129,349 research outputs found

    An observer principle for general relativity

    Full text link
    We give a mathematical uniqueness theorem which in particular shows that symmetric tensors in general relativity are uniquely determined by their monomial functions on the light cone. Thus, for an observer to observe a tensor at an event in general relativity is to contract with the velocity vector of the observer, repeatedly to the rank of the tensor. Thus two symmetric tensors observed to be equal by all observers at a specific event are necessarily equal at that event.Comment: arXiv admin note: substantial text overlap with arXiv:0903.522

    Mach's principle: Exact frame-dragging via gravitomagnetism in perturbed Friedmann-Robertson-Walker universes with K=(±1,0)K = (\pm 1, 0)

    Full text link
    We show that the dragging of the axis directions of local inertial frames by a weighted average of the energy currents in the universe is exact for all linear perturbations of any Friedmann-Robertson-Walker (FRW) universe with K = (+1, -1, 0) and of Einstein's static closed universe. This includes FRW universes which are arbitrarily close to the Milne Universe, which is empty, and to the de Sitter universe. Hence the postulate formulated by E. Mach about the physical cause for the time-evolution of the axis directions of inertial frames is shown to hold in cosmological General Relativity for linear perturbations. The time-evolution of axis directions of local inertial frames (relative to given local fiducial axes) is given experimentally by the precession angular velocity of gyroscopes, which in turn is given by the operational definition of the gravitomagnetic field. The gravitomagnetic field is caused by cosmological energy currents via the momentum constraint. This equation for cosmological gravitomagnetism is analogous to Ampere's law, but it holds also for time-dependent situtations. In the solution for an open universe the 1/r^2-force of Ampere is replaced by a Yukawa force which is of identical form for FRW backgrounds with K=(−1,0).K = (-1, 0). The scale of the exponential cutoff is the H-dot radius, where H is the Hubble rate, and dot is the derivative with respect to cosmic time. Analogous results hold for energy currents in a closed FRW universe, K = +1, and in Einstein's closed static universe.Comment: 23 pages, no figures. Final published version. Additional material in Secs. I.A, I.J, III, V.H. Additional reference

    Kaluza-Klein Consistency, Killing Vectors, and Kahler Spaces

    Full text link
    We make a detailed investigation of all spaces Q_{n_1... n_N}^{q_1... q_N} of the form of U(1) bundles over arbitrary products \prod_i CP^{n_i} of complex projective spaces, with arbitrary winding numbers q_i over each factor in the base. Special cases, including Q_{11}^{11} (sometimes known as T^{11}), Q_{111}^{111} and Q_{21}^{32}, are relevant for compactifications of type IIB and D=11 supergravity. Remarkable ``conspiracies'' allow consistent Kaluza-Klein S^5, S^4 and S^7 sphere reductions of these theories that retain all the Yang-Mills fields of the isometry group in a massless truncation. We prove that such conspiracies do not occur for the reductions on the Q_{n_1... n_N}^{q_1... q_N} spaces, and that it is inconsistent to make a massless truncation in which the non-abelian SU(n_i+1) factors in their isometry groups are retained. In the course of proving this we derive many properties of the spaces Q_{n_1... n_N}^{q_1... q_N} of more general utility. In particular, we show that they always admit Einstein metrics, and that the spaces where q_i=(n_i+1)/\ell all admit two Killing spinors. We also obtain an iterative construction for real metrics on CP^n, and construct the Killing vectors on Q_{n_1... n_N}^{q_1... q_N} in terms of scalar eigenfunctions on CP^{n_i}. We derive bounds that allow us to prove that certain Killing-vector identities on spheres, necessary for consistent Kaluza-Klein reductions, are never satisfied on Q_{n_1... n_N}^{q_1... q_N}.Comment: Latex, 43 pages, references added and typos correcte

    Boundary Quantum Mechanics

    Full text link
    A reformulation of a physical theory in which measurements at the initial and final moments of time are treated independently is discussed, both on the classical and quantum levels. Methods of the standard quantum mechanics are used to quantize boundary phase space to obtain boundary quantum mechanics -- a theory that does not depend on the distinction between the initial and final moments of time, a theory that can be formulated without reference to the causal structure. As a supplementary material, the geometrical description of quantization of a general (e.g. curved) configuration space is presented.Comment: 35 pages, in Gravitation: Following the Prague Inspiration (To celebrate the 60th birthday of Jiri Bicak), O.Semerak, J.Podolsky, M.Zofka (eds.), World Scientific, Singapore, 2002, pp. 289--32

    Bundles over Nearly-Kahler Homogeneous Spaces in Heterotic String Theory

    Full text link
    We construct heterotic vacua based on six-dimensional nearly-Kahler homogeneous manifolds and non-trivial vector bundles thereon. Our examples are based on three specific group coset spaces. It is shown how to construct line bundles over these spaces, compute their properties and build up vector bundles consistent with supersymmetry and anomaly cancelation. It turns out that the most interesting coset is SU(3)/U(1)2SU(3)/U(1)^2. This space supports a large number of vector bundles which lead to consistent heterotic vacua, some of them with three chiral families.Comment: 32 pages, reference adde

    Branes: from free fields to general backgrounds

    Get PDF
    Motivated by recent developments in string theory, we study the structure of boundary conditions in arbitrary conformal field theories. A boundary condition is specified by two types of data: first, a consistent collection of reflection coefficients for bulk fields on the disk; and second, a choice of an automorphism ω\omega of the fusion rules that preserves conformal weights. Non-trivial automorphisms ω\omega correspond to D-brane configurations for arbitrary conformal field theories. The choice of the fusion rule automorphism ω\omega amounts to fixing the dimension and certain global topological features of the D-brane world volume and the background gauge field on it. We present evidence that for fixed choice of ω\omega the boundary conditions are classified as the irreducible representations of some commutative associative algebra, a generalization of the fusion rule algebra. Each of these irreducible representations corresponds to a choice of the moduli for the world volume of the D-brane and the moduli of the flat connection on it.Comment: 56 pages, LaTeX2e. Typos corrected; two references adde
    • …
    corecore