. That
way, we considerably extend the class of problems that can be solved in
running times with a single-exponential dependence on branchwidth and
unify/improve all previous results in this direction.

Keywords: analysis of algorithms; parameterized algorithms; analytic
combinatorics; graphs on surfaces; branchwidth; dynamic programming;
polyhedral embeddings; symbolic method; non-crossing partitions.

1 Introduction

One of the most important parameters in the design and analysis of graph al-
gorithms is the branchwidth of a graph. Branchwidth, together with its twin
parameter of treewidth, can be seen as a measure of the topological resemblance
of a graph to a tree. Its algorithmic importance dates back in the celebrated
theorem of Courcelle (see e.g. [6]), stating that graph problems expressible in
Monadic Second Order Logic can be solved in f(bw) - n steps (here bw is the
branchwidth! and n is the number of vertices of the input graph). Using pa-

* Research supported by the European Research Council under the EC’s 7th Frame-
work Programme, ERC grant agreement 208471 - ExploreMaps project, the Is-
rael Science Foundation, grant No. 1249/08, and the project “Kapodistrias” (AII
02839/28.07.2008) of the National and Kapodistrian University of Athens.

! The original statement of Courcelle’s theorem used the parameter of treewidth in-
stead of branchwidth. The two parameters are approximately equivalent, in the sense
that one is a constant-factor approximation of the other.

2 Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos

rameterized complexity terminology, this implies that a large number of graph
problems are fixed-parameter tractable when parameterized by the branchwidth
of their input graph. As the bounds for f(bw) provided by Courcelle’s theorem
are huge, the design of tailor-made dynamic programming algorithms for specific
problems so that f(bw) is a simple —preferably a single-exponential- function,
became a natural (and unavoidable) ingredient for many results on graph algo-
rithms (see [3,4,10,20]). In this paper, we provide a general framework for the
design and analysis of dynamic programming algorithms for graphs embedded
in surfaces where f(bw) = 20(W),

Dynamic programming. Dynamic programming is applied in a bottom-up
fashion on a rooted branch decomposition of the input graph G, that roughly
is a way to decompose the graph into a tree structure of edge bipartitions (the
formal definition is in Section 2). Each bipartition defines a separator S of the
graph called middle set, of cardinality bounded by the branchwidth of the input
graph. The decomposition is routed in the sense that one of the parts of each
bipartition is the “lower part of the middle set”, i.e., the so-far processed one.
For each graph problem, dynamic programming requires the suitable definition
of tables encoding how potential (global) solutions of the problem are restricted
to a middle set and the corresponding lower part. The size of these tables reflects
the dependence on k = |S| in the running time of the dynamic programming.

Designing the tables for each middle set S is not always an easy task and
may vary considerably due to the particularities of each problem. The simplest
cases are problems such as VERTEX COVER and DOMINATING SET, where the
certificate of the solution is a set of vertices whose choice is not restricted by
some global condition. This directly yields to the desired 2°®*) upper bound
on their size. For other problems, such as LONGEST PATH, CYCLE PACKING,
or HAMILTONIAN CYCLE, things are more complicated as the tables encode
pairings of vertices of S, which are 26 1°¢%) many. However, for such problems
one can do better for planar graphs following the approach introduced in [12].
The idea in [12] is to use a special type of branch decomposition called sphere
cut decomposition (introduced in [19]) that can guarantee that the pairings are
non-crossing pairings around a virtual edge-avoiding cycle (called noose) of the
plane where G is embedded. This restricts the number of tables corresponding
to a middle set S by the k-th Catalan number, which is single-exponential in k.
The same approach was extended for graphs embedded in surfaces of genus 7 [9].
The idea in [9] was to perform a planarization of the input graph by splitting
the potential solution into at most + pieces and then applying the sphere cut
decomposition technique of [12] to a more general version of the problem where
the number of pairings is still bounded by some Catalan number (see also [11]
for the application of this technique for more general graphs).

A wider family of problems are those where the tables of dynamic program-
ming encode packings of S into sets; throughout this paper, we call these prob-
lems packing-encodable problems. Typical problems of this type are CONNECTED
VERTEX COVER, FEEDBACK VERTEX SET, and STEINER TREE, where the con-
nected components of a potential solution can be encoded by a collection of

Dynamic Programming for Graphs on Surfaces 3

disjoint subsets of S, each of of arbitrary cardinality. Here, the general bound
on the table size is given by the k-th Bell number, and thus again by 2€(logk)
(To exemplify the differences between distinct encodings, typical dynamic pro-
gramming algorithms for VERTEX COVER and CONNECTED VERTEX COVER
can be found in [18].) Unfortunately, for the latter category of problems, none
of the current techniques is able to drop this bound to a single-exponential one
for graphs embedded in surfaces.

Our results. In this paper, we follow a different approach in order to design
single-exponential (in bw) algorithms for graphs embedded in surfaces. In par-
ticular, we deviate significantly from the planarization technique of [9], which
is not able to tackle problems whose solutions are encoded by general pack-
ings. Instead, we extend the concept of sphere cut decomposition from planar
graphs to graphs embeddable in generic surfaces, and we exploit directly the
combinatorial structure of the potential solutions in the topological surface. Our
approach permits us to provide in a unified way a single-exponential (in bw)
time analysis for all aforementioned problems. Examples of other such problems
are CONNECTED DOMINATING SET, CONNECTED r-DOMINATION, CONNECTED
FVS, MAXIMUM LEAF SPANNING TREE, MAXIMUM FULL-DEGREE SPANNING
TREE, MAXIMUM EULERIAN SUBGRAPH, or MAXIMUM LEAF TREE. Our results
imply all the results in [9,12], and with running times whose genus dependence
is better than the ones in [9], as discussed in Section 6.

Our techniques. For our results we enhance the current technology of dynamic
programming with new tools for both topological graph theory and analytic com-
binatorics. We first propose a special type of branch decomposition of embedded
graphs with nice topological properties, which we call surface cut decomposition
(see Section 4). Roughly, the middle sets of such a decomposition are situated
along a bounded (by the genus) set of nooses of the surface with few (again
bounded by 7) common points. Such a decomposition is based on the concept of
polyhedral decomposition introduced in Section 3. We prove that the sizes of the
tables of the dynamic programming correspond to the number of non-crossing
partitions of vertex sets lying in the boundary of a generic surface. To count
these partitions, we use a powerful technique of analytic combinatorics: singu-
larity analysis over expressions obtained by the symbolic method (for more on
this technique, see the monograph of Flajolet and Sedgewick [13]). The symbolic
method gives a precise asymptotic enumeration of the number of non-crossing
partitions, that yields the single-exponentiality of the table size (see Section 5).
As this is the first time such a counting is done, our combinatorial results have
independent mathematical interest.

For performing dynamic programming, our approach resides in a common
preprocessing step that constructs a surface cut decomposition (Algorithm 2
in Section 4). Then, what remains is just to run the dynamic programming
algorithm on such a surface cut decomposition. The exponential bound on the
size of the tables of this dynamic programming algorithm is provided as a result
of our analysis (Theorem 4 of Section 6). Due to space limitations, this extended
abstract contains no proofs; they can be found in [18].

4 Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos

2 Preliminaries

Topological surfaces. In this paper, surfaces are compact and their boundary
is homeomorphic to a finite set (possibly empty) of disjoint circles. We denote
by B(X) the number of connected components of the boundary of a surface X.
The Surface Classification Theorem [16] asserts that a compact and connected
surface without boundary is determined, up to homeomorphism, by its Euler
characteristic x(X) and by whether it is orientable or not. More precisely, ori-
entable surfaces are obtained by adding g > 0 handles to the sphere S?, obtaining
the g-torus T, with Euler characteristic x(T,) = 2 — 2¢g, while non-orientable
surfaces are obtained by adding h > 0 cross-caps to the sphere, hence obtain-
ing a non-orientable surface P, with Euler characteristic x(P,) = 2 — h. We
denote by X the surface (without boundary) obtained from X by gluing a disk
on each of the 5(X) components of the boundary. It is then easy to show that
X(2) = B(X) + x(X). A subset IT of a surface X is surface-separating if X\ IT
has at least 2 connected components. It is convenient to work with the Fuler
genus v(X) of a surface X, which is defined as v(X) = 2 — x(X).

Graphs embedded in surfaces. For a graph G we use the notation (G,) to
denote that 7 is an embedding of G in X, whenever the surface X' is clear from
the context. An embedding has vertices, edges, and faces, which are 0, 1, and 2
dimensional open sets, and are denoted V(G), E(G), and F(G), respectively. In
a 2-cell embedding, also called map, each face is homeomorphic to a disk. The
degree d(v) of a vertex v is the number of edges incident with v, counted with
multiplicity (loops are counted twice). An edge of a map has two ends (also
called half-edges), and either one or two sides, depending on the number of faces
which is incident with. A map is rooted if an edge and one of its half-edges and
sides are distinguished as the root-edge, root-end and root-side, respectively.

For a graph G, the Fuler genus of G, denoted v(G), is the smallest Euler
genus among all surfaces in which G can be embedded. An O-arc is a subset
of ¥ homeomorphic to S'. A subset of ¥ meeting the drawing only at vertices
of G is called G-normal. If an O-arc is G-normal, then we call it a noose. The
length of a noose is the number of its vertices. Many results in topological graph
theory rely on the concept of representativity [17,19], also called face-width,
which is a parameter that quantifies local planarity and density of embeddings.
The representativity rep(G, 7) of a graph embedding (G, 7) is the smallest length
of a non-contractible (i.e., non null-homotopic) noose in 2. We call an embedding
(G, 7) polyhedral [16] if G is 3-connected and rep(G,) > 3, or if G is a clique
and 1 < |[V(GQ)| < 3. With abuse of notation, we also say in that case that the
graph G itself is polyhedral.

For a given embedding (G, 7), we denote by (G*, 7) its dual embedding. Thus
G* is the geometric dual of G. Each vertex v (resp. face r) in (G, 7) corresponds
to some face v* (resp. vertex r*) in (G*, 7). Also, given aset S C E(G), we denote
by S* the set of the duals of the edges in S. Let (G,7) be an embedding and
let (G*,7) be its dual. We define the radial graph embedding (Rg,T) of (G, 1)
(also known as wvertez-face graph embedding) as follows: R is an embedded

Dynamic Programming for Graphs on Surfaces 5

bipartite graph with vertex set V(R¢g) = V(G)UV (G*). For each pair e = {v, u},
e* = {u*,v*} of dual edges in G and G*, R contains edges {v,v*}, {v*, u},
{u,u*}, and {u*,v}. The medial graph embedding (Mg, 7) of (G,) is the dual
embedding of the radial embedding (Rg,7) of (G, 7). Note that (Mg, 7) is a
Y-embedded 4-regular graph.

Tree-like decompositions of graphs. Let G be a graph on n vertices. A
branch decomposition (T, 1) of a graph G consists of an unrooted ternary tree T
(i.e., all internal vertices are of degree three) and a bijection u : L — FE(G) from
the set L of leaves of T to the edge set of G. We define for every edge e of T’
the middle set mid(e) C V(G) as follows: Let T} and T be the two connected
components of T'\ {e}. Then let G; be the graph induced by the edge set {u(f) :
feLnNV(T;)} fori € {1,2}. The middle set is the intersection of the vertex sets
of Gy and Gs, i.e., mid(e) := V(G1)NV(G2). The width of (T, p) is the maximum
order of the middle sets over all edges of T, i.e., w(T, 1) := max{|mid(e)|: e €
T'}. An optimal branch decomposition of G is defined by a tree T" and a bijection
p which give the minimum width, the branchwidth, denoted by bw(G).

Let G = (V, E) be a connected graph. For S C V, we denote by §(S) the set
of all edges with an end in S and an end in V'\ S. Let {V;, V2} be a partition of
V. If G[V \ V4] and G[V \ V3] are both non-null and connected, we call 6(V7) a
bond of G [19].

A carving decomposition (T, p) is similar to a branch decomposition, only
with the difference that p is a bijection between the leaves of the tree and the
vertex set of the graph G. For an edge e of T, the counterpart of the middle
set, called the cut set cut(e), contains the edges of G with endvertices in the
leaves of both subtrees. The counterpart of branchwidth is carvingwidth, and is
denoted by cw(G). In a bond carving decomposition, every cut set is a bond of
the graph. That is, in a bond carving decomposition, every cut set separates the
graph into two connected components.

3 Polyhedral Decompositions

We introduce in this section polyhedral decompositions of graphs embedded in
surfaces. Let G be an embedded graph, and let N be a noose in the surface.
Similarly to [5], we use the notation G=N for the graph obtained by cutting G
along the noose N and gluing a disk on the obtained boundaries.

Definition 1. Given a graph G = (V, E) embedded in a surface of Euler genus
v, a polyhedral decomposition of G is a set of graphs G = {Hy, ..., Hy} together
with a set of vertices A C 'V such that

o 4] = 0();

e H; is a minor of GIV \ A], fori=1,...,¢;

e H, has a polyhedral embedding in a surface of Fuler genus at most vy, for
i=1,...,¢; and

o GV \ 4] can be constructed by joining the graphs of G applying clique sums
of size 0,1, or 2.

6 Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos

Algorithm 1 provides an efficient way to construct a polyhedral decomposi-
tion, as it is stated in Proposition 1.

Algorithm 1 Construction of a polyhedral decomposition of an embedded graph

Input: A graph G embedded in a surface of Euler genus ~.
Output: A polyhedral decomposition of G.

A=0,G = {G} (the elements in G, which are embedded graphs, are called compo-
nents).
while G contains a non-polyhedral component H do
Let N be a noose in the surface in which H is embedded,
and let S=V(H)NN.
if N is non-surface-separating then
Add S to A, and replace in G component H with H[V(H) \ S]>=N.
if N is surface-separating then
Let Hi, H2 be the subgraphs of H=N corresponding to the two surfaces occur-
ring after splitting H
if S={u}U{v} and {u,v} ¢ F(H) then
Add the edge {u,v} to H;, i =1,2.
Replace in G component H with the components of H>N containing at least
one edge of H.
return {G, A}.

In the above algorithm, the addition of an edge {u, v} represents the existence
of a path in G between w and v that is not contained in the current component.

Proposition 1. Given a graph G on n wvertices embedded in a surface, Algo-
rithm 1 constructs a polyhedral decomposition of G in O(n3) steps.

4 Surface Cut Decompositions

In this section we generalize sphere cut decompositions to graphs on surfaces;
we call them surface cut decompositions. First we need a topological definition.
A subset IT of a surface X' is fat-connected if for every two points p,q € II, there
exists a path P C II such that for every x € P, x # p, q, there exists a subset
D homeomorphic to an open disk such that x € D C IT. We can now define the
notion of surface cut decomposition.

Definition 2. Given a graph G embedded in a surface X, a surface cut decom-
position of G is a branch decomposition (T, u) of G such that, for each edge
e € E(T), there is a subset of vertices Ac C V(G) with |Ac| = O(y(X)) and
etther

e |mid(e) \ Ac| <2, or
o there exists a polyhedral decomposition {G, A} of G and a graph H € G such
that

Dynamic Programming for Graphs on Surfaces 7

o AE g A;

o mid(e) \ A, CV(H);

o the vertices in mid(e) \ A, are contained in a set N of O(v(X)) nooses,
such that the total number of occurrences in N of the vertices in mid(e)\
Ae is |lmid(e) \ 4| + O(y(X)); and

o Y\Upnen N contains exactly two connected components, which are both
fat-connected.

Note that a sphere cut decomposition is a particular case of a surface cut de-
composition when v = 0, by taking A, = (), G containing only the graph itself,
and all the vertices of each middle set contained in a single noose.

We now show in Algorithm 2 how to construct a surface cut decomposition
of an embedded graph. More details can be found in [18].

Algorithm 2 Construction of a surface cut decomposition of an embedded graph

Input: An embedded graph G.
Output: A surface cut decomposition of G.

Compute a polyhedral decomposition {G, A} of G, using Algorithm 1.
for each component H of G do
1. Compute a branch decomposition (T4, py) of H, using [2, Theorem 3.8].
2. Transform (T, i) to a carving decomposition (T, u§;) of the medial graph
My
3. Transform (7§, pS) to a bond carving decomposition (T, ub) of My, us-
ing [19].
4. Transform (T%, 1) to a branch decomposition (T%, i) of H.
Construct a branch decomposition (7', 1) of G by merging the branch decompositions
{(Tu,px) | H € G}, and by adding the set of vertices A to all the middle sets.
return (7, u).

Theorem 1. Given a graph G on n vertices embedded in a surface of Euler
genus v, with bw(G) < k, Algorithm 2 constructs, in 23k+00g k). n3 steps, a
surface cut decomposition (T,) of G of width at most 27k + O(7).

How surface cut decompositions are used for dynamic programming.
We shall now discuss how surface cut decompositions guarantee good upper
bounds on the size of the tables of dynamic programming algorithms for packing-
encodable problems. The size of the tables depends on how many ways a partial
solution can intersect a middle set during the dynamic programming algorithm.
The advantage of a surface cut decomposition is that the middle sets are placed
on the surface in such a way that permits to give a precise asymptotic enumer-
ation of the size of the tables. Indeed, in a surface cut decomposition, once we
remove a set of vertices whose size is linearly bounded by -y, the middle sets are
either of size at most two (in which case the size of the tables is bounded by a
constant) or are situated around a set of O(«) nooses, where vertices can be re-
peated at most O(7) times. In such a setting, the number of ways that a partial

8 Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos

solution can intersect a middle set is bounded by the number of non-crossing
partitions of the boundary-vertices in a fat-connected subset of the surface (see
Definition 2). By splitting the boundary-vertices that belong to more than one
noose, we can assume that these nooses are mutually disjoint. That way, we
reduce the problem to the enumeration of the non-crossing partitions of O(7)
disjoint nooses containing ¢ vertices, which are 20 . £ .10 a5 we prove in
the following section (Theorem 3). Observe that the splitting operation increases
the size of the middle sets by at most O(v), therefore ¢ = k + O(~) and this
yields an upper bound of 20() . kO . 4O on the size of the tables of the
dynamic programming. In Section 5 we use singularity analysis over expressions
obtained by the symbolic method to count the number of such non-crossing par-
titions. Namely, in Sections 5.1 and 5.2 we give a precise estimate of the number
of non-crossing partitions in surfaces with boundary. Then we incorporate two
particularities of surface cut decompositions: firstly, we deal with the set A of
vertices originating from the polyhedral decomposition. These vertices are not
situated around the nooses that disconnect the surface into two connected com-
ponents, and this is why they are treated as apices in the enumeration. Secondly,
we take into account that, in fact, we need to count the number of non-crossing
packings rather than the number of non-crossing partitions, as a solution may
not intersect all the vertices of a middle set, but only a subset. The combina-
torial results of Section 5 are of interest by themselves, as they are a natural
extension to higher-genus surfaces of the classical non-crossing partitions in the
plane, which are enumerated by the Catalan numbers (see e.g. [14]).

5 Non-crossing Partitions in Surfaces with Boundary

In this section we obtain upper bounds for non-crossing partitions in surfaces
with boundary. The concept of a non-crossing partition in a general surface
is not as simple as in the case of the disk, and must be defined carefully. In
Section 5.1 we set up our notation. In Section 5.2 we obtain a tree-like structure
that provides a way to obtain asymptotic estimates. In this part, we exploit map
enumeration techniques, together with singularity analysis.

5.1 2-zone decompositions and non-crossing partitions

Let X be a surface with boundary. A 2-zone decomposition of X is a decompo-
sition of X where all vertices lay in the boundary of X and there is a coloring
of the faces using 2 colors (black and white) such that every vertex is incident
(possibly more than once) with a unique black face. Black faces are also called
blocks. A 2-zone decomposition is regular if every block is contractible. All 2-
zone decompositions are rooted: every connected component of the boundary of
XY is edge-rooted. We denote by Sx(k), Rx(k) the set of general and regular
2-zone decompositions of X' with k vertices, respectively. A 2-zone decomposi-
tion s over X defines a non-crossing partition 75 (s) over the set of vertices.
Let II5 (k) be the set of non-crossing partitions of X' with k vertices. The main

Dynamic Programming for Graphs on Surfaces 9

objective of this section is to obtain bounds for |ITs(k)|. The critical observation
is that each non-crossing partition is defined by a 2-zone decomposition. Conse-
quently, [IITx (k)| < |Sx(k)|. The strategy to enumerate this second set consists
in reducing the enumeration to simpler families of 2-zone decompositions. More
specifically, the following propositionshows that it is sufficient to study regular
decompositions:

Proposition 2. Let s € Sy be a 2-zone decomposition of X and let wx(s) be
the associated mon-crossing partition. Then there exists a regular 2-zone decom-
position m € Ry such that x(s) = mx(m).

In other words, [IIx(k)| < |Ss(k)| < |Rx(k)| for each value of k. Instead of
counting |Rx(k)|, we reduce our study to the family of regular 2-zone decom-
positions where each face (block or white face) is contractible. The reason is
that, as we show later, this subfamily provides the greatest contribution to the
asymptotic enumeration. This set is called the set of irreducible 2-zone decom-
positions of X, and it is denoted by Px (k). Equivalently, an irreducible 2-zone
decomposition cannot be realized in a proper surface contained in Y. The details
can be found in [18].

5.2 Tree-like structures, enumeration, and asymptotic counting

In this subsection we provide estimates for the number of irreducible 2-zone
decompositions, which are obtained directly for the surface Y. The main point
consists in exploiting tree-like structures of the dual graph associated to an
irreducible 2-zone decomposition. For simplicity of the presentation, the con-
struction is explained on the disk. The dual graph of a non-crossing partition on
the disk is a tree whose internal vertices are bicolored (black color for blocks).
We use this family of trees in order to obtain a decomposition of elements of
the set Px (k). (The reader which is not familiar with the symbolic method and
analytic combinatorics is referred to [13].) In [18] the enumeration of this basic
family is done, as well as the enumeration of the related families.

The construction for general surfaces is a generalization of the previous one.
An example is shown in the leftmost picture of Fig. 1. For an element m € Px(k),
denote by M the resulting map on X (recall the definition of X in Section 2).
From M we reconstruct the initial 2-zone decomposition m by pasting vertices
of degree 1 which are incident to the same face, and taking the dual map. From
M we define a new rooted map on X as follows: we start deleting recursively
vertices of degree 1 which are not roots. Then we continue dissolving vertices of
degree 2. The resulting map has 3(X) faces and all vertices have degree at least
3 (apart from root vertices, which have degree 1). The resulting map is called
the scheme associated to M; we denote it by Sy;. See Fig. 1 for an example.

An inverse construction can be done using maps over X and families of
plane trees. Using these basic pieces, we can reconstruct all irreducible 2-zone
decompositions. Exploiting this decomposition and using singularity analysis,
we get the following theorem (I" denotes the classical Gamma function [13]):

10 Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos

Fig. 1. Construction of the scheme of an element in Px. The dual of an irreducible 2-
zone decomposition is shown on the left. After deleting vertices of degree 1 recursively
and dissolving vertices of degree 2, we obtain the associated scheme on the right.

Theorem 2. Let X be a surface with boundary. Then,

cX) 13/29(D)4B(5)—4 4k
WS~ mammy e s

where C(X) is a function depending only on X that is bounded by ~(X)°(¥),

Additional constructions. So far, we enumerated families of non-crossing
partitions with boundary. Firstly, in surface cut decompositions we need to deal
with a set of additional vertices that play the role of apices (cf. the last para-
graph of Section 4). Secondly, we show how to extend the enumeration from
non-crossing partitions to non-crossing packings. In both cases, we show that
the modification over generating functions (GFs for short) does not depend on
the surface X where non-crossing partitions are considered. The analysis consists
in symbolic manipulation of GF's and application of singularity analysis over the
resulting expressions. Combining the univariate asymptotic obtained in Theo-
rem 2 with the constructions described above, we obtain the bound on the size
of the tables when using surface cut decompositions:

Theorem 3. Let IIx (k) be the set of non-crossing partitions of X with k ver-

tices and a set of | apices. Then the value Zf:o (’:) }H27l(]€)| is upper-bounded,
for large k, by

c) CE3/2v(D)+B(Z) 4+ | gkt
22+ (3/29(%) + B(X) — 3) ’

where C(X) is a function depending only on X that is bounded by ~(5)°(¥),

6 Conclusions and Open Problems

Our results can be summarized as follows.

Dynamic Programming for Graphs on Surfaces 11

Theorem 4. Given a packing-encodable problem P in a graph G embedded in
a surface of Euler genus vy, with bw(G) < k, the size of the tables of a dynamic
programming algorithm to solve P on a surface cut decomposition of G is bounded
above by 20() . ;0 . ,00(),

As we mentioned, the problems tackled in [9] can be encoded with pairings,
and therefore they can be seen as special cases of packing-encodable problems. As
a result of this, we reproduce all the results of [9]. Moreover, as our approach does
not use planarization, our analysis provides algorithms where the dependence on
the Euler genus v is better than the one in [9]. In particular, the running time
of the algorithms in [9] is 20(rPw+7"loa(bw)) . while in our case the running
time is 20 (bw+v-log(bw)+vy-logv) . 4,

Dynamic programming is important for the design of subezponential exact
or parameterized algorithms. Using the fact that bounded-genus graphs have
branchwidth at most O(/7-n) [15], we derive the existence of exact algorithms
in (9*(20(\/77"+7'1°g(7'”))) steps for all packing-encodable problems. Moreover,
using bidimensionality theory (see [7,8]), one can derive 20(v-VE+y-log(r-k)) . O(1)
step parameterized algorithms for all bidimensional packing-encodable problems.

Sometimes dynamic programming demands even more complicated encod-
ings. We believe that our results can also serve in this direction. For instance,
surface cut decompositions have recently been used in [1] for minor containment
problems, where tables encode partitions of packings of the middle sets.

A natural extension of our results is to consider more general classes of graphs
than bounded-genus graphs. This has been done in [11] for problems where the
tables of the algorithms encode pairings of the middle sets. To extend these re-
sults for packing-encodable problems (where tables encode subsets of the middle
sets) using the planarization approach of [11] appears to be a quite complicated
task. We believe that our surface-oriented approach could be more successful in
this direction and we find it an interesting, but non-trivial task.

Acknowledgement. We would like to thank Marc Noy and Sergio Cabello for valuable
ideas and for pointing us to several interesting references.

References

1. I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos. Faster Parameterized
Algorithms for Minor Containment. In Proc. of the 12th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT), 2010. To appear.

2. E. Amir. Efficient approximation for triangulation of minimum treewidth. In Proc.
of the 17th Conf. on Uncertainty in Artificial Intelligence (UAI), pages 7-15, 2001.

3. S. Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability — a survey. BIT, 25(1):2-23, 1985.

4. H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In
Proc. of the 15th International Colloquium on Automata, Languages and Program-
ming (ICALP), LNCS 317, pages 105-118. 1988.

12

7.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos

S. Cabello and B. Mohar. Finding shortest non-separating and non-contractible
cycles for topologically embedded graphs. Discrete and Computational Geometry,
37:213-235, 2007.

B. Courcelle. The monadic second-order logic of graphs: definable sets of finite
graphs. In Proc. of the 14th International Workshop on Graph-theoretic Concepts
in Computer Science (WG), LNCS 344, pages 30-53. 1988.

E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponential
parameterized algorithms on graphs of bounded genus and H-minor-free graphs.
Journal of the ACM, 52(6):866-893, 2005.

E. D. Demaine, M. Hajiaghayi, and D. M. Thilikos. The Bidimensional Theory of
Bounded-Genus Graphs. SIAM Journal on Discrete Mathematics, 20(2):357-371,
2006.

. F.Dorn, F. V. Fomin, and D. M. Thilikos. Fast Subexponential Algorithm for Non-

local Problems on Graphs of Bounded Genus. In Proc. of the 10th Scandinavian
Workshop on Algorithm Theory (SWAT), LNCS 4059, pages 172-183, 2006.

F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algo-
rithms. In Proc. of the 34th International Colloguium on Automata, Languages
and Programming (ICALP), LNCS 4596, pages 15-27, 2007.

F. Dorn, F. V. Fomin, and D. M. Thilikos. Catalan structures and dynamic pro-
gramming in H-minor-free graphs. In Proc. of the 19th annual ACM-SIAM Sym-
posium on Discrete algorithms (SODA), pages 631-640, 2008.

F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient Exact Algo-
rithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions. In Proc.
of the 13th Annual European Symposium on Algorithms (ESA), LNCS 3669, pages
95-106, 2005.

F. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2008.

P. Flajolet and M. Noy. Analytic combinatorics of non-crossing configurations.
Discrete Mathematics, 204(1):203—229, 1999.

F. V. Fomin and D. M. Thilikos. Fast Parameterized Algorithms for Graphs on
Surfaces: Linear Kernel and Exponential Speed-Up . In Proc. of the 31st Inter-
national Colloquium on Automata, Languages and Programming (ICALP), LNCS
3142, pages 581-592, 2004.

B. Mohar and C. Thomassen. Graphs on surfaces. John Hopk. Univ. Press, 2001.

N. Robertson and P. Seymour. Graph minors. XII. Distance on a surface. J.
Combin. Theory Series B, 64:240-272, 1995.

J. Rué, I. Sau, and D. M. Thilikos. Dynamic Programming for Graphs
on Surfaces. Research Report RR-7166, INRIA, 2009. Available at
hal.archives-ouvertes.fr/inria-00443582.

P. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217-241, 1994.

J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on
partial k-trees. STAM Journal on Discrete Mathematics, 10(4):529-550, 1997.

