3,651 research outputs found

    (2+1) gravity for higher genus in the polygon model

    Full text link
    We construct explicitly a (12g-12)-dimensional space P of unconstrained and independent initial data for 't Hooft's polygon model of (2+1) gravity for vacuum spacetimes with compact genus-g spacelike slices, for any g >= 2. Our method relies on interpreting the boost parameters of the gluing data between flat Minkowskian patches as the lengths of certain geodesic curves of an associated smooth Riemann surface of the same genus. The appearance of an initial big-bang or a final big-crunch singularity (but never both) is verified for all configurations. Points in P correspond to spacetimes which admit a one-polygon tessellation, and we conjecture that P is already the complete physical phase space of the polygon model. Our results open the way for numerical investigations of pure (2+1) gravity.Comment: 35 pages, 22 figure

    Meeting in a Polygon by Anonymous Oblivious Robots

    Full text link
    The Meeting problem for k2k\geq 2 searchers in a polygon PP (possibly with holes) consists in making the searchers move within PP, according to a distributed algorithm, in such a way that at least two of them eventually come to see each other, regardless of their initial positions. The polygon is initially unknown to the searchers, and its edges obstruct both movement and vision. Depending on the shape of PP, we minimize the number of searchers kk for which the Meeting problem is solvable. Specifically, if PP has a rotational symmetry of order σ\sigma (where σ=1\sigma=1 corresponds to no rotational symmetry), we prove that k=σ+1k=\sigma+1 searchers are sufficient, and the bound is tight. Furthermore, we give an improved algorithm that optimally solves the Meeting problem with k=2k=2 searchers in all polygons whose barycenter is not in a hole (which includes the polygons with no holes). Our algorithms can be implemented in a variety of standard models of mobile robots operating in Look-Compute-Move cycles. For instance, if the searchers have memory but are anonymous, asynchronous, and have no agreement on a coordinate system or a notion of clockwise direction, then our algorithms work even if the initial memory contents of the searchers are arbitrary and possibly misleading. Moreover, oblivious searchers can execute our algorithms as well, encoding information by carefully positioning themselves within the polygon. This code is computable with basic arithmetic operations, and each searcher can geometrically construct its own destination point at each cycle using only a compass. We stress that such memoryless searchers may be located anywhere in the polygon when the execution begins, and hence the information they initially encode is arbitrary. Our algorithms use a self-stabilizing map construction subroutine which is of independent interest.Comment: 37 pages, 9 figure

    Wonder of sine-Gordon Y-systems

    Full text link
    The sine-Gordon Y-systems and the reduced sine-Gordon Y-systems were introduced by Tateo in the 90's in the study of the integrable deformation of conformal field theory by the thermodynamic Bethe ansatz method. The periodicity property and the dilogarithm identities concerning these Y-systems were conjectured by Tateo, and only a part of them have been proved so far. In this paper we formulate these Y-systems by the polygon realization of cluster algebras of types A and D, and prove the conjectured periodicity and dilogarithm identities in full generality. As it turns out, there is a wonderful interplay among continued fractions, triangulations of polygons, cluster algebras, and Y-systems.Comment: v1: 66 pages; v2: 53 pages, the version to appear in Trans. Amer. Math. Soc. (in the journal version, the proofs of Props. 5.29-5.31 and Sect. 5.8 will be omitted due to the limitation of space); v3: 53 pages, minor improvement of figures; v4 (no text changes): Sage (v7.0 and higher) has built-in functions to plot the triangulations associated with sine-Gordon and reduced sine-Gordon Y-system

    Triangles bridge the scales: Quantifying cellular contributions to tissue deformation

    Full text link
    In this article, we propose a general framework to study the dynamics and topology of cellular networks that capture the geometry of cell packings in two-dimensional tissues. Such epithelia undergo large-scale deformation during morphogenesis of a multicellular organism. Large-scale deformations emerge from many individual cellular events such as cell shape changes, cell rearrangements, cell divisions, and cell extrusions. Using a triangle-based representation of cellular network geometry, we obtain an exact decomposition of large-scale material deformation. Interestingly, our approach reveals contributions of correlations between cellular rotations and elongation as well as cellular growth and elongation to tissue deformation. Using this Triangle Method, we discuss tissue remodeling in the developing pupal wing of the fly Drosophila melanogaster.Comment: 26 pages, 18 figure
    corecore