69,001 research outputs found

    The strategic integration of agile and lean supply

    Get PDF
    Lean supply is closely associated with enabling flow and the elimination of wasteful variation within the supply chain. However, lean operations depend on level scheduling and the growing need to accommodate variety and demand uncertainty has resulted in the emergence of the concept of agility. This paper explores the role of inventory and capacity in accommodating such variation and identifies how TRIZ separation principles and TOC tools may be combined in the integrated development of responsive and efficient supply chains. A detailed apparel industry case study is used to illustrate the application of these concepts and tools

    The Causal Economy Approach to Scientific Explanation

    Get PDF
    This paper sketches a causal account of scientific explanation designed to sustain the judgment that high-level, detail-sparse explanations—particularly those offered in biology—can be at least as explanatorily valuable as lower-level counterparts. The motivating idea is that complete explanations maximize causal economy: they cite those aspects of an event’s causal run-up that offer the biggest-bang-for-your-buck, by costing less (in virtue of being abstract) and delivering more (in virtue making the event stable or robust)

    Manufacturing System Lean Improvement Design Using Discrete Event Simulation

    Get PDF
    Lean manufacturing (LM) has been used widely in the past for the continuous improvement of existing production systems. A Lean Assessment Tool (LAT) is used for assessing the overall performance of lean practices within a system, while a Discrete Event Simulation (DES) can be used for the optimization of such systems operations. Lean improvements are typically suggested after a LAT has been deployed, but validation of such improvements is rarely carried out. In the present article a methodology is presented that uses DES to model lean practices within a manufacturing system. Lean improvement scenarios are then be simulated and investigated prior to implementation, thereby enabling a systematic design of lean improvements

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Understanding and responding when things go wrong: key principles for primary care educators

    Get PDF
    Learning from events with unwanted outcomes is an important part of workplace based education and providing evidence for medical appraisal and revalidation. It has been suggested that adopting a ‘systems approach’ could enhance learning and effective change. We believe the following key principles should be understood by all healthcare staff, especially those with a role in developing and delivering educational content for safety and improvement in primary care. When things go wrong, professional accountability involves accepting there has been a problem, apologising if necessary and committing to learn and change. This is easier in a ‘Just Culture’ where wilful disregard of safe practice is not tolerated but where decisions commensurate with training and experience do not result in blame and punishment. People usually attempt to achieve successful outcomes, but when things go wrong the contribution of hindsight and attribution bias as well as a lack of understanding of conditions and available information (local rationality) can lead to inappropriately blame ‘human error’. System complexity makes reduction into component parts difficult; thus attempting to ‘find-and-fix’ malfunctioning components may not always be a valid approach. Finally, performance variability by staff is often needed to meet demands or cope with resource constraints. We believe understanding these core principles is a necessary precursor to adopting a ‘systems approach’ that can increase learning and reduce the damaging effects on morale when ‘human error’ is blamed. This may result in ‘human error’ becoming the starting point of an investigation and not the endpoint

    A multilevel integrative approach to hospital case mix and capacity planning.

    Get PDF
    Hospital case mix and capacity planning involves the decision making both on patient volumes that can be taken care of at a hospital and on resource requirements and capacity management. In this research, to advance both the hospital resource efficiency and the health care service level, a multilevel integrative approach to the planning problem is proposed on the basis of mathematical programming modeling and simulation analysis. It consists of three stages, namely the case mix planning phase, the master surgery scheduling phase and the operational performance evaluation phase. At the case mix planning phase, a hospital is assumed to choose the optimal patient mix and volume that can bring the maximum overall financial contribution under the given resource capacity. Then, in order to improve the patient service level potentially, the total expected bed shortage due to the variable length of stay of patients is minimized through reallocating the bed capacity and building balanced master surgery schedules at the master surgery scheduling phase. After that, the performance evaluation is carried out at the operational stage through simulation analysis, and a few effective operational policies are suggested and analyzed to enhance the trade-offs between resource efficiency and service level. The three stages are interacting and are combined in an iterative way to make sound decisions both on the patient case mix and on the resource allocation.Health care; Case mix and capacity planning; Master surgery schedule; Multilevel; Resource efficiency; Service level;
    • …
    corecore