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Subgraphs with Restricted Degree®f their Vertices in Large Polyhedral
Maps on Compact Two-maniblds

S. ENDROL AND H.-J. VOSss

Letk > 2, be an integer anill be a closed two-manifoldiith Euler characteristig (M) < 0. We
prove that each polyhedral m&on M, which has at Ieas{Bk2 + 6k — 6)|x (M)| vertices, contains
a connected subgrapt of orderk such that every vertex of this subgraph hasGinthe degree at
most 4k+ 4. Moreover, we show that the bound 4k4 is best possible. Fabrici and Jendrol proved
that for the sphere this bound is 1kif= 2 and 4k+ 3 if k > 3. We also show that the same holds
for the projective plane.

© 1999 Academic Press

1. INTRODUCTION

This paper continues the investigations of [2] and [7]. Some of the definitions of [7] are
repeated.

In this paper all manifolds arompact two-dimensional manifolds. If a gra@his embed-
ded in a manifold then the closure of the connected componentslof G are calledhe
facesof G. If each face is a closed two-cell and each vertex has valence at least thr& then
is called amapin M. If, in addition, no two faces have a multiply connected union tGes
called apolyhedral mapn M. This condition on the union of two faces is equivalent to saying
that any two faces that meet, meet on a single vertex or a single edge. When two faces in a
map meet in one of these two ways we say that thegt properly.

In the following letSy (Ng) be an orientable (a non-orientable) surface of gem(genusy,
respectively). We say thad is asubgraphof a polyhedral majss if H is a subgraph of the
underlying graph of the ma@.

The degree of a faaeof a polyhedral map is the number of edges incident téertices and
faces of degre¢ are calledj-valent vertices and-valent faces, respectively. Let(G) and
pj (G) denote the number ofvalent vertices angl-valent faces, respectively. For a polyhedral
map G let V(G), E(G) and F(G) be the vertex set, the edge set and the face s&,of
respectively. The degree of a verté&xn G is denoted by deg(A) or deg@) if G is known
from the context. A path and a cycle &rvertices is defined to be thepathand thek-cycle,
respectively. Ak-path passing through verticey, ..., Ay is denoted by A1, Ao, ..., Akl
provided thatA;, Aj11 € E(G) foranyi =1,2,...,k—1.

It is an old classical consequence of the famous Euler formula that each planar graph con-
tains a vertex of degree at most 5. A beautiful theorem of Kotzig [11, 12] states that every
three-connected planar graph contains an edigfe degree-sum of its endvertices being at
most 13. This result was further developed in various directions and served as a starting point
for discovering many structural properties of embeddings of graphs, see e.g., [1,4,5,7,13].

Fabrici and Jendroll] have proved that every three-connected planar ggaphmaximum
degree at leastibcontainsa pathPy onk vertices such that each vertex of this path ha§,in
a degree< 5k; the bound 5lbeing best possible. A slight modification of their proof provides
the validity of this result also for every three-connected graph embedded in the projective
plane. An analogous result has been found for two-manifolds other than the sphere and the
projective plane, see [7].

More precisely, the followingroblem has been investigated.
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ProBLEM 1. For agiven connected grapHh let G(H, M) be the family of all polyhe-
dral maps on a closed two-manifold with Euler characteristige (M) having a subgraph
isomorphic withH. What is the minimum integep (H, M) such that every polyhedral map
G € G(H, M) contains a subgrapk isomorphic withH for which

degz (A) < ¢(H, M) for every vertexA € V (K)?

(If such minimum does not exist we wrigg(H, M) = c0.)
The answer to this question f& and Ny is given in Theoreml; the answer for each
two-manifoldother therSg andNjy is given in Theoren?2.

THEOREM 1 (FABRICI AND JENDROL [1]). Letk be an integer, k= 1. Then

¢ (P, So) = ¢ (P«, N1) = 5K, foranyk > 1
¢(H,Sp) = ¢(H,N1) = o0, foranyH £ PFy.

THEOREM 2 (JENDROL AND VOSsS[7]). Let k be an integer, k= 1, andM be a closed
two-manifold with Eulecharacteristicy (M) ¢ {1,2}. Then

(i 2[3] L\?w%mjs (P, M) < kL@J k>1,and
(i) ¢(H, M) = oo, for any H# Px.

Notethat in Theoren? the upper bound is sharp for evienThe precise value af (Px, M)
for oddk, k > 3, has been studied in [10].
If M is the torusS; or Klein’s bottleN, thenTheorem2 implies

k
12bJ < ¢(Px. S1), ¢ (P, N2) < 6k.

We proved that these bounds are also valid for polyhedral maps on two-marifobd&uler
characteristigg (M) < 0, if these maps have enough vertices.
Thus the following problem has been investigated.

PrROBLEM 2. LetN > 1 be aninteger. For a given connected graphlet Gy (H, M) be
the family ofall polyhedral maps on a closed two-maniféitwith Euler characteristig (M)
having a subgraph isomorphic witth and having= N vertices. What is the minimum integer
¢n (H, M) such that every polyhedral m&p € Gn(H) contains a subgrapk isomorphic
with H for which

degs (A) < ¢n(H, M) for every vertexA € V (K)?
Obviously,¢1(H, M) = ¢ (H, M).

Let Nk denote the largest number of vertices in a connected graph with maximum degree
< 6k containing no path withk vertices. ObviouslyNy < (6k)k/2+2,

Let M be a compact two-manifold of characterisg¢M) < 0, Ry := (14(k— )Nk +
6)|x (M)| and Ry := 30 000(|x (M)| +1)3(Nk + 3(|x (M)| + 1)). For large polyhedral maps
onM we proved:

THEOREM 3 (JENDROL AND V0OSS[8,9]). For any compact two-manifolil with Euler
characteristicy (M) < 0 and any integer k= 1

__ ] 6k, if K=1orkisevenandN > Ry,
on (P M) = {6k—2, if k > 3is odd andN > Ro.
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Each polyhedral maf on a closed two-manifold¥ of Eulercharacteristige (M) < O with
vertex numbep(G) > |x (M)| contains a vertex of degree at most 6Glhas enough vertices
of degree> 6 thenG contains even a vertex of degree at most 5. So we introduced the sum
> j-ek(i — 6K)vj and investigated the following problem.

PROBLEM 3. Let L be an intger. For a given connected graph let G- (H, M) be the
family of all polyhedral maps on a closed two-manifdl with Euler characteristig (M)
which have a subgraph isomorphic withand for whichzj ~ek(] —6K)vj = L. What s the
minimum integek’ (H, M) such that each polyhedral m&e G"(H) contains a subgraph
K isomorphic withH for which

deg; (A) < ¢L(H, M) for every vertexA € V (K)?

We have proved:

THEOREM4 (JENDROL AND VO0SS([8]). Forany closed two-manifoldl with Euler char-
acteristicy (M) < 0, any integer k> 1, and any integer L> 6k|x (M))|, there is:

(i) ¢-(Px, M) = 5k,
(i) ¢“(H, M) = oo foranyH = P.

Fabrici andJendrol [2] have proved that every three-connected planar gégaphorder at
leastk contains a subgraph davertices such that each vertex of this subgraph ha&, ia
degree< 4k + 3, for k > 3. More precisely, for the sphere the following problem has been
investigated.

ProOBLEM 4. Let N, k be positive integersvith N > k. Let Hn (k, M) be the family of
all polyhedral maps of ordel > k on a compact two-manifol§1 of Euler characteristic
x (MD). What is the minimum integey (k, M) such that every grap@ € H (k, M) contains
a connected subgrapth of orderk such that

degs (A) < tn(k, M)
holds for every verteXA € V(H)?

Let r(k, M) := w(k, M). For the sphere Euler’s formula givegl,Sp) = 5. Kotzig’s
result [L1, 12] yieldsz (2, Sg) = 10.

THEOREM 5 (FABRICI AND JENDROL [ 2]). Letk be an integer, k= 1. Then:

(i) 7(1,S0) =5,

(i) 7(2,Sp) = 10,
(iii) (k, Sp) = 4k + 3 for anyk > 3.

In this paper we shall prove Theorer6s8.

Since each connectesibgraph with one, two or three vertices contains a path with one,

two or three vertices, respectively, the Theorefd] implies: 7(1,N1) = 5, 7(2,N1) = 10,
andz(3,Np) = 15.

THEOREM®6. Letk be aninteger, k> 1. Then for the projectivplane holds:

() T(1,Np) =5,
(i) 7(2,Ny) = 10,
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(i) =(k,N1) = 4k 4 3 for anyk > 3.

Theorem3 [8, 9] impliesty (1, M) = 6 for N > 6|x M)[; Tn(2, M) = 12 andrn (3, M) =
16 for largeN.

THEOREM 7. For any closedwo-manifoldM with Euler characteristicy (M) < 0O, any
integer k> 1, and any integer N> (8k? + 6k — 6)|x (M))| it holds:

(i) tn(1,M) =6, and
(i) Tn(k, M) = 4k + 4 for anyk > 2.

Moreover,ty (1, M) = 6 for N > 6|y (M)].

PROBLEM 5. LetL, k be positie integers. Let{" (k, M) be the amily of all polyhedral
maps of order at leakton a compact two-manifoltil of Euler characteristig (M) for which
Zj>4k+4(j — (4k + 4))v; = L. What is the minimum integer® (k, M) such that each
polyhedral maps e H' (k, M) contains a connected subgraidhof orderk such that

degs(A) < th(k, M)
holds for every verteXA € V(H)?

Theorem4 of [8] implies z-(1,M) = 5, t-(2,M) = 10, andz-(3,M) = 15 for all
L > 6|x(MD)|. Here we prove:

THEOREM 8. For any closedwo-manifoldM with Euler characteristicy (M) < 0O, any
integer k> 1, and any integer L> (4k+ 4)|x (M)| it holds:

(i) =-@, M) =5,
(i) @2, M) = 10,
(iii) 7" (k, M) = 4k + 3 for anyk > 3.

2. PROOF OFTHEOREMS6-8; UPPERBOUNDS

In this section we shall prove Theore®@ii), 7(ii) and 8(iii). Let a polyhedral maps on
a compact two-manifoldVl with Euler characteristig (M) be a counterexample to Theo-
rem©6(iii), or 7(ii), or 8(iii) on a minimum number of vertices, say and a maximum number
of edges, sayn, among all counterexamples arvertices.

(A) If G is a counterexample of order k to Theoren®(iii) then M = N; is the projective
plane and each connected subgraplGodf orderk contains a vertex of degree 4k + 4,
k> 3.

(B) If G is a counterexample of order k to Theorem7(ii) then x (M) < 0, the maypG has
an order> N > (8k? 4 6k — 8)|x (M)| and each connected subgraph@®bf orderk has a
vertex of degree- 4k + 5,k > 2.

(C) If G is a counterexample to Theoreiii) then y (M) < 0, the mapG satisfies the
inequality2j>4k+4(j — (4k+d)vj = L > (4k+ 4)|x M) | and each connected subgraph
of G of orderk has a vertex of degree 4k + 4,k > 3.

In the cases (A) and (C) a vertéxis aminor vertex if deg;(A) < 4k + 3 and is amajor
vertex if deg; (A) > 4k+ 4,k > 3. In the case (B) a verteX is aminor vertex if deg; (A) <
4k + 4 and is anajor vertex if deg; (A) > 4k+ 5,k > 2.

Now we shall investigate properties Gf The first property is easy to see.
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PROPERTY1. G is a polyhedral mapn M such that each connected subgraplorderk
in it contains a major vertex.

PROPERTY2. G is a triangulation.

PROOF. LetG contain arr-facea, r > 4. If « is incident witha major vertexA we insert
a diagonalAB into « whereB is a vertex incident witlw and not adjacent witt\. Because
the diagonalA B cannot create a minor subgraph of order at l&aste get a counterexample
with m + 1 edges, a contradiction. df is incident only with minor vertices, all these vertices
belong to the same minor component and we can again add a diagonahiitfwout loss of
Property 1; a contradiction to the maximalityrof the number of edges 3. a

LetH = H(G) andH’ = H/(G) be the subgraph d& induced on all major or minor
vertices ofG, respectively. Note that each componknof H’ contains at mogk — 1 vertices.
Our aim is to transform the triangulatic® on a semitriangulatiols* with the same set
of major vertices so that the degrees of the major vertices do not decrease, and the major
vertices ofG* induce a semitriangulatiod * of M. (A semitriangulatiorof a surfaceM is an
embedding of a pseudograph (i.e., multiple edges and loops are allowidinisuch a way
that all faces of this embedding are triangles.) In such a way we obtain an upper bound for the
degree sun}_ acy (1) €% (A) < 3 acy () A8+ (A).

If H has at most two vertices then the three-connectedneGsimiplies thatH’ has pre-
cisely one component ar@ has at mostk — 1) + 2 = k + 1 vertices. Hence each vertex has
a degree< k, contradicting (A), (B), and (C).

Next letH have at least three vertices.
Let K be a component oH’ which is joined by edges with the verticés, Ay, ..., As,
s > 3, which are major vertices @. (Notes > 3 becaus& is a polyhedral map, i.eG is
three-connected.)

Case 1. Let s> 4. Inthe subgraph induced B¢ U {A1, Ao, ..., As} there exists obviously
atreeD such thatAs, Ay, ..., As are the only vertices of degree 1. This tree is embedded in
M. We form a (small) two-celF onM alongD, completely containing and w.l.0.g. having

the endverticeg\;, Ay, ..., As on its boundary in this cyclic order.

We deleteK together with all incident edges. Thus frobh only the (major) vertices
A1, Ay, ..., Asremain. We form inF asimple scycle[A1, Ay, ..., As] by introducing new
edgesAi Aiy1,i = 1,2, ..., s, with Agy1 = Aq. If the old graph already contains @0 A 41-
edge bounding a two-cell together with the néwA; ;. 1-edge, then delete the nety A 1 1-
edge. So if a multiple edge occurs, no two edges of them bound a two-cell face of the graph
induced by the major vertices. (Note: sir@eas three-connected and by the construction each
component of the graph induced by the minor vertices is joined to at least three major ver-
tices.) Next the interior oF is triangulated by the — 3 new edge#\1 Ai,i =3,4,...,s—1
(Figurel).

The result of our constructiois that locally a componeri of H’ is replaced by a trian-
gulated two-cell facd= of H. ThusH is locally triangulated. Globally, i.e., outside, the
embedding has no loops and no two-cell faces of size 2. But non-two-cell faces of &ze
may occur. The next step of our construction is to insert minor vertices into the triangtes of

so that the degree requirementsfat Ay, ..., As are again satisfied.
SinceG is a polyhedral map each vertexéfis joined with A; by at most one edge, ard
is joined by at mosk — 1 edges withA;,i =1, 2, ...,s. We introduce in each triangle &f a

path of lengthk — 1 (the length of a path is its number of vertices). In the triafglg Az, As]
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FIGURE 1.

FIGURE 2.

we join allk — 1 vertices of this pathwith Ay, Lk%lj vertices of it withA; and |_§J vertices
with Az (for k — 1 = 6 see Figur).
In[A1, A, Aiy1l, i = 3,4,...,s— 1, wejoin all k — 1 vertices of the internal path with
Ais1, | %52 | with Ay and| & | with Ay ThusA is joint with the insertegaths by at leagt—1
edges. The verteR; has been adjacent to at mést 1 vertices ofK. Hence the degree &;
(and, consequently, of all major vertices) do not decrease. The interior of the two-cef face
has been triangulated so that the newly introduced paths are new componkiiis.ef, all
newly inserted vertices are minor vertices. The degree of no major vertex has been decreased,
i.e., the set of major vertices remains unchanged (only new edges are added joining major
vertices). Outsidé-, the embedding has no loops and no two-cell faces of size 2.

Case 2. Let s= 3. The number of edges joinini§ with A; is denotedk;, i = 1,2, 3. Since
G is polyhedralk < k — 1.

Case 2.1. Letk+ ko + k3 < 2k — 1. Enlargeks, ko, k3 so thatk; + ko + ks = 2k — 1 and
ki<k—1fori =1,2,3. Asin Case 1, irG — K a triangle[A1, Ay, Az] is formed, and a
tree with at most one vertex of degree 3 is placed solkhagrtices of that tree can be joined
with the vertexA;, i = 1,2, 3. We arrive at the same conclusion as in Case 1, wheea
triangle
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Case 2.2. Letk+ ko + k3 > 2k — 1. Then at least two ertices ofK, say P; and P, are
adjacent to all three verticel;, Ao, Az. The star§ formed by the vertex s¢P,, A1, Az, Az}
and edge sdtP, A1, P, Az, P Az} is embedded itvl. With the help ofS; and S, two triangles
F1 and F> with vertex set{ A1, A, Az} are formed as before. In botly, and F, a path of
lengthk — 1 is placed. InFy all k — 1 vertices of this path are joined withy and | ¥} | are
joined with Ay, and LzJ are joined withAs. In F», all k — 1 vertices of this path are joined
with A, and Lk“J are joined withAg andL | are joined withAs. SO A, i = 1,2,3,is
joined by at leask — 1 edges with vertices & U . We arrive at the same conclusion as in
Case 1, wher& consists of two triangles1 and F».

The obtained embedding is denotedfﬁythe subgraph o6 induced by the major vertices
is H, whereV(H~) = V(H). Thus each componett of H' is replaced by some trees of
orderk — 1 each lying in a triangle off. By our construction the degrees of the vertices of
V(H) = V(H%*) did not decrease. Perhaﬁs|s no longer a two-cell embedding. We add
successively a maximum number of edges so that the number of faces remains unchanged.
(Here it is permitted to add loops and multiple edges). Thus a two-cell embedding is obtained.
Each face with more than three vertices is triangulated. In each triangle bounded by three
major vertices a path of length— 1 is placed and joined with the vertices of the triangle as
before. Thus a semitriangulatid®d* of M is obtained, where the subgrapt induced by
the major vertices is also a semitriangulationMf The semitriangulatiotH* satisfies the
equation

2e(H*) = 3f (H™),
and Euler’'s formula
N(H*) —e(H*) + f(H*) = x (M).

Hence
f(H") =20n(H") — x(MD)), 1)

and
e(H™) = 3(n(H*) — x (M)). ()

With (1) and (2) we have
> degg(A) = > degs(A)

AeV (H) AeV (H*)
< Y. degy(A) + fF(H)k—1)
AeV (H*)
=2e(H*) + 2k —1)f (H*)
> degs(A) < (4k+4)(N(H*) — x (MD). 3)
AeV (H)

If M = Ny is the projective plantheny (N1) = 1 and (3) implies the existence of a major ver-
tex B of degree deg(B) < 4k+ 3. This contradiction completes the proof of Theor&fiii).
(With x (Sp) = 2 we also obtain a new proof of Theoréditiii).)

Next Theorem8(iii) can be proved in the following way. The lower boumhd > (4k +
4)|x (M), x (M) < 0, of Theorens(iii) implies

D (degs(A) — (4k+4) = Y (j — (Ak+4)vj > (4k+4)|x (M),
AeV(H) j>4k+4

and
Y degs(A) > (4k+ 4 (N(H™) + [x (M),
AeV(H)
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contradicting (3). This contradiction completes the proof of Thed®éit).

Next the proofof Theorem7(ii) is continued.

Let H’ andH* denote the subgraph & or G* induced by the minor vertices & or G*,
respectively. By the construction described ab@véH, andH’ are transformed intG*, H*,
andH*, respectively, such that(G*) > n(G), n(H*) > n(H’), andn(H*) = n(H), where
evenV(H*) = V(H). SinceH* has at mostf (H*) components and each component has
< k — 1 vertices, (1) implies that the numbe¢H*') of vertices ofH* is

N(H™) < (k= 1)f (H*) = 2k—2)((H*) + [x MDD, (4)
and the numben(H*) of the vertices of thériangulationH * is
N(H*) = n(G*) — n(H*) = n(G*) — 2k — 2)(N(H*) + [ MD))).
Consequently,

H*
R

The laver boundn(G*) > n(G) > N > (8k? + 6k — 6)|x (M) | of the hypothesis implies

(N(G*) — 2k — 2)[x VD). ®)

n(H*) > (4k+4)|x (M)|. (6)
Equations (3) and j@mply: there is a verteB € V (H) such that its degree

(4K +4)(n(H*) + [ x (MD)|

n(H*)

(4k+ 4| x (M)
n(H*)

4k + B x MD)]

4k + 4| x MD)]

deg;(B) <
=4k+4+

<4k+4+ =4k + 5. @)
Therefore, the dgree of the major verteB in G is < 4k 4 4. This contradiction provethe
validity of Theorem7(ii).

3. PROOFOF THEOREM 7(ii)—L OWER BOUND
The maingoal of this part is to prove that
n(k, M) > 4k + 4,k > 2, x(M) <0,

that is to construct a large polyhedral nfamn a compact two-manifoll with Euler charac-
teristic x (M) < 0 so that each connected subgraph of okderit contains a vertex of degree

at least 4kt 4. This construction is very similar to our construction presented in Section 4
of [9].

Let P, x Py be the Cartesian product of wpaths of lengtm and m with vertex set
{, D, j €eZ,1 <i <=n1<j < m}and edge set((, ), (,j+1)|L<i <n,
1< j=m-1U{),d+LHDl<i=<n-11<j < n}. Add the edge set
{((i,),0+1,]—-D|I1<i<n-1,2< | <mj}(see Figures).

Identifying opposite sidesf the rectangle results in a toroidal m@p, and reversing one
side of this rectangle and then identifying opposite sides of this rectangle results in@4map
on the Klein bottle, respectively. Into each trian@eof the obtained triangulation we insert
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(i,j+1)
D
(i-1j) (i.J) (i+1))
D
(i,j—1) (i+1j-1)
FIGURE 3.
A A A 2 A
¥ ¥ ¥ "4 ¥
A A A A A
"4 ¥ ¥ 74 4
A A A A A
¥ ¥ ¥ "4 "4
A A A A A
"4 ¥ ¥ ¥ ¥
FIGURE 4.

a generalized three-st&*—D consisting ofa central verte Z and three paths starting if,
one of length| ¥£2 |, the second of length¥t2 |, and the third of length *£2 |.

Let the paths be denoted Ipy, p2, and ps so thatpi, p, p3 are in this anticlockwise cycle
order inD andp; and p2 have the same length. b = (i, j), (i +1, j), (i, j +1)) thend, j)
is joined to all vertices opy andpy, (i+1, j) is joined to all vertices op, and ps and(i, j+1)
is joined to all vertices ops and p;. We do the same iD’ = (G, j), (i — 1, j), (i, j — 1)).

The situation is presented in Figutewhere in each triangla an arrav indicates which
vertex of A is joined with two paths of equal length.

The introduced trees hayé$?t |+| 52 |+ | X423 | — 2 = k — 1 vertices, and the deee of
the vertex(, j) is

oo 57]
A1)
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FIGURE 5. FIGURE 6. FIGURE 7.

A5 152
L 5

Thus the construction results irpalyhedral triangulatioff,; of the torus and in a polyhedral
triangulationQy, of the Klein bottle, both satisfying the degree requirements.

The required polyhedral map on an orientable compact two-marfifplof genusg > 2
will be constructed from the toroidal triangulatidif with the underlying triangulatiofTy.

We choose g — 2 triangles ofT, so that any two of them have a distanee in T, (this is
possible ifn is large enough). I from each of these triangle’s we delete the interior part
so that the bounding three-cycle afbounds now a hole of the torus. We join repeatedly two
holes ofT,; by a handle, and — 1 handles are added to the torus in this way.

The handles are triangulated in the following wayXf X, X3] and[Y1Y2Y3] are the bound-
ing cycles of some handle which are around the handle in the same cyclic order then add the
cycle[X1Y1 X2Y2X3Y3]. In each of the new triangles a generalized threeStart) is placed
in the same manner as before. The obtained polyhedral triangulatidg foifils also the
degree requirements.

The required polyhedral map on an unorientable compact two-mami¥fplf genusg > 3
will be constructed from the triangulatiddy;, of the Klein bottle with underlying triangulation
Qn. We choosey — 2 triangles ofQ, so that any two of them have a distaneet in Qp,.

Let D be one of these triangles with bounding cygk X2 X3] and Dy, D2, D3 the three
neighbouring triangles iQn with bounding cylegY; X3X2], [Y2X1X3], and[Y3X2X1] (see
Figure 5-7). InQ;; we delete the inserted trees Df D1, D2, D3 and the separating edges
X1X2, X2X3 and X3X1. A greater facé= with bounding six-cycleC = [X1Y3X2Y1X3Y2] is
obtained (for the notation see Figure 6).

In F a crosscap is placed and the edgas<s, X2X3, and X3X4 are again added so that
the interior ofC is subdivided into three quadrangles (see Figure 6). These quadrangles are
subdivided by the edges; Y;,i = 1,2, 3 (see Figure 7). Finally, in each of the new triangles
a generalized three-st&f“~V is placed. The obtained polyhedral triangulatiorNgf fulfils
the degree requirements.

4. PROOF OFTHEOREMSG(iii) AND 8(iii)—L OWER BOUNDS

Let M be a compact two-manifold with Euler characteristidVl). Firstly we construct a
polyhedral graph of the plane with degree s[ﬁq>4k+4(j — (Ak+d)v; = L > (4k+
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)| x (M), k > 3, so that eacbubgraph of ordek contains a vertex of degree at least-#418,

k > 3. This gives again good examples for the lower bound in Thed&giihh Our method

used here is vergimilar to the one used in [2]. We start with the Cartesian pro@4¢t x Pmy

with n > % + 2k 4+ 2 andm > 8 as described in Sectidh The opposite ‘vertical sides’ are
identified, i.e., the two pathd, 1), (1,2), ..., (1,m)and(n+1,1), (n+1,2), ..., (n+1,m)

are identified in the given order. A plane polyhedral graph is obtained which can be embedded
in a closed finite cylinder so that the top faegand the bottom fac&, are the only faces of
degreen > % + 2k + 2, all other faces argiangles.

In each of these triangles a generalized three-star with paths of leplgihg, | 22 | and
Lkis?'J is introduced as described in Sectidnin the resulting polyhedral plane graph the
vertices(i, j) have degree 4k 4for1 <i <nand2< j < m— 1, and the vertice§, 1)
and(i, m) have degree 2k 3 for 1 < i < n. Next the degrees of the vertices of degrke-3
bounding the top fac&; and the bottont are increased by 1 and the degrees of their inner
neighbours of degree 4k 4 are decreased by 1. Then these vertices have degreed 2kd
4k + 3, respectively.

However, we will describe this process in more detak # 0(3)then the numbe[rz—?'fj -1
of edges joining the inner tre@ of the triangleA ((i, m), (i+1,m—1), (+1,m)),1<i <n,
with the vertex(i + 1, m) is smaller than the numb¢#X | of edges joining this tree wittach
of the two other vertices. Rearrange the edges soDhatnow joined with(i + 1, m — 1) by
| Z | -1 edges and with the othewo vertices ofA by | Z | edges (i.e., now the amoof this
triangle points tai + 1, m — 1)). Do the same for the triangles((i, 2), (i, 1), (i + 1, 1)).

If K = 1(3) then the numbet%kj + 1 of edges joining the inndree D of the triangle
A(i,m),(i,m—1),@(+1,m—1)),1=<i < n,with the vertex(i, m — 1) is larger than
the numberL2—3"J of edge joiningD with each of theother vertices. Rearrange the edges so
that D is now joined with(i, m) by Lz—é‘J + 1 edges and with the othéwro vertices ofA by
L%kj edges (i.e., now the annoof this triangle points tgi, m)). Do the same for the triangle
A((i,2), G, 1), ( +1,1)).

If k = 2(3)then each vertex of the trianghe((i, m), (i,m—1), (i +1,m—-1)),1<i <n;
is joint with D by the same number of edgp%kj. Then replace by a treeD* so thatD* is
joinedwith (i, m), (i, m— 1), and(i +1,m—1)by | ¥ | +1,| %], and| Z | — 1 edges.

Thus, the vertices boundirthe top faceF; and the bottom fac&, of the cylinder have
degree 2kt 4. In order to complete our construction we put iffoa new vertexX; and join
X; with all bounding vertices off;,i = 1, 2. In each new triangl& a pathp of lengthk — 1 is
introduced. One endvertex @fis joined with each of the two remaining vertices®fIn the
obtained triangulation the vertices boundifchave degreel+4+1+2(k—2) = 4k+3 and
Xi has degree de¥; > n > % + 2k + 2. Thus examples of thewer bound in Theorer(ii)
are obtained.

Next the wantecbolyhedral maps oM will be constructed. IfM is an orientable two-
manifoldSy of genusg theng handles have to be added.

If M is a nonorientable two-manifolly of genusy thenq crosscaps have to be added. This
is accomplished in the same way as in SecHpthe required triangles are chosen only among
the trianglesbetween the cycleél, 4), (2,4),...,(n,4) and(1,5), (2,5), ..., (n,5). This
implies that all triangles involved into this construction are incident only with vertices of de-
gree 4k-4. Hence adding handles og crosscap causes, according to Sec8iam problems.
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