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Abstract

First a brief survey of known facts is given. Main result of this paper: every polyhedral
(i.e. 3-connected planar) graph G with minimum degree at least 4 and order at least k (k¿ 4)
contains a connected subgraph on k vertices having degrees (in G) at most 4k − 1, the bound
4k − 1 being best possible. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Throughout this paper we consider planar graphs without loops or multiple edges.
For a plane graph G let V (G); E(G) and F(G) denote the vertex set, edge set and
face set, respectively, and let v(G) := |V (G)|; e(G) := |E(G)| and f(G) := |F(G)|. For
a face 
∈F(G) let V (
) denote the set of vertices of G that are incident upon 
.
The degree of a face 
∈F(G) is the number of edges incident upon 
 where each
bridge is counted twice. For a graph G let �(G) and �(G) denote the minimum and
maximum (vertex) degree of G, respectively. Vertices and faces of degree i are called
i-vertices and i-faces, respectively. For i¿0 let vi(G) denote the number of i-vertices
of G and similarly for i¿3 let fi(G) denote the number of i-faces of G. A path (a
cycle) on k vertices is called a k-path (a k-cycle) and is denoted by Pk = [x1; : : : ; xk ]
(Ck = [y1; : : : ; yk ]). For graphs G and H , G∼=H means that G and H are isomorphic.
If H is a (not necessarily induced) subgraph of G and H �∼=G then H is called a proper
subgraph of G (and G a proper supergraph of H).
It is well known that every planar graph contains a vertex of degree at most 5.

Kotzig [15,16] proved that every 3-connected planar (i.e. polyhedral) graph G contains
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an edge with degree sum of its endvertices at most 13 in general and at most 11 if
�(G)¿4; moreover these bounds are best possible. These results have been further
extended in various directions, see, e.g., [6,9,19].
In generalizing Kotzig’s theorem, there are, among others, the following two

possibilities.

1.1. Fixed subgraphs

Let G be a family of polyhedral graphs and let H be a connected planar graph that
is isomorphic to a proper subgraph of at least one member of G. Let ’(G; H) be the
smallest integer such that every G ∈G that is a proper supergraph of H contains a
subgraph K isomorphic to H with

degG(x)6’(G; H) for every vertex x∈V (K):
If such a ’(G; H) exists we call the graph H light in the family G, otherwise we say
that H is not light in G and write ’(G; H)=∞.
Let G(c; �) be the family of all c-connected planar graphs with minimum degree at

least � and set ’(c; �;H)=’(G(c; �); H).
The following is a brief survey of known results; Theorems 6 and 7(i)–(iii) belong

to this survey too.

Theorem 1 (Fabrici and Jendrol’ [4]). (i) H is light in G(3; 3) if and only if H ∼=Pk;
k¿1.
(ii) ’(3; 3;Pk)= 5k; k¿1.

Theorem 2 (Fabrici et al. [3]). (i) H is light in G(3; 4) if and only if H ∼=Pk;
k¿1.
(ii) ’(3; 4;Pk)= 5k − 7; k¿8.

Theorem 3. (i) ([4]) Pk (k¿1) is light in G(3; 5).
(ii) ([17]) C3 is light in G(3; 5).
(iii) ([11]) K1;3 and K1;4 are light in G(3; 5).
(iv) ([12]) Ck (k¿11) is not light in G(3; 5).
(v) ([12]) If �(H)¿6 or H contains a block on at least 11 vertices then H is

not light in G(3; 5).
(vi) ([14]) 5k − 2356’(3; 5;Pk)65k − 7; k¿68.
(vii) ([1]) ’(3; 5;C3)= 7.
(viii) ([11]) ’(3; 5;K1;3)= 7; ’(3; 5;K1;4)= 10.

Theorem 4. (i) ([18]) H is light in G(4; 4) if and only if H ∼=Pk; k¿1.
(ii) ([8]) 2k + 26’(4; 4;Pk)62k + 3; k¿1.

Theorem 5. (i) ([4]) Pk (k¿1) is light in G(4; 5) and G(5; 5).
(ii) ([17]) C3 is light in G(4; 5) and G(5; 5).
(iii) ([11]) K1;3 and K1;4 are light in G(4; 5) and G(5; 5).
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(iv) ([8]) k + 16’(4; 5;Pk)6k + 4; k¿1.
(v) ([8]) �(2k + 8)=3�6’(5; 5;Pk)6k + 4; k¿1.

For similar results about planar graphs with restricted minimum face size see, e.g.,
[7] and [13].

1.2. Connected subgraphs of order k

Let k¿1 be an integer and let G be a family of polyhedral graphs with at least one
member of order at least k. Let �(G; k) be the smallest integer such that every graph
G ∈G of order at least k contains a connected subgraph H of order k with

degG(x)6�(G; k) for every vertex x∈V (H):

Set �(c; �; k)= �(G(c; �); k). The following is known:

Theorem 6 (Fabrici and Jendrol’ [5]). (i) �(3; 3; 1)= 5;
(ii) �(3; 3; 2)= 10;
(iii) �(3; 3; k)= 4k + 3; k¿3.

Instead of asking for bounds on the degrees of all vertices (i.e. on the maximum
degree), one may ask for similar bounds on the degree sum of a Dxed subgraph H or
a connected subgraph of order k. Several cases of such problems have been solved in
[2,4,11,18].

2. Results

The Drst three values of � for the family G(3; 4) are already known, for k =1 and
k =2 these are easy consequences of Euler’s formula and Kotzig’s result, respectively,
and the third value was found by Jendrol’ [10]. In (iv) the remaining values are
determined.

Theorem 7. (i) �(3; 4; 1)= 5;
(ii) �(3; 4; 2)= 7;
(iii) �(3; 4; 3)= 9;
(iv) �(3; 4; k)= 4k − 1; k¿4.

Theorem 3(v) is improved by the next result.

Theorem 8. If H is a connected planar graph with �(H)¿5 then it is not light in
G(3; 5).

From Theorem 5(iii) it follows that the lower bound 5 in the above inequality is
best possible.
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Fig. 1.

Fig. 2.

3. Proofs

Proof of Theorem 7(iv). I. To prove �(3; 4; k)¿4k − 1 it is enough to exhibit a
3-connected plane graph W̃ of order at least k with �(W̃ )¿4 in which any connected
subgraph of order k contains a vertex of degree at least 4k − 1.
The construction starts with the graph Z (Fig. 1). Let P := [u1; : : : ; u8] and

Q := [v1; : : : ; v8] be paths of Z as drawn in Fig. 1. Let W (Fig. 2) be the graph ob-
tained from 2k copies (Z1; : : : ; Z2k) of Z by identifying the path Q of Zi (i=1; : : : ; 2k)
with P of Zi+1 (subscript addition is taken modulo 2k). W has only vertices of degree
5 or 6, except for two vertices of degree 2k.
Now—using the conDgurations Rk and Sk (Figs. 3(a), (b) and, for small k, Figs.

3(c)–(e)), both containing k − 1 (black) vertices—we replace each 3-face of W with
one of these conDgurations as shown for one copy of Z in Fig. 4 (for k¿6) to obtain
the graph W̃ . The numbers in Fig. 4 determine the conDgurations that replace (i.e. are
inserted into) the 3-faces of W and their orientations. The numbers in each triangle
denote the numbers of edges of Rk (or Sk) incident at the vertices of the triangle.
There is an analogous construction when k =4 or 5, involving Figs. 3(c), (d).
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Fig. 3.

Fig. 4.

Every connected subgraph H of W̃ of order k contains a (white) vertex of W and
it is easy to check that all vertices of W have degree (in W̃ ) at least 4k − 1.
II. It remains to show that �(3; 4; k)64k−1 for k¿4. Suppose there is a k¿4 such

that �(3; 4; k)¿4k. Let G be a counterexample with n vertices and a maximum number
of edges, say m. A vertex x∈V (G) is said to be a major vertex or a minor vertex if
degG(x)¿4k or degG(x)¡4k, respectively.

Property 1. G is a triangulation.

Proof. Assume that G contains an r-face 
, r¿4. If 
 is incident upon a major ver-
tex x we add a diagonal xy into 
, where y is a vertex incident upon 
 but not adjacent
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Fig. 5.

to x. Since the insertion of the diagonal xy cannot create a minor component (i.e. a
component of the graph induced by the set of minor vertices) of order at least k,
we get a counterexample with m + 1 edges, a contradiction. If 
 is incident only
upon minor vertices, all these belong to the same minor component and we can
again add a diagonal into 
 and obtain a counterexample with m + 1 edges. This
is a contradiction.

Let M =M (G) be the plane graph induced by the set of major vertices of G and
let M1; : : : ; M! (!¿1) be the components of M .

Property 2 (almost obvious). There is some component of M; say M1; such that all
other components of M are subgraphs of the same component of G − V (M1).

Let G? be the component of G − (V (M2)∪ · · · ∪V (M!)) that contains M1 as a
subgraph (where, possibly, G? =∈G(3; 4)).

Property 3. For each vertex x of M1 we have degG?(x)= degG(x).

For 
∈F(M1) let G?
 be the (minor) subgraph induced by all those vertices of
V (G?)\V (M1) that lie in the interior of 
; clearly, G being a triangulation, G?
 is
connected. Let T
 be the subgraph of G? induced by V (G?
 )∪V (
).

Property 4. For each face 
 of M1 we have v(G?
 )6k − 1.

For 
∈F(M1); x∈V (M1) and x∈V (
), we deDne

m(x; 
) = |{u∈V (G?
 ): ux∈E(G?)}|;

m(
) =
∑

x∈V (
)
m(x; 
):

Lemma 1. For any 
∈F(M1) we have m(
)62k − 4 + degM1
(
).

Proof. We can assume that the boundary of 
 is a cycle. Otherwise (Fig. 5(a)) we
can cut every bridge and every articulation point of 
 (only for the purposes of this
proof), as shown in Fig. 5(b). The graph T
 has v(T
)= v(G?
 )+degM1

(
) vertices and
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e(T
)63v(T
) − 6 − (degM1
(
) − 3)=3v(G?
 ) − 3 + 2 degM1

(
) edges. Hence, m(
)=
e(T
) − degM1

(
) − e(G?
 )63v(G?
 ) − 3 + 2 degM1
(
) − degM1

(
) − (v(G?
 ) − 1)=
2v(G?
 )− 2 + degM1

(
)62k − 4 + degM1
(
).

Lemma 2 (Fabrici et al. [3]). For any triangle 
= x1x2x3∈F(M1); such that T
 is a
triangulation; we have m(xi; 
)6k − 2; for all i∈{1; 2; 3}.

We omit the (easy but somewhat lengthy) proof of this fact. The main idea is this:
if there were a vertex xi ∈V (
) adjacent to all vertices of G?
 , then there would be a
vertex y∈G?
 with degG?
 (y)= degG(y)63, contradicting �(G)¿4.

Lemma 3. For any triangle 
= x1x2x3∈F(M1) we have m(
)62k − 3; for k¿5.

Proof. If v(G?
 )63 then m(
)66¡2k − 3. So suppose v(G?
 )¿4. We consider the
following two cases.
Case 1: If T
 is not a triangulation, then e(G?
 )¿v(G

?

 ) (because the graph

G?
 is connected and contains a cycle). It has v(T
)= v(G?
 ) + 3 vertices and
e(T
)63v(T
) − 7=3v(G?
 ) + 2 edges, which yields m(
)= e(T
) − 3 − e(G?
 ) 6
3v(G?
 ) + 2− 3− v(G?
 )= 2v(G?
 )− 162k − 3 (by Property 4).
Case 2: If T
 is a triangulation, each 1-vertex u of G?
 (i.e. degG?
 (u)= 1) is adjacent

to all three vertices of 
 (because of �(G)¿4). Hence, there is at most one 1-vertex
in G?
 .
2(a). Is there some 1-vertex in G?
 , then (without loss of generality) m(x1; 
)= 1

and by Lemma 2 we have m(x2; 
); m(x3; 
)6k − 2 which implies m(
)62k − 3.
2(b). Is there no 1-vertex in G?
 , then e(G

?

 )¿v(G

?

 ) + 1 (because of Property 1).

The graph T
 has now v(T
)= v(G?
 )+ 3 vertices and e(T
)= 3v(T
)− 6=3v(G?
 )+ 3
edges, which yields m(
)= e(T
)−3−e(G?
 )63v(G?
 )+3−3−(v(G?
 )+1)=2v(G?
 )−
162k − 3 (by Property 4).

Clearly

∑

x∈V (M1)

degM1
(x)= 2e(M1)=

∑


∈F(M1)

degM1
(
)=

∑

i¿3

ifi(M1): (1)

Euler’s polyhedral formula provides

e(M1)63v(M1)− 6; f(M1)62v(M1)− 4: (2)

First consider the case k¿5. Using (1), (2) and Lemmas 1 and 3 we have

∑

x∈V (M1)

degG(x)

=
∑

x∈V (M1)

degG?(x)=
∑

x∈V (M1)

degM1
(x) +

∑


∈F(M1)

m(
)
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62e(M1) +
∑


∈F(M1)
degM1

(
)¿4

(2k − 4 + degM1
(
)) +

∑


∈F(M1)
degM1

(
)=3

(2k − 3)

=2e(M1) + (2k − 4)
∑

i¿3

fi(M1) +
∑

i¿3

ifi(M1)− 2f3(M1)

= 4(3e(M1)− 2e(M1)) + (2k − 4)f(M1)− 2f3(M1)

= 4(3v(M1) + 3f(M1)− 6−
∑

i¿3

ifi(M1)) + (2k − 4)f(M1)− 2f3(M1)

= 12v(M1)− 24− 4
∑

i¿3

(i − 3)fi(M1) + (2k − 4)f(M1)− 2f3(M1)

612v(M1)− 24− 2
∑

i¿4

fi(M1) + (2k − 4)f(M1)− 2f3(M1)

= 12v(M1)− 24 + (2k − 6)f(M1)

612v(M1)− 24 + (2k − 6)(2v(M1)− 4)

=4kv(M1)− 8k:

This implies that there is a vertex x̃∈V (M1) such that degG(x̃)6(4kv(M1) − 8k)=
v(M1)= 4k − (8k)=v(M1)¡4k, which is a contradiction because x̃ is a major
vertex.
Finally consider the case k =4. For each triangle 
= x1x2x3∈F(M1) Lemma 2 im-

plies m(xi; 
)62. For any r-face 
∈F(M1), r¿4, there are at most 2 vertices of

 with m(x; 
)= 3 (otherwise there is a K3;3 ⊆G?, a contradiction to planarity) and
for each other vertex y of 
 we have m(y; 
)62. Each major vertex x of G has
degG(x)¿4k =16. That means, there is no 3-vertex in M1, for each 4-vertex x of M1

and each of the four faces incident upon x we must have m(x; 
)= 3 and, eventu-
ally, each 5-vertex x of M1 must be incident upon some face 
∈F(M1), such that
m(x; 
)= 3. Let A denote the number of pairs (x; 
) such that x∈V (
) and m(x; 
)= 3.
By the preceding arguments

2
∑

i¿4

fi(M1)¿A¿4v4(M1) + v5(M1): (3)

A well-known formula for connected planar graphs says that

∑

i¿3

(6− i)vi + 2
∑

i¿3

(3− i)fi=12 (4)
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Fig. 6.

which, in connection with v3(M1)= 0, implies

4v4(M1) + v5(M1)¿ 2v4(M1) + v5(M1)

= 12 +
∑

i¿6

(i − 6)vi(M1) + 2
∑

i¿3

(i − 3)fi(M1)

¿2
∑

i¿4

fi(M1)

contradicting inequality (3).

Proof of Theorem 8. For each connected planar graph H with �(H)¿5 and for each
integer k¿6 we shall Dnd a graph G ∈G(3; 5), a proper supergraph of H , such that
each subgraph of G isomorphic to H contains a vertex x with degG(x)¿k.

The construction starts with any triangulation TH of the graph H . Into each 3-
face 
= xyz∈F(TH ) we insert two vertex-disjoint cycles Ck = [u1; : : : ; uk ] and C̃k =
[ũ1; : : : ; ũk ], a new vertex w and edges uiũi; uiũi+1; wũi (i=1; : : : ; k, subscript addition
is taken modulo k) and xu1; : : : ; xu�k=3�+1; yu�k=3�+1; : : : ; yu2�k=3�+1; zu2�k=3�+1; : : : ; zuk ; zu1.
The resulting graph is denoted by G (Fig. 6).
It is easy to see that for the graph N induced by the set of all vertices of G whose

degree does not exceed k − 1 we have �(N )64, which means that any subgraph
of G isomorphic to H contains a vertex of G − N .
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