On vertex-degree restricted subgraphs in polyhedral graphs

Igor Fabrici
Department of Mathematics, Technical University Ilmenau, PF 10 0565, D-98684 Ilmenau, Germany

Received 25 June 1998; received in revised form 27 July 2001; accepted 13 August 2001

Abstract

First a brief survey of known facts is given. Main result of this paper: every polyhedral (i.e. 3-connected planar) graph G with minimum degree at least 4 and order at least $k(k \geqslant 4)$ contains a connected subgraph on k vertices having degrees (in G) at most $4 k-1$, the bound $4 k-1$ being best possible. (c) 2002 Elsevier Science B.V. All rights reserved.

Keywords: 3-connected planar graph; Light graph; Subgraph with restricted degrees; Path

1. Introduction

Throughout this paper we consider planar graphs without loops or multiple edges. For a plane graph G let $V(G), E(G)$ and $F(G)$ denote the vertex set, edge set and face set, respectively, and let $v(G):=|V(G)|, e(G):=|E(G)|$ and $f(G):=|F(G)|$. For a face $\alpha \in F(G)$ let $V(\alpha)$ denote the set of vertices of G that are incident upon α. The degree of a face $\alpha \in F(G)$ is the number of edges incident upon α where each bridge is counted twice. For a graph G let $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum (vertex) degree of G, respectively. Vertices and faces of degree i are called i-vertices and i-faces, respectively. For $i \geqslant 0$ let $v_{i}(G)$ denote the number of i-vertices of G and similarly for $i \geqslant 3$ let $f_{i}(G)$ denote the number of i-faces of G. A path (a cycle) on k vertices is called a k-path (a k-cycle) and is denoted by $P_{k}=\left[x_{1}, \ldots, x_{k}\right]$ ($C_{k}=\left[y_{1}, \ldots, y_{k}\right]$). For graphs G and $H, G \cong H$ means that G and H are isomorphic. If H is a (not necessarily induced) subgraph of G and $H \neq G$ then H is called a proper subgraph of G (and G a proper supergraph of H).

It is well known that every planar graph contains a vertex of degree at most 5 . Kotzig $[15,16]$ proved that every 3 -connected planar (i.e. polyhedral) graph G contains

[^0]an edge with degree sum of its endvertices at most 13 in general and at most 11 if $\delta(G) \geqslant 4$; moreover these bounds are best possible. These results have been further extended in various directions, see, e.g., $[6,9,19]$.

In generalizing Kotzig's theorem, there are, among others, the following two possibilities.

1.1. Fixed subgraphs

Let \mathscr{G} be a family of polyhedral graphs and let H be a connected planar graph that is isomorphic to a proper subgraph of at least one member of \mathscr{G}. Let $\varphi(\mathscr{G}, H)$ be the smallest integer such that every $G \in \mathscr{G}$ that is a proper supergraph of H contains a subgraph K isomorphic to H with

$$
\operatorname{deg}_{G}(x) \leqslant \varphi(\mathscr{G}, H) \quad \text { for every vertex } x \in V(K)
$$

If such a $\varphi(\mathscr{G}, H)$ exists we call the graph H light in the family \mathscr{G}, otherwise we say that H is not light in \mathscr{G} and write $\varphi(\mathscr{G}, H)=\infty$.

Let $\mathscr{G}(c, \delta)$ be the family of all c-connected planar graphs with minimum degree at least δ and set $\varphi(c, \delta ; H)=\varphi(\mathscr{G}(c, \delta), H)$.

The following is a brief survey of known results; Theorems 6 and 7(i)-(iii) belong to this survey too.

Theorem 1 (Fabrici and Jendrol' [4]). (i) H is light in $\mathscr{G}(3,3)$ if and only if $H \cong P_{k}$, $k \geqslant 1$.
(ii) $\varphi\left(3,3 ; P_{k}\right)=5 k, k \geqslant 1$.

Theorem 2 (Fabrici et al. [3]). (i) H is light in $\mathscr{G}(3,4)$ if and only if $H \cong P_{k}$, $k \geqslant 1$.
(ii) $\varphi\left(3,4 ; P_{k}\right)=5 k-7, k \geqslant 8$.

Theorem 3. (i) ([4]) $P_{k}(k \geqslant 1)$ is light in $\mathscr{G}(3,5)$.
(ii) ([17]) C_{3} is light in $\mathscr{G}(3,5)$.
(iii) ([11]) $K_{1,3}$ and $K_{1,4}$ are light in $\mathscr{G}(3,5)$.
(iv) $([12]) C_{k}(k \geqslant 11)$ is not light in $\mathscr{G}(3,5)$.
(v) ([12]) If $\Delta(H) \geqslant 6$ or H contains a block on at least 11 vertices then H is not light in $\mathscr{G}(3,5)$.
(vi) $([14]) 5 k-235 \leqslant \varphi\left(3,5 ; P_{k}\right) \leqslant 5 k-7, k \geqslant 68$.
(vii) $([1]) \varphi\left(3,5 ; C_{3}\right)=7$.
(viii) $([11]) \varphi\left(3,5 ; K_{1,3}\right)=7, \varphi\left(3,5 ; K_{1,4}\right)=10$.

Theorem 4. (i) ([18]) H is light in $\mathscr{G}(4,4)$ if and only if $H \cong P_{k}, k \geqslant 1$.
(ii) ([8]) $2 k+2 \leqslant \varphi\left(4,4 ; P_{k}\right) \leqslant 2 k+3, k \geqslant 1$.

Theorem 5. (i) ([4]) $P_{k}(k \geqslant 1)$ is light in $\mathscr{G}(4,5)$ and $\mathscr{G}(5,5)$.
(ii) ([17]) C_{3} is light in $\mathscr{G}(4,5)$ and $\mathscr{G}(5,5)$.
(iii) ([11]) $K_{1,3}$ and $K_{1,4}$ are light in $\mathscr{G}(4,5)$ and $\mathscr{G}(5,5)$.
(iv) ([8]) $k+1 \leqslant \varphi\left(4,5 ; P_{k}\right) \leqslant k+4, k \geqslant 1$.
(v) ([8]) $\lfloor(2 k+8) / 3\rfloor \leqslant \varphi\left(5,5 ; P_{k}\right) \leqslant k+4, k \geqslant 1$.

For similar results about planar graphs with restricted minimum face size see, e.g., [7] and [13].

1.2. Connected subgraphs of order k

Let $k \geqslant 1$ be an integer and let \mathscr{G} be a family of polyhedral graphs with at least one member of order at least k. Let $\tau(\mathscr{G}, k)$ be the smallest integer such that every graph $G \in \mathscr{G}$ of order at least k contains a connected subgraph H of order k with

$$
\operatorname{deg}_{G}(x) \leqslant \tau(\mathscr{G}, k) \quad \text { for every vertex } x \in V(H)
$$

Set $\tau(c, \delta ; k)=\tau(\mathscr{G}(c, \delta), k)$. The following is known:
Theorem 6 (Fabrici and Jendrol' [5]). (i) $\tau(3,3 ; 1)=5$,
(ii) $\tau(3,3 ; 2)=10$,
(iii) $\tau(3,3 ; k)=4 k+3, k \geqslant 3$.

Instead of asking for bounds on the degrees of all vertices (i.e. on the maximum degree), one may ask for similar bounds on the degree sum of a fixed subgraph H or a connected subgraph of order k. Several cases of such problems have been solved in [2,4,11,18].

2. Results

The first three values of τ for the family $\mathscr{G}(3,4)$ are already known, for $k=1$ and $k=2$ these are easy consequences of Euler's formula and Kotzig's result, respectively, and the third value was found by Jendrol' [10]. In (iv) the remaining values are determined.

Theorem 7. (i) $\tau(3,4 ; 1)=5$,
(ii) $\tau(3,4 ; 2)=7$,
(iii) $\tau(3,4 ; 3)=9$,
(iv) $\tau(3,4 ; k)=4 k-1, k \geqslant 4$.

Theorem 3(v) is improved by the next result.
Theorem 8. If H is a connected planar graph with $\Delta(H) \geqslant 5$ then it is not light in $\mathscr{G}(3,5)$.

From Theorem 5(iii) it follows that the lower bound 5 in the above inequality is best possible.

Fig. 1.

Fig. 2.

3. Proofs

Proof of Theorem 7(iv). I. To prove $\tau(3,4 ; k) \geqslant 4 k-1$ it is enough to exhibit a 3 -connected plane graph \tilde{W} of order at least k with $\delta(\tilde{W}) \geqslant 4$ in which any connected subgraph of order k contains a vertex of degree at least $4 k-1$.

The construction starts with the graph Z (Fig. 1). Let $P:=\left[u_{1}, \ldots, u_{8}\right]$ and $Q:=\left[v_{1}, \ldots, v_{8}\right]$ be paths of Z as drawn in Fig. 1. Let W (Fig. 2) be the graph obtained from $2 k$ copies $\left(Z_{1}, \ldots, Z_{2 k}\right)$ of Z by identifying the path Q of $Z_{i}(i=1, \ldots, 2 k)$ with P of Z_{i+1} (subscript addition is taken modulo $2 k$). W has only vertices of degree 5 or 6 , except for two vertices of degree $2 k$.

Now-using the configurations R_{k} and S_{k} (Figs. 3(a), (b) and, for small k, Figs. 3(c)-(e)), both containing $k-1$ (black) vertices-we replace each 3-face of W with one of these configurations as shown for one copy of Z in Fig. 4 (for $k \geqslant 6$) to obtain the graph \tilde{W}. The numbers in Fig. 4 determine the configurations that replace (i.e. are inserted into) the 3 -faces of W and their orientations. The numbers in each triangle denote the numbers of edges of R_{k} (or S_{k}) incident at the vertices of the triangle. There is an analogous construction when $k=4$ or 5, involving Figs. 3(c), (d).

Fig. 3.

Fig. 4.
Every connected subgraph H of \tilde{W} of order k contains a (white) vertex of W and it is easy to check that all vertices of W have degree (in \tilde{W}) at least $4 k-1$.
II. It remains to show that $\tau(3,4 ; k) \leqslant 4 k-1$ for $k \geqslant 4$. Suppose there is a $k \geqslant 4$ such that $\tau(3,4 ; k) \geqslant 4 k$. Let G be a counterexample with n vertices and a maximum number of edges, say m. A vertex $x \in V(G)$ is said to be a major vertex or a minor vertex if $\operatorname{deg}_{G}(x) \geqslant 4 k$ or $\operatorname{deg}_{G}(x)<4 k$, respectively.

Property 1. G is a triangulation.
Proof. Assume that G contains an r-face $\alpha, r \geqslant 4$. If α is incident upon a major vertex x we add a diagonal $x y$ into α, where y is a vertex incident upon α but not adjacent

Fig. 5.
to x. Since the insertion of the diagonal $x y$ cannot create a minor component (i.e. a component of the graph induced by the set of minor vertices) of order at least k, we get a counterexample with $m+1$ edges, a contradiction. If α is incident only upon minor vertices, all these belong to the same minor component and we can again add a diagonal into α and obtain a counterexample with $m+1$ edges. This is a contradiction.

Let $M=M(G)$ be the plane graph induced by the set of major vertices of G and let $M_{1}, \ldots, M_{\omega}(\omega \geqslant 1)$ be the components of M.

Property 2 (almost obvious). There is some component of M, say M_{1}, such that all other components of M are subgraphs of the same component of $G-V\left(M_{1}\right)$.

Let G^{\star} be the component of $G-\left(V\left(M_{2}\right) \cup \cdots \cup V\left(M_{\omega}\right)\right)$ that contains M_{1} as a subgraph (where, possibly, $G^{\star} \notin \mathscr{G}(3,4)$).

Property 3. For each vertex x of M_{1} we have $\operatorname{deg}_{G^{\star}}(x)=\operatorname{deg}_{G}(x)$.
For $\alpha \in F\left(M_{1}\right)$ let G_{α}^{\star} be the (minor) subgraph induced by all those vertices of $V\left(G^{\star}\right) \backslash V\left(M_{1}\right)$ that lie in the interior of α; clearly, G being a triangulation, G_{α}^{\star} is connected. Let T_{α} be the subgraph of G^{\star} induced by $V\left(G_{\alpha}^{\star}\right) \cup V(\alpha)$.

Property 4. For each face α of M_{1} we have $v\left(G_{\alpha}^{\star}\right) \leqslant k-1$.
For $\alpha \in F\left(M_{1}\right), x \in V\left(M_{1}\right)$ and $x \in V(\alpha)$, we define

$$
\begin{aligned}
& m(x, \alpha)=\left|\left\{u \in V\left(G_{\alpha}^{\star}\right): u x \in E\left(G^{\star}\right)\right\}\right| ; \\
& m(\alpha)=\sum_{x \in V(\alpha)} m(x, \alpha) .
\end{aligned}
$$

Lemma 1. For any $\alpha \in F\left(M_{1}\right)$ we have $m(\alpha) \leqslant 2 k-4+\operatorname{deg}_{M_{1}}(\alpha)$.
Proof. We can assume that the boundary of α is a cycle. Otherwise (Fig. 5(a)) we can cut every bridge and every articulation point of α (only for the purposes of this proof), as shown in Fig. 5(b). The graph T_{α} has $v\left(T_{\alpha}\right)=v\left(G_{\alpha}^{\star}\right)+\operatorname{deg}_{M_{1}}(\alpha)$ vertices and
$e\left(T_{\alpha}\right) \leqslant 3 v\left(T_{\alpha}\right)-6-\left(\operatorname{deg}_{M_{1}}(\alpha)-3\right)=3 v\left(G_{\alpha}^{\star}\right)-3+2 \operatorname{deg}_{M_{1}}(\alpha)$ edges. Hence, $m(\alpha)=$ $e\left(T_{\alpha}\right)-\operatorname{deg}_{M_{1}}(\alpha)-e\left(G_{\alpha}^{\star}\right) \leqslant 3 v\left(G_{\alpha}^{\star}\right)-3+2 \operatorname{deg}_{M_{1}}(\alpha)-\operatorname{deg}_{M_{1}}(\alpha)-\left(v\left(G_{\alpha}^{\star}\right)-1\right)=$ $2 v\left(G_{\alpha}^{\star}\right)-2+\operatorname{deg}_{M_{1}}(\alpha) \leqslant 2 k-4+\operatorname{deg}_{M_{1}}(\alpha)$.

Lemma 2 (Fabrici et al. [3]). For any triangle $\alpha=x_{1} x_{2} x_{3} \in F\left(M_{1}\right)$, such that T_{α} is a triangulation, we have $m\left(x_{i}, \alpha\right) \leqslant k-2$, for all $i \in\{1,2,3\}$.

We omit the (easy but somewhat lengthy) proof of this fact. The main idea is this: if there were a vertex $x_{i} \in V(\alpha)$ adjacent to all vertices of G_{α}^{\star}, then there would be a vertex $y \in G_{\alpha}^{\star}$ with $\operatorname{deg}_{G_{\alpha}^{\star}}(y)=\operatorname{deg}_{G}(y) \leqslant 3$, contradicting $\delta(G) \geqslant 4$.

Lemma 3. For any triangle $\alpha=x_{1} x_{2} x_{3} \in F\left(M_{1}\right)$ we have $m(\alpha) \leqslant 2 k-3$, for $k \geqslant 5$.
Proof. If $v\left(G_{\alpha}^{\star}\right) \leqslant 3$ then $m(\alpha) \leqslant 6<2 k-3$. So suppose $v\left(G_{\alpha}^{\star}\right) \geqslant 4$. We consider the following two cases.

Case 1: If T_{α} is not a triangulation, then $e\left(G_{\alpha}^{\star}\right) \geqslant v\left(G_{\alpha}^{\star}\right)$ (because the graph G_{α}^{\star} is connected and contains a cycle). It has $v\left(T_{\alpha}\right)=v\left(G_{\alpha}^{\star}\right)+3$ vertices and $e\left(T_{\alpha}\right) \leqslant 3 v\left(T_{\alpha}\right)-7=3 v\left(G_{\alpha}^{\star}\right)+2$ edges, which yields $m(\alpha)=e\left(T_{\alpha}\right)-3-e\left(G_{\alpha}^{\star}\right) \leqslant$ $3 v\left(G_{\alpha}^{\star}\right)+2-3-v\left(G_{\alpha}^{\star}\right)=2 v\left(G_{\alpha}^{\star}\right)-1 \leqslant 2 k-3$ (by Property 4).

Case 2: If T_{α} is a triangulation, each 1-vertex u of G_{α}^{\star} (i.e. $\operatorname{deg}_{G_{\alpha}^{\star}}(u)=1$) is adjacent to all three vertices of α (because of $\delta(G) \geqslant 4$). Hence, there is at most one 1 -vertex in G_{α}^{\star}.

2(a). Is there some 1 -vertex in G_{α}^{\star}, then (without loss of generality) $m\left(x_{1}, \alpha\right)=1$ and by Lemma 2 we have $m\left(x_{2}, \alpha\right), m\left(x_{3}, \alpha\right) \leqslant k-2$ which implies $m(\alpha) \leqslant 2 k-3$.

2(b). Is there no 1-vertex in G_{α}^{\star}, then $e\left(G_{\alpha}^{\star}\right) \geqslant v\left(G_{\alpha}^{\star}\right)+1$ (because of Property 1). The graph T_{α} has now $v\left(T_{\alpha}\right)=v\left(G_{\alpha}^{\star}\right)+3$ vertices and $e\left(T_{\alpha}\right)=3 v\left(T_{\alpha}\right)-6=3 v\left(G_{\alpha}^{\star}\right)+3$ edges, which yields $m(\alpha)=e\left(T_{\alpha}\right)-3-e\left(G_{\alpha}^{\star}\right) \leqslant 3 v\left(G_{\alpha}^{\star}\right)+3-3-\left(v\left(G_{\alpha}^{\star}\right)+1\right)=2 v\left(G_{\alpha}^{\star}\right)-$ $1 \leqslant 2 k-3$ (by Property 4).

Clearly

$$
\begin{equation*}
\sum_{x \in V\left(M_{1}\right)} \operatorname{deg}_{M_{1}}(x)=2 e\left(M_{1}\right)=\sum_{\alpha \in F\left(M_{1}\right)} \operatorname{deg}_{M_{1}}(\alpha)=\sum_{i \geqslant 3} i f_{i}\left(M_{1}\right) . \tag{1}
\end{equation*}
$$

Euler's polyhedral formula provides

$$
\begin{equation*}
e\left(M_{1}\right) \leqslant 3 v\left(M_{1}\right)-6, \quad f\left(M_{1}\right) \leqslant 2 v\left(M_{1}\right)-4 . \tag{2}
\end{equation*}
$$

First consider the case $k \geqslant 5$. Using (1), (2) and Lemmas 1 and 3 we have

$$
\begin{aligned}
& \sum_{x \in V\left(M_{1}\right)} \operatorname{deg}_{G}(x) \\
& =\sum_{x \in V\left(M_{1}\right)} \operatorname{deg}_{G^{\star}}(x)=\sum_{x \in V\left(M_{1}\right)} \operatorname{deg}_{M_{1}}(x)+\sum_{\alpha \in F\left(M_{1}\right)} m(\alpha)
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant 2 e\left(M_{1}\right)+\sum_{\substack{\alpha \in F\left(M_{1}\right) \\
\operatorname{deg}_{M_{1}}(\alpha) \geqslant 4}}\left(2 k-4+\operatorname{deg}_{M_{1}}(\alpha)\right)+\sum_{\substack{\alpha \in F\left(M_{1}\right) \\
\operatorname{deg}_{M_{1}}(\alpha)=3}}(2 k-3) \\
& =2 e\left(M_{1}\right)+(2 k-4) \sum_{i \geqslant 3} f_{i}\left(M_{1}\right)+\sum_{i \geqslant 3} i f_{i}\left(M_{1}\right)-2 f_{3}\left(M_{1}\right) \\
& =4\left(3 e\left(M_{1}\right)-2 e\left(M_{1}\right)\right)+(2 k-4) f\left(M_{1}\right)-2 f_{3}\left(M_{1}\right) \\
& =4\left(3 v\left(M_{1}\right)+3 f\left(M_{1}\right)-6-\sum_{i \geqslant 3} i f_{i}\left(M_{1}\right)\right)+(2 k-4) f\left(M_{1}\right)-2 f_{3}\left(M_{1}\right) \\
& =12 v\left(M_{1}\right)-24-4 \sum_{i \geqslant 3}(i-3) f_{i}\left(M_{1}\right)+(2 k-4) f\left(M_{1}\right)-2 f_{3}\left(M_{1}\right) \\
& \leqslant 12 v\left(M_{1}\right)-24-2 \sum_{i \geqslant 4} f_{i}\left(M_{1}\right)+(2 k-4) f\left(M_{1}\right)-2 f_{3}\left(M_{1}\right) \\
& =12 v\left(M_{1}\right)-24+(2 k-6) f\left(M_{1}\right) \\
& \leqslant 12 v\left(M_{1}\right)-24+(2 k-6)\left(2 v\left(M_{1}\right)-4\right) \\
& =4 k v\left(M_{1}\right)-8 k .
\end{aligned}
$$

This implies that there is a vertex $\tilde{x} \in V\left(M_{1}\right)$ such that $\operatorname{deg}_{G}(\tilde{x}) \leqslant\left(4 k v\left(M_{1}\right)-8 k\right) /$ $v\left(M_{1}\right)=4 k-(8 k) / v\left(M_{1}\right)<4 k$, which is a contradiction because \tilde{x} is a major vertex.

Finally consider the case $k=4$. For each triangle $\alpha=x_{1} x_{2} x_{3} \in F\left(M_{1}\right)$ Lemma 2 im plies $m\left(x_{i}, \alpha\right) \leqslant 2$. For any r-face $\alpha \in F\left(M_{1}\right), r \geqslant 4$, there are at most 2 vertices of α with $m(x, \alpha)=3$ (otherwise there is a $K_{3,3} \subseteq G^{\star}$, a contradiction to planarity) and for each other vertex y of α we have $m(y, \alpha) \leqslant 2$. Each major vertex x of G has $\operatorname{deg}_{G}(x) \geqslant 4 k=16$. That means, there is no 3-vertex in M_{1}, for each 4-vertex x of M_{1} and each of the four faces incident upon x we must have $m(x, \alpha)=3$ and, eventually, each 5 -vertex x of M_{1} must be incident upon some face $\alpha \in F\left(M_{1}\right)$, such that $m(x, \alpha)=3$. Let A denote the number of pairs (x, α) such that $x \in V(\alpha)$ and $m(x, \alpha)=3$. By the preceding arguments

$$
\begin{equation*}
2 \sum_{i \geqslant 4} f_{i}\left(M_{1}\right) \geqslant A \geqslant 4 v_{4}\left(M_{1}\right)+v_{5}\left(M_{1}\right) . \tag{3}
\end{equation*}
$$

A well-known formula for connected planar graphs says that

$$
\begin{equation*}
\sum_{i \geqslant 3}(6-i) v_{i}+2 \sum_{i \geqslant 3}(3-i) f_{i}=12 \tag{4}
\end{equation*}
$$

Fig. 6.
which, in connection with $v_{3}\left(M_{1}\right)=0$, implies

$$
\begin{aligned}
4 v_{4}\left(M_{1}\right)+v_{5}\left(M_{1}\right) \geqslant & 2 v_{4}\left(M_{1}\right)+v_{5}\left(M_{1}\right) \\
= & 12+\sum_{i \geqslant 6}(i-6) v_{i}\left(M_{1}\right)+2 \sum_{i \geqslant 3}(i-3) f_{i}\left(M_{1}\right) \\
& >2 \sum_{i \geqslant 4} f_{i}\left(M_{1}\right)
\end{aligned}
$$

contradicting inequality (3).
Proof of Theorem 8. For each connected planar graph H with $\Delta(H) \geqslant 5$ and for each integer $k \geqslant 6$ we shall find a graph $G \in \mathscr{G}(3,5)$, a proper supergraph of H, such that each subgraph of G isomorphic to H contains a vertex x with $\operatorname{deg}_{G}(x) \geqslant k$.
The construction starts with any triangulation T_{H} of the graph H. Into each 3face $\alpha=x y z \in F\left(T_{H}\right)$ we insert two vertex-disjoint cycles $C_{k}=\left[u_{1}, \ldots, u_{k}\right]$ and $\tilde{C}_{k}=$ $\left[\tilde{u}_{1}, \ldots, \tilde{u}_{k}\right]$, a new vertex w and edges $u_{i} \tilde{u}_{i}, u_{i} \tilde{u}_{i+1}, w \tilde{u}_{i}(i=1, \ldots, k$, subscript addition is taken modulo k) and $x u_{1}, \ldots, x u_{\lfloor k / 3\rfloor+1}, y u_{\lfloor k / 3\rfloor+1}, \ldots, y u_{2\lfloor k / \beta\rfloor+1}, z u_{2\lfloor k / 3\rfloor+1}, \ldots, z u_{k}, z u_{1}$. The resulting graph is denoted by G (Fig. 6).

It is easy to see that for the graph N induced by the set of all vertices of G whose degree does not exceed $k-1$ we have $\Delta(N) \leqslant 4$, which means that any subgraph of G isomorphic to H contains a vertex of $G-N$.

References

[1] O.V. Borodin, Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs, Math. Notes 46 (1989) 835-837 (English translation), Mat. Zametki 46 (1989) 9-12 (in Russian).
[2] H. Enomoto, K. Ota, Connected subgraphs with small degree sums in 3-connected planar graphs, J. Graph Theory 30 (1999) 191-203.
[3] I. Fabrici, E. Hexel, S. Jendrol', H. Walther, On vertex-degree restricted paths in polyhedral graphs, Discrete Math. 212 (2000) 61-73.
[4] I. Fabrici, S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs Combin. 13 (1997) 245-250.
[5] I. Fabrici, S. Jendrol', Subgraphs with restricted degrees of their vertices in planar graphs, Discrete Math. 191 (1998) 83-90.
[6] B. Grünbaum, G.C. Shephard, Analogues for tiling of Kotzig's theorem on minimal weights of edges, Ann. Discrete Math. 12 (1982) 129-140.
[7] J. Harant, S. Jendrol', M. Tkáč, On 3-connected plane graphs without triangular faces, J. Combin. Theory Ser. B 77 (1999) 150-161.
[8] E. Hexel, H. Walther, On vertex-degree restricted paths in 4-connected planar graphs, Tatra Mountains 18 (1999) 1-13.
[9] J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992) 113-116.
[10] S. Jendrol', Paths with restricted degrees of their vertices in planar graphs, Czechoslovak Math. J. 49 (1999) 481-490.
[11] S. Jendrol', T. Madaras, On light subgraphs in plane graphs with minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207-217.
[12] S. Jendrol', T. Madaras, R. Sotak, Zs. Tuza, On light cycles in planar triangulations, Discrete Math. 197/198 (1999) 453-467.
[13] S. Jendrol', P.J. Owens, On light graphs in 3-connected plane graphs without triangular or quadrangular faces, preprint 1998.
[14] S. Jendrol', H.-J. Voss, Light paths in large polyhedral maps with prescribed minimum degree, preprint 1999.
[15] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. Čas. SAV (Math. Slovaca) 5 (1955) 111-113 (Slovak).
[16] A. Kotzig, On the theory of Euler's polyhedra, Mat.-Fyz. Čas. SAV (Math. Slovaca) 13 (1963) 20-31 (in Russian).
[17] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27-43.
[18] B. Mohar, Light paths in 4-connected graphs in the plane and other surfaces, J. Graph Theory 34 (2000) 170-179.
[19] J. Zaks, Extending Kotzig's theorem, Israel J. Math. 45 (1983) 281-296.

[^0]: E-mail address: fabrici@mathematik.tu-ilmenau.de (I. Fabrici).

