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Subgraphs with Restricted Degreesof their Vertices in Large Polyhedral
Maps on Compact Two-manifolds

S. JENDROL’ AND H.-J. VOSS

Let k ≥ 2, be an integer andM be a closed two-manifoldwith Euler characteristicχ(M) ≤ 0. We
prove that each polyhedral mapG onM, which has at least(8k2

+ 6k− 6)|χ(M)| vertices, contains
a connected subgraphH of orderk such that every vertex of this subgraph has, inG, the degree at
most 4k+ 4. Moreover, we show that the bound 4k+ 4 is best possible. Fabrici and Jendrol’ proved
that for the sphere this bound is 10 ifk = 2 and 4k+ 3 if k ≥ 3. We also show that the same holds
for the projective plane.

c© 1999 Academic Press

1. INTRODUCTION

This paper continues the investigations of [2] and [7]. Some of the definitions of [7] are
repeated.

In this paper all manifolds arecompact two-dimensional manifolds. If a graphG is embed-
ded in a manifoldM then the closure of the connected components ofM − G are calledthe
facesof G. If each face is a closed two-cell and each vertex has valence at least three thenG
is called amapin M. If, in addition, no two faces have a multiply connected union thenG is
called apolyhedral mapinM. This condition on the union of two faces is equivalent to saying
that any two faces that meet, meet on a single vertex or a single edge. When two faces in a
map meet in one of these two ways we say that theymeet properly.
In the following letSg (Nq) be an orientable (a non-orientable) surface of genusg (genusq,
respectively). We say thatH is asubgraphof a polyhedral mapG if H is a subgraph of the
underlying graph of the mapG.

The degree of a faceα of a polyhedral map is the number of edges incident toα. Vertices and
faces of degreej are calledj -valent vertices andj -valent faces, respectively. Letvi (G) and
p j (G) denote the number ofi -valent vertices andj -valent faces, respectively. For a polyhedral
map G let V(G), E(G) and F(G) be the vertex set, the edge set and the face set ofG,
respectively. The degree of a vertexA in G is denoted by degG(A) or deg(A) if G is known
from the context. A path and a cycle onk vertices is defined to be thek-pathand thek-cycle,
respectively. Ak-path passing through verticesA1, . . . , Ak is denoted by[A1, A2, . . . , Ak]

provided thatAi , Ai+1 ∈ E(G) for any i = 1,2, . . . ,k− 1.
It is an old classical consequence of the famous Euler formula that each planar graph con-

tains a vertex of degree at most 5. A beautiful theorem of Kotzig [11, 12] states that every
three-connected planar graph contains an edgewith degree-sum of its endvertices being at
most 13. This result was further developed in various directions and served as a starting point
for discovering many structural properties of embeddings of graphs, see e.g., [1, 4, 5, 7, 13].

Fabrici and Jendrol’ [1] have proved that every three-connected planar graphG of maximum
degree at least 5k containsa pathPk onk vertices such that each vertex of this path has, inG,
a degree≤ 5k; the bound 5kbeing best possible. A slight modification of their proof provides
the validity of this result also for every three-connected graph embedded in the projective
plane. An analogous result has been found for two-manifolds other than the sphere and the
projective plane, see [7].

More precisely, the followingproblem has been investigated.
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PROBLEM 1. For agiven connected graphH let G(H,M) be the family of all polyhe-
dral maps on a closed two-manifoldM with Euler characteristicχ(M) having a subgraph
isomorphic withH . What is the minimum integerφ(H,M) such that every polyhedral map
G ∈ G(H,M) contains a subgraphK isomorphic withH for which

degG(A) ≤ φ(H,M) for every vertexA ∈ V(K )?

(If such minimum does not exist we writeφ(H,M) = ∞.)
The answer to this question forS0 andN1 is given in Theorem1; the answer for each

two-manifoldother thenS0 andN1 is given in Theorem2.

THEOREM 1 (FABRICI AND JENDROL’ [ 1]). Let k be an integer, k≥ 1. Then

φ(Pk,S0) = φ(Pk,N1) = 5k, for any k ≥ 1

φ(H,S0) = φ(H,N1) = ∞, for any H 6= Pk.

THEOREM 2 (JENDROL’ AND VOSS[7]). Let k be an integer, k≥ 1, andM be a closed
two-manifold with Eulercharacteristicχ(M) /∈ {1,2}. Then

(i) 2
⌊ k

2

⌋⌊5+
√

49−24χ(M)
2

⌋
≤ φ(Pk,M) ≤ k

⌊
5+
√

49−24χ(M)
2

⌋
, k ≥ 1, and

(ii) φ(H,M) = ∞, for any H 6= Pk.

Notethat in Theorem2 the upper bound is sharp for evenk. The precise value ofφ(Pk,M)

for oddk, k ≥ 3, has been studied in [10].
If M is the torusS1 or Klein’s bottleN2 thenTheorem2 implies

12

⌊
k

2

⌋
≤ φ(Pk, S1), φ(Pk,N2) ≤ 6k.

Weproved that these bounds are also valid for polyhedral maps on two-manifoldsM of Euler
characteristicχ(M) < 0, if these maps have enough vertices.

Thus the following problem has been investigated.

PROBLEM 2. Let N ≥ 1 be aninteger. For a given connected graphH let GN(H,M) be
the family ofall polyhedral maps on a closed two-manifoldM with Euler characteristicχ(M)
having a subgraph isomorphic withH and having≥ N vertices. What is the minimum integer
φN(H,M) such that every polyhedral mapG ∈ GN(H) contains a subgraphK isomorphic
with H for which

degG(A) ≤ φN(H,M) for every vertexA ∈ V(K )?

Obviously,φ1(H,M) = φ(H,M).

Let Nk denote the largest number of vertices in a connected graph with maximum degree
≤ 6k containing no path withk vertices. Obviously,Nk ≤ (6k)k/2+2.

Let M be a compact two-manifold of characteristicχ(M) ≤ 0, R1 := (14(k− 1)Nk +

6)|χ(M)| andR2 := 30 000(|χ(M)| +1)3(Nk + 3(|χ(M)| + 1)). For large polyhedral maps
onM we proved:

THEOREM 3 (JENDROL’ AND VOSS[8, 9]). For any compact two-manifoldM with Euler
characteristicχ(M) ≤ 0 and any integer k≥ 1

φN(Pk,M) =

{
6k, if k = 1 ork is even andN > R1,
6k− 2, if k ≥ 3 is odd andN > R2.
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Each polyhedral mapG on a closed two-manifoldM of Eulercharacteristicχ(M) ≤ 0 with
vertex numberv(G) > |χ(M)| contains a vertex of degree at most 6. IfG has enough vertices
of degree> 6 thenG contains even a vertex of degree at most 5. So we introduced the sum∑

j>6k( j − 6k)v j and investigated the following problem.

PROBLEM 3. Let L be an integer. For a given connected graphH let GL(H,M) be the
family of all polyhedral maps on a closed two-manifoldM with Euler characteristicχ(M)
which have a subgraph isomorphic withH and for which

∑
j>6k( j −6k)v j ≥ L. What is the

minimum integerφL(H,M) such that each polyhedral mapG ∈ GL(H) contains a subgraph
K isomorphic withH for which

degG(A) ≤ φ
L(H,M) for every vertexA ∈ V(K )?

We have proved:

THEOREM 4 (JENDROL’ AND VOSS[8]). For any closed two-manifoldMwith Euler char-
acteristicχ(M) ≤ 0, any integer k≥ 1, and any integer L> 6k|χ(M)|, there is:

(i) φL(Pk,M) = 5k,
(ii) φL(H,M) = ∞ for any H 6= Pk.

Fabrici andJendrol’ [2] have proved that every three-connected planar graphG of order at
leastk contains a subgraph onk vertices such that each vertex of this subgraph has, inG, a
degree≤ 4k + 3, for k ≥ 3. More precisely, for the sphere the following problem has been
investigated.

PROBLEM 4. Let N, k be positive integerswith N ≥ k. LetHN(k,M) be the family of
all polyhedral maps of orderN ≥ k on a compact two-manifoldM of Euler characteristic
χ(M). What is the minimum integerτN(k,M) such that every graphG ∈ HN(k,M) contains
a connected subgraphH of orderk such that

degG(A) ≤ τN(k,M)

holds for every vertexA ∈ V(H)?

Let τ (k,M) := τk(k,M). For the sphere Euler’s formula givesτ(1,S0) = 5. Kotzig’s
result [11, 12] yieldsτ(2,S0) = 10.

THEOREM 5 (FABRICI AND JENDROL’ [ 2]). Let k be an integer, k≥ 1. Then:

(i) τ(1,S0) = 5,
(ii) τ(2,S0) = 10,

(iii) τ(k, S0) = 4k+ 3 for anyk ≥ 3.

In thispaper we shall prove Theorems6–8.
Since each connectedsubgraph with one, two or three vertices contains a path with one,

two or three vertices, respectively, the Theorem1 [1] implies: τ(1,N1) = 5, τ(2,N1) = 10,
andτ(3,N1) = 15.

THEOREM 6. Let k be aninteger, k≥ 1. Then for the projectiveplane holds:

(i) τ(1,N1) = 5,
(ii) τ(2,N1) = 10,
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(iii) τ(k,N1) = 4k+ 3 for anyk ≥ 3.

Theorem3 [8,9] impliesτN(1,M) = 6 for N > 6|χ(M)|; τN(2,M) = 12 andτN(3,M) =
16 for largeN.

THEOREM 7. For any closedtwo-manifoldM with Euler characteristicχ(M) ≤ 0, any
integer k≥ 1, and any integer N> (8k2

+ 6k− 6)|χ(M)| it holds:

(i) τN(1,M) = 6, and
(ii) τN(k,M) = 4k+ 4 for anyk ≥ 2.

Moreover,τN(1,M) = 6 for N > 6|χ(M)|.

PROBLEM 5. Let L , k be positive integers. LetHL(k,M) be the family of all polyhedral
maps of order at leastk on a compact two-manifoldM of Euler characteristicχ(M) for which∑

j>4k+4( j − (4k + 4))v j ≥ L. What is the minimum integerτ L(k,M) such that each
polyhedral mapG ∈ HL(k,M) contains a connected subgraphH of orderk such that

degG(A) ≤ τ
L(k,M)

holds for every vertexA ∈ V(H)?

Theorem4 of [8] implies τ L(1,M) = 5, τ L(2,M) = 10, andτ L(3,M) = 15 for all
L > 6|χ(M)|. Here we prove:

THEOREM 8. For any closedtwo-manifoldM with Euler characteristicχ(M) ≤ 0, any
integer k≥ 1, and any integer L> (4k+ 4)|χ(M)| it holds:

(i) τ L(1,M) = 5,
(ii) τ L(2,M) = 10,

(iii) τ L(k,M) = 4k+ 3 for anyk ≥ 3.

2. PROOF OFTHEOREMS6–8; UPPERBOUNDS

In this section we shall prove Theorems6(iii), 7(ii) and 8(iii). Let a polyhedral mapG on
a compact two-manifoldM with Euler characteristicχ(M) be a counterexample to Theo-
rem6(iii), or 7(ii), or 8(iii) on a minimum number of vertices, sayn, and a maximum number
of edges, saym, among all counterexamples onn vertices.

(A) If G is a counterexample of order≥ k to Theorem6(iii) thenM = N1 is the projective
plane and each connected subgraph ofG of orderk contains a vertex of degree≥ 4k+ 4,
k ≥ 3.

(B) If G is a counterexample of order≥ k to Theorem7(ii) thenχ(M) ≤ 0, the mapG has
an order≥ N > (8k2

+ 6k− 8)|χ(M)| and each connected subgraph ofG of orderk has a
vertex of degree≥ 4k+ 5, k ≥ 2.

(C) If G is a counterexample to Theorem8(iii) then χ(M) ≤ 0, the mapG satisfies the
inequality

∑
j>4k+4( j − (4k+ 4))v j ≥ L > (4k+ 4)|χ(M)| and each connected subgraph

of G of orderk has a vertex of degree≥ 4k+ 4, k ≥ 3.
In the cases (A) and (C) a vertexA is aminor vertex if degG(A) ≤ 4k+ 3 and is amajor

vertex if degG(A) ≥ 4k+ 4, k ≥ 3. In the case (B) a vertexA is aminorvertex if degG(A) ≤
4k+ 4 and is amajor vertex if degG(A) ≥ 4k+ 5, k ≥ 2.

Now we shall investigate properties ofG. The first property is easy to see.
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PROPERTY1. G is a polyhedral maponM such that each connected subgraphof orderk
in it contains a major vertex.

PROPERTY2. G is a triangulation.

PROOF. Let G contain anr -faceα, r ≥ 4. If α is incident witha major vertexA we insert
a diagonalAB into α whereB is a vertex incident withα and not adjacent withA. Because
the diagonalAB cannot create a minor subgraph of order at leastk, we get a counterexample
with m+ 1 edges, a contradiction. Ifα is incident only with minor vertices, all these vertices
belong to the same minor component and we can again add a diagonal intoα without loss of
Property 1; a contradiction to the maximality ofm, the number of edges ofG. 2

Let H = H(G) and H ′ = H ′(G) be the subgraph ofG induced on all major or minor
vertices ofG, respectively. Note that each componentK of H ′ contains at mostk−1 vertices.
Our aim is to transform the triangulationG on a semitriangulationG∗ with the same set
of major vertices so that the degrees of the major vertices do not decrease, and the major
vertices ofG∗ induce a semitriangulationH∗ ofM. (A semitriangulationof a surfaceM is an
embedding of a pseudograph (i.e., multiple edges and loops are allowed) inM in such a way
that all faces of this embedding are triangles.) In such a way we obtain an upper bound for the
degree sum

∑
A∈V(H) degG(A) ≤

∑
A∈V(H) degG∗(A).

If H has at most two vertices then the three-connectedness ofG implies thatH ′ has pre-
cisely one component andG has at most(k− 1)+ 2= k+ 1 vertices. Hence each vertex has
a degree≤ k, contradicting (A), (B), and (C).

Next let H have at least three vertices.
Let K be a component ofH ′ which is joined by edges with the verticesA1, A2, . . . , As,
s ≥ 3, which are major vertices ofG. (Notes ≥ 3 becauseG is a polyhedral map, i.e.,G is
three-connected.)

Case 1. Let s≥ 4. In the subgraph induced byK ∪ {A1, A2, . . . , As} there exists obviously
a treeD such thatA1, A2, . . . , As are the only vertices of degree 1. This tree is embedded in
M. We form a (small) two-cellF onM alongD, completely containingD and w.l.o.g. having
the endverticesA1, A2, . . . , As on its boundary in this cyclic order.

We deleteK together with all incident edges. Thus fromD only the (major) vertices
A1, A2, . . . , As remain. We form inF asimple s-cycle[A1, A2, . . . , As] by introducing new
edgesAi Ai+1, i = 1,2, . . . ,s, with As+1 ≡ A1. If the old graph already contains anAi Ai+1-
edge bounding a two-cell together with the newAi Ai+1-edge, then delete the newAi Ai+1-
edge. So if a multiple edge occurs, no two edges of them bound a two-cell face of the graph
induced by the major vertices. (Note: sinceG is three-connected and by the construction each
component of the graph induced by the minor vertices is joined to at least three major ver-
tices.) Next the interior ofF is triangulated by thes− 3 new edgesA1Ai , i = 3,4, . . . , s− 1
(Figure1).

The result of our constructionis that locally a componentK of H ′ is replaced by a trian-
gulated two-cell faceF of H . Thus H is locally triangulated. Globally, i.e., outsideF , the
embedding has no loops and no two-cell faces of size 2. But non-two-cell faces of size≥ 2
may occur. The next step of our construction is to insert minor vertices into the triangles ofF
so that the degree requirements atA1, A2, . . . , As are again satisfied.

SinceG is a polyhedral map each vertex ofK is joined withAi by at most one edge, andK
is joined by at mostk−1 edges withAi , i = 1,2, . . . ,s. We introduce in each triangle ofF a
path of lengthk−1 (the length of a path is its number of vertices). In the triangle[A1, A2, A3]
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As As – 1

A1

A2 A3 A4

As – 2

FIGURE 1.

1 A3

A2

k + 1
2 2

k

FIGURE 2.

we join all k − 1 vertices of this pathwith A2,
⌊ k+1

2

⌋
vertices of it withA1 and

⌊ k
2

⌋
vertices

with A3 (for k− 1= 6 see Figure2).
In [A1, Ai , Ai+1], i = 3,4, . . . , s− 1, wejoin all k − 1 vertices of the internal path with

Ai+1,
⌊ k+1

2

⌋
with Ai and

⌊ k
2

⌋
with A1. ThusAi is joint with the insertedpaths by at leastk−1

edges. The vertexAi has been adjacent to at mostk−1 vertices ofK . Hence the degree ofAi

(and, consequently, of all major vertices) do not decrease. The interior of the two-cell faceF
has been triangulated so that the newly introduced paths are new components ofH ′, i.e., all
newly inserted vertices are minor vertices. The degree of no major vertex has been decreased,
i.e., the set of major vertices remains unchanged (only new edges are added joining major
vertices). OutsideF , the embedding has no loops and no two-cell faces of size 2.

Case 2. Let s= 3. The number of edges joiningK with Ai is denotedki , i = 1,2,3. Since
G is polyhedral,ki ≤ k− 1.

Case 2.1. Let k1 + k2 + k3 ≤ 2k− 1. Enlargek1, k2, k3 so thatk1 + k2 + k3 = 2k− 1 and
ki ≤ k − 1 for i = 1,2,3. As in Case 1, inG − K a triangle[A1, A2, A3] is formed, and a
tree with at most one vertex of degree 3 is placed so thatki vertices of that tree can be joined
with the vertexAi , i = 1,2,3. We arrive at the same conclusion as in Case 1, whereF is a
triangle
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Case 2.2. Let k1 + k2 + k3 > 2k − 1. Then at least two vertices ofK , say P1 and P2, are
adjacent to all three verticesA1, A2, A3. The starSi formed by the vertex set{Pi , A1, A2, A3}

and edge set{Pi A1, Pi A2, Pi A3} is embedded inM. With the help ofS1 andS2 two triangles
F1 and F2 with vertex set{A1, A2, A3} are formed as before. In bothF1 and F2 a path of
lengthk − 1 is placed. InF1 all k − 1 vertices of this path are joined withA1 and

⌊ k+1
2

⌋
are

joined with A2, and
⌊ k

2

⌋
are joined withA3. In F2, all k − 1 vertices of this path are joined

with A2 and
⌊ k+1

2

⌋
are joined withA3 and

⌊ k
2

⌋
are joined withA1. So Ai , i = 1,2,3, is

joined by at leastk− 1 edges with vertices ofS1 ∪ S2. We arrive at the same conclusion as in
Case 1, whereF consists of two trianglesF1 andF2.

The obtained embedding is denoted byG̃, the subgraph of̃G induced by the major vertices
is H̃ , whereV(H̃) = V(H). Thus each componentK of H ′ is replaced by some trees of
orderk − 1 each lying in a triangle of̃H . By our construction the degrees of the vertices of
V(H̃) = V(H∗) did not decrease. Perhaps̃G is no longer a two-cell embedding. We add
successively a maximum number of edges so that the number of faces remains unchanged.
(Here it is permitted to add loops and multiple edges). Thus a two-cell embedding is obtained.
Each face with more than three vertices is triangulated. In each triangle bounded by three
major vertices a path of lengthk − 1 is placed and joined with the vertices of the triangle as
before. Thus a semitriangulationG∗ of M is obtained, where the subgraphH∗ induced by
the major vertices is also a semitriangulation ofM. The semitriangulationH∗ satisfies the
equation

2e(H∗) = 3 f (H∗),

and Euler’s formula
n(H∗)− e(H∗)+ f (H∗) = χ(M).

Hence
f (H∗) = 2(n(H∗)− χ(M)), (1)

and
e(H∗) = 3(n(H∗)− χ(M)). (2)

With (1) and (2) we have∑
A∈V(H)

degG(A) ≤
∑

A∈V(H∗)

degG∗(A)

≤

∑
A∈V(H∗)

degH∗(A)+ f (H∗)(2k− 1)

= 2e(H∗)+ (2k− 1) f (H∗)∑
A∈V(H)

degG(A) ≤ (4k+ 4)(n(H∗)− χ(M)). (3)

If M = N1 is the projective planethenχ(N1) = 1 and (3) implies the existence of a major ver-
tex B of degree degG(B) ≤ 4k+3. This contradiction completes the proof of Theorem6(iii).
(With χ(S0) = 2 we also obtain a new proof of Theorem5(iii).)

Next Theorem8(iii) can be proved in the following way. The lower boundL > (4k +
4)|χ(M)|,χ(M) ≤ 0, of Theorem8(iii) implies∑

A∈V(H)

(degG(A)− (4k+ 4))=
∑

j>4k+4

( j − (4k+ 4))v j > (4k+ 4)|χ(M)|,

and ∑
A∈V(H)

degG(A) > (4k+ 4)(n(H∗)+ |χ(M)|),
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contradicting (3). This contradiction completes the proof of Theorem8(iii).
Next the proofof Theorem7(ii) is continued.
Let H ′ andH∗

′

denote the subgraph ofG or G∗ induced by the minor vertices ofG or G∗,
respectively. By the construction described aboveG, H , andH ′ are transformed intoG∗, H∗,
andH∗

′

, respectively, such thatn(G∗) ≥ n(G), n(H∗
′

) ≥ n(H ′), andn(H∗) = n(H), where
evenV(H∗) = V(H). SinceH∗

′

has at mostf (H∗) components and each component has
≤ k− 1 vertices, (1) implies that the numbern(H∗

′

) of vertices ofH∗
′

is

n(H∗
′

) ≤ (k− 1) f (H∗) = (2k− 2)(n(H∗)+ |χ(M)|), (4)

and the numbern(H∗) of the vertices of thetriangulationH∗ is

n(H∗) = n(G∗)− n(H∗
′

) ≥ n(G∗)− (2k− 2)(n(H∗)+ |χ(M)|).

Consequently,

n(H∗) ≥
1

2k− 1
(n(G∗)− (2k− 2)|χ(M)|). (5)

The lower boundn(G∗) ≥ n(G) ≥ N > (8k2
+ 6k− 6)|χ(M)| of the hypothesis implies

n(H∗) > (4k+ 4)|χ(M)|. (6)

Equations (3) and (6) imply: there is a vertexB ∈ V(H) such that its degree

degG(B) ≤
(4k+ 4)(n(H∗)+ |χ(M)|

n(H∗)

= 4k+ 4+
(4k+ 4)|χ(M)|

n(H∗)

< 4k+ 4+
(4k+ 4)|χ(M)|

(4k+ 4)|χ(M)|
= 4k+ 5. (7)

Therefore, the degree of the major vertexB in G is ≤ 4k+ 4. This contradiction provesthe
validity of Theorem7(ii).

3. PROOF OF THEOREM 7(ii)—L OWER BOUND

The maingoal of this part is to prove that

τN(k,M) ≥ 4k+ 4,k ≥ 2, χ(M)≤ 0,

that is to construct a large polyhedral mapG on a compact two-manifoldMwith Euler charac-
teristicχ(M) ≤ 0 so that each connected subgraph of orderk in it contains a vertex of degree
at least 4k+ 4. This construction is very similar to our construction presented in Section 4
of [9].

Let Pn × Pm be the Cartesian product of two paths of lengthn and m with vertex set
{(i, j )|i, j ∈ Z, 1 ≤ i ≤ n, 1 ≤ j ≤ m} and edge set{((i, j ), (i, j + 1))|1 ≤ i ≤ n,
1 ≤ j ≤ m − 1} ∪ {((i, j ), (i + 1, j )|1 ≤ i ≤ n − 1, 1 ≤ j ≤ n}. Add the edge set
{((i, j ), (i + 1, j − 1)|1≤ i ≤ n− 1, 2≤ j ≤ m} (see Figure3).

Identifying opposite sidesof the rectangle results in a toroidal mapTn, and reversing one
side of this rectangle and then identifying opposite sides of this rectangle results in a mapQn

on the Klein bottle, respectively. Into each triangleD of the obtained triangulation we insert
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(i,j + 1)

(i,j – 1)

(i – 1,j) (i + 1,j)

(i + 1,j – 1)

(i,j)

D

D'

FIGURE 3.

FIGURE 4.

a generalized three-starS(k−1) consisting ofa central vertex Z and three paths starting inZ,
one of length

⌊ k+1
3

⌋
, the second of length

⌊ k+2
3

⌋
, and the third of length

⌊ k+3
3

⌋
.

Let the paths be denoted byp1, p2, andp3 so thatp1, p2, p3 are in this anticlockwise cycle
order inD andp1 andp2 have the same length. IfD = ((i, j ), (i +1, j ), (i, j +1)) then(i, j )
is joined to all vertices ofp1 andp2, (i+1, j ) is joined to all vertices ofp2 andp3 and(i, j+1)
is joined to all vertices ofp3 and p1. We do the same inD′ = ((i, j ), (i − 1, j ), (i, j − 1)).

The situation is presented in Figure4, where in each triangle1 an arrow indicates which
vertex of1 is joined with two paths of equal length.

The introduced trees have
⌊ k+1

3

⌋
+
⌊ k+2

3

⌋
+
⌊ k+3

3

⌋
− 2 = k − 1 vertices, and the degree of

the vertex(i, j ) is

deg(i, j ) = 6+ 2

(⌊
k+ 1

3

⌋
+

⌊
k+ 2

3

⌋
− 1

)
+2

(⌊
k+ 2

3

⌋
+

⌊
k+ 3

3

⌋
− 1

)
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+2

(⌊
k+ 3

3

⌋
+

⌊
k+ 1

3

⌋
− 1

)
= 4

(⌊
k+ 1

3

⌋
+

⌊
k+ 2

3

⌋
+

⌊
k+ 3

3

⌋)
= 4k+ 4.

Thus the construction results in apolyhedral triangulationT∗n of the torus and in a polyhedral
triangulationQ∗n of the Klein bottle, both satisfying the degree requirements.

The required polyhedral map on an orientable compact two-manifoldSg of genusg ≥ 2
will be constructed from the toroidal triangulationT∗n with the underlying triangulationTn.
We choose 2g− 2 triangles ofTn so that any two of them have a distance≥ 2 in Tn (this is
possible ifn is large enough). InT∗n from each of these triangles1 we delete the interior part
so that the bounding three-cycle of1 bounds now a hole of the torus. We join repeatedly two
holes ofT∗n by a handle, andg− 1 handles are added to the torus in this way.

The handles are triangulated in the following way: if[X1X2X3] and[Y1Y2Y3] are the bound-
ing cycles of some handle which are around the handle in the same cyclic order then add the
cycle[X1Y1X2Y2X3Y3]. In each of the new triangles a generalized three-starS(k−1) is placed
in the same manner as before. The obtained polyhedral triangulation ofSg fulfils also the
degree requirements.

The required polyhedral map on an unorientable compact two-manifoldNq of genusq ≥ 3
will be constructed from the triangulationQ∗n of the Klein bottle with underlying triangulation
Qn. We chooseq − 2 triangles ofQn so that any two of them have a distance≥ 4 in Qn.

Let D be one of these triangles with bounding cycle[X1X2X3] and D1, D2, D3 the three
neighbouring triangles inQn with bounding cyles[Y1X3X2], [Y2X1X3], and[Y3X2X1] (see
Figure 5–7). InQ∗n we delete the inserted trees ofD, D1, D2, D3 and the separating edges
X1X2, X2X3 andX3X1. A greater faceF with bounding six-cycleC = [X1Y3X2Y1X3Y2] is
obtained (for the notation see Figure 6).

In F a crosscap is placed and the edgesX1X2, X2X3, and X3X1 are again added so that
the interior ofC is subdivided into three quadrangles (see Figure 6). These quadrangles are
subdivided by the edgesXi Yi , i = 1,2,3 (see Figure 7). Finally, in each of the new triangles
a generalized three-starS(k−1) is placed. The obtained polyhedral triangulation ofNq fulfils
the degree requirements.

4. PROOF OFTHEOREMS6(iii) AND 8(iii)—L OWER BOUNDS

LetM be a compact two-manifold with Euler characteristicχ(M). Firstly we construct a
polyhedral graph of the plane with degree sum

∑
j>4k+4( j − (4k + 4))v j ≥ L > (4k +
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4)|χ(M)|, k ≥ 3, so that eachsubgraph of orderk contains a vertex of degree at least 4k+ 3,
k ≥ 3. This gives again good examples for the lower bound in Theorem5(iii). Our method
used here is verysimilar to the one used in [2]. We start with the Cartesian productPn+1× Pm

with n > L
4 + 2k+ 2 andm ≥ 8 as described in Section3. The opposite ‘vertical sides’ are

identified, i.e., the two paths(1,1), (1,2), . . . , (1,m) and(n+1,1), (n+1,2), . . . , (n+1,m)
are identified in the given order. A plane polyhedral graph is obtained which can be embedded
in a closed finite cylinder so that the top faceF1 and the bottom faceF2 are the only faces of
degreen ≥ L

4 + 2k+ 2, all other faces aretriangles.
In each of these triangles a generalized three-star with paths of lengths

⌊ k+1
3

⌋
,
⌊ k+2

3

⌋
and⌊ k+3

3

⌋
is introduced as described in Section3. In the resulting polyhedral plane graph the

vertices(i, j ) have degree 4k+ 4 for 1≤ i ≤ n and 2≤ j ≤ m− 1, and the vertices(i, 1)
and(i,m) have degree 2k+3 for 1≤ i ≤ n. Next the degrees of the vertices of degree 2k+3
bounding the top faceF1 and the bottomF2 are increased by 1 and the degrees of their inner
neighbours of degree 4k+ 4 are decreased by 1. Then these vertices have degrees 2k+ 4 and
4k+ 3, respectively.

However, we will describe this process in more detail. Ifk ≡ 0(3) then the number
⌊2k

3

⌋
−1

of edges joining the inner treeD of the triangle1((i,m), (i+1,m−1), (i+1,m)), 1≤ i ≤ n,
with the vertex(i +1,m) is smaller than the number

⌊2k
3

⌋
of edges joining this tree witheach

of the two other vertices. Rearrange the edges so thatD is now joined with(i + 1,m− 1) by⌊2k
3

⌋
−1 edges and with the othertwo vertices of1 by

⌊2k
3

⌋
edges (i.e., now the arrow of this

triangle points to(i + 1,m− 1)). Do the same for the triangles1((i, 2), (i,1), (i + 1,1)).
If k ≡ 1(3) then the number

⌊2k
3

⌋
+ 1 of edges joining the innertree D of the triangle

1((i,m), (i,m− 1), (i + 1,m− 1)), 1 ≤ i ≤ n, with the vertex(i,m− 1) is larger than
the number

⌊2k
3

⌋
of edge joiningD with each of theother vertices. Rearrange the edges so

that D is now joined with(i,m) by
⌊2k

3

⌋
+ 1 edges and with the othertwo vertices of1 by⌊2k

3

⌋
edges (i.e., now the arrow of this triangle points to(i,m)). Do the same for the triangle

1((i, 2), (i, 1), (i + 1,1)).
If k ≡ 2(3) then each vertex of the triangle1((i,m), (i,m−1), (i +1,m−1)), 1≤ i ≤ n;

is joint with D by the same number of edges
⌊2k

3

⌋
. Then replaceD by a treeD∗ so thatD∗ is

joinedwith (i,m), (i,m− 1), and(i + 1,m− 1) by
⌊2k

3

⌋
+ 1,

⌊2k
3

⌋
, and

⌊2k
3

⌋
− 1 edges.

Thus, the vertices boundingthe top faceF1 and the bottom faceF2 of the cylinder have
degree 2k+ 4. In order to complete our construction we put intoFi a new vertexXi and join
Xi with all bounding vertices ofFi , i = 1,2. In each new triangle1 a pathp of lengthk−1 is
introduced. One endvertex ofp is joined with each of the two remaining vertices of1. In the
obtained triangulation the vertices boundingFi have degree 2k+4+1+2(k−2)= 4k+3 and
Xi has degree degXi ≥ n ≥ L

2 + 2k+ 2. Thus examples of thelower bound in Theorem4(ii)
are obtained.

Next the wantedpolyhedral maps ofM will be constructed. IfM is an orientable two-
manifoldSg of genusg theng handles have to be added.

If M is a nonorientable two-manifoldNq of genusq thenq crosscaps have to be added. This
is accomplished in the same way as in Section3; the required triangles are chosen only among
the trianglesbetween the cycles(1,4), (2,4), . . . , (n,4) and (1,5), (2,5), . . . , (n, 5). This
implies that all triangles involved into this construction are incident only with vertices of de-
gree 4k+4. Hence addingg handles orq crosscap causes, according to Section3, no problems.
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