12 research outputs found

    Matrices commuting with a given normal tropical matrix

    Get PDF
    Consider the space MnnorM_n^{nor} of square normal matrices X=(xij)X=(x_{ij}) over R{}\mathbb{R}\cup\{-\infty\}, i.e., xij0-\infty\le x_{ij}\le0 and xii=0x_{ii}=0. Endow MnnorM_n^{nor} with the tropical sum \oplus and multiplication \odot. Fix a real matrix AMnnorA\in M_n^{nor} and consider the set Ω(A)\Omega(A) of matrices in MnnorM_n^{nor} which commute with AA. We prove that Ω(A)\Omega(A) is a finite union of alcoved polytopes; in particular, Ω(A)\Omega(A) is a finite union of convex sets. The set ΩA(A)\Omega^A(A) of XX such that AX=XA=AA\odot X=X\odot A=A is also a finite union of alcoved polytopes. The same is true for the set Ω(A)\Omega'(A) of XX such that AX=XA=XA\odot X=X\odot A=X. A topology is given to MnnorM_n^{nor}. Then, the set ΩA(A)\Omega^{A}(A) is a neighborhood of the identity matrix II. If AA is strictly normal, then Ω(A)\Omega'(A) is a neighborhood of the zero matrix. In one case, Ω(A)\Omega(A) is a neighborhood of AA. We give an upper bound for the dimension of Ω(A)\Omega'(A). We explore the relationship between the polyhedral complexes spanAspan A, spanXspan X and span(AX)span (AX), when AA and XX commute. Two matrices, denoted A\underline{A} and Aˉ\bar{A}, arise from AA, in connection with Ω(A)\Omega(A). The geometric meaning of them is given in detail, for one example. We produce examples of matrices which commute, in any dimension.Comment: Journal versio

    Convexity of tropical polytopes

    Full text link
    We study the relationship between min-plus, max-plus and Euclidean convexity for subsets of Rn\mathbb{R}^n. We introduce a construction which associates to any max-plus convex set with compact projectivisation a canonical matrix called its dominator. The dominator is a Kleene star whose max-plus column space is the min-plus convex hull of the original set. We apply this to show that a set which is any two of (i) a max-plus polytope, (ii) a min-plus polytope and (iii) a Euclidean polytope must also be the third. In particular, these results answer a question of Sergeev, Schneider and Butkovic and show that row spaces of tropical Kleene star matrices are exactly the "polytropes" studied by Joswig and Kulas.Comment: 12 page

    Enumerating Polytropes

    Full text link
    Polytropes are both ordinary and tropical polytopes. We show that tropical types of polytropes in TPn1\mathbb{TP}^{n-1} are in bijection with cones of a certain Gr\"{o}bner fan GFn\mathcal{GF}_n in Rn2n\mathbb{R}^{n^2 - n} restricted to a small cone called the polytrope region. These in turn are indexed by compatible sets of bipartite and triangle binomials. Geometrically, on the polytrope region, GFn\mathcal{GF}_n is the refinement of two fans: the fan of linearity of the polytrope map appeared in \cite{tran.combi}, and the bipartite binomial fan. This gives two algorithms for enumerating tropical types of polytropes: one via a general Gr\"obner fan software such as \textsf{gfan}, and another via checking compatibility of systems of bipartite and triangle binomials. We use these algorithms to compute types of full-dimensional polytropes for n=4n = 4, and maximal polytropes for n=5n = 5.Comment: Improved exposition, fixed error in reporting the number maximal polytropes for n=6n = 6, fixed error in definition of bipartite binomial

    Tropical Positivity and Semialgebraic Sets from Polytopes

    Get PDF
    This dissertation presents recent contributions in tropical geometry with a view towards positivity, and on certain semialgebraic sets which are constructed from polytopes. Tropical geometry is an emerging field in mathematics, combining elements of algebraic geometry and polyhedral geometry. A key in establishing this bridge is the concept of tropicalization, which is often described as mapping an algebraic variety to its 'combinatorial shadow'. This shadow is a polyhedral complex and thus allows to study the algebraic variety by combinatorial means. Recently, the positive part, i.e. the intersection of the variety with the positive orthant, has enjoyed rising attention. A driving question in recent years is: Can we characterize the tropicalization of the positive part? In this thesis we introduce the novel notion of positive-tropical generators, a concept which may serve as a tool for studying positive parts in tropical geometry in a combinatorial fashion. We initiate the study of these as positive analogues of tropical bases, and extend our theory to the notion of signed-tropical generators for more general signed tropicalizations. Applying this to the tropicalization of determinantal varieties, we develop criteria for characterizing their positive part. Motivated by questions from optimization, we focus on the study of low-rank matrices, in particular matrices of rank 2 and 3. We show that in rank 2 the minors form a set of positive-tropical generators, which fully classifies the positive part. In rank 3 we develop the starship criterion, a geometric criterion which certifies non-positivity. Moreover, in the case of square-matrices of corank 1, we fully classify the signed tropicalization of the determinantal variety, even beyond the positive part. Afterwards, we turn to the study of polytropes, which are those polytopes that are both tropically and classically convex. In the literature they are also established as alcoved polytopes of type A. We describe methods from toric geometry for computing multivariate versions of volume, Ehrhart and h^*-polynomials of lattice polytropes. These algorithms are applied to all polytropes of dimensions 2,3 and 4, yielding a large class of integer polynomials. We give a complete combinatorial description of the coefficients of volume polynomials of 3-dimensional polytropes in terms of regular central subdivisions of the fundamental polytope, which is the root polytope of type A. Finally, we provide a partial characterization of the analogous coefficients in dimension 4. In the second half of the thesis, we shift the focus to study semialgebraic sets by combinatorial means. Intersection bodies are objects arising in geometric tomography and are known not to be semialgebraic in general. We study intersection bodies of polytopes and show that such an intersection body is always a semialgebraic set. Computing the irreducible components of the algebraic boundary, we provide an upper bound for the degree of these components. Furthermore, we give a full classification for the convexity of intersection bodies of polytopes in the plane. Towards the end of this thesis, we move to the study of a problem from game theory, considering the correlated equilibrium polytope PGP_G of a game G from a combinatorial point of view. We introduce the region of full-dimensionality for this class of polytopes, and prove that it is a semialgebraic set for any game. Through the use of oriented matroid strata, we propose a structured method for classifying the possible combinatorial types of PGP_G, and show that for (2 x n)-games, the algebraic boundary of each stratum is a union of coordinate hyperplanes and binomial hypersurfaces. Finally, we provide a computational proof that there exists a unique combinatorial type of maximal dimension for (2 x 3)-games.:Introduction 1. Background 2. Tropical Positivity and Determinantal Varieties 3. Multivariate Volume, Ehrhart, and h^*-Polynomials of Polytropes 4. Combinatorics of Correlated Equilibri

    Tropical Ehrhart theory and tropical volume

    Get PDF
    We introduce a novel intrinsic volume concept in tropical geometry. This is achieved by developing the foundations of a tropical analog of lattice point counting in polytopes. We exhibit the basic properties and compare it to existing measures. Our exposition is complemented by a brief study of arising complexity questions

    Distances on the tropical line determined by two points

    Get PDF
    Let p,qRnp',q'\in R^n. Write pqp'\sim q' if pqp'-q' is a multiple of (1,,1)(1,\ldots,1). Two different points pp and qq in Rn/R^n/\sim uniquely determine a tropical line L(p,q)L(p,q), passing through them, and stable under small perturbations. This line is a balanced unrooted semi--labeled tree on nn leaves. It is also a metric graph. If some representatives pp' and qq' of pp and qq are the first and second columns of some real normal idempotent order nn matrix AA, we prove that the tree L(p,q)L(p,q) is described by a matrix FF, easily obtained from AA. We also prove that L(p,q)L(p,q) is caterpillar. We prove that every vertex in L(p,q)L(p,q) belongs to the tropical linear segment joining pp and qq. A vertex, denoted pqpq, closest (w.r.t tropical distance) to pp exists in L(p,q)L(p,q). Same for qq. The distances between pairs of adjacent vertices in L(p,q)L(p,q) and the distances \dd(p,pq), \dd(qp,q) and \dd(p,q) are certain entries of the matrix F|F|. In addition, if pp and qq are generic, then the tree L(p,q)L(p,q) is trivalent. The entries of FF are differences (i.e., sum of principal diagonal minus sum of secondary diagonal) of order 2 minors of the first two columns of AA.Comment: New corrected version. 31 pages and 9 figures. The main result is theorem 13. This is a generalization of theorem 7 to arbitrary n. Theorem 7 was obtained with A. Jim\'enez; see Arxiv 1205.416
    corecore