85 research outputs found

    A Collection of Novel Algorithms for Wetland Classification with SAR and Optical Data

    Get PDF
    Wetlands are valuable natural resources that provide many benefits to the environment, and thus, mapping wetlands is crucially important. We have developed land cover and wetland classification algorithms that have general applicability to different geographical locations. We also want a high level of classification accuracy (i.e., more than 90%). Over that past 2 years, we have been developing an operational wetland classification approach aimed at a Newfoundland/Labrador province-wide wetland inventory. We have developed and published several algorithms to classify wetlands using multi-source data (i.e., polarimetric SAR and multi-spectral optical imagery), object-based image analysis, and advanced machine-learning tools. The algorithms have been tested and verified on many large pilot sites across the province and provided overall and class-based accuracies of about 90%. The developed methods have general applicability to other Canadian provinces (with field validation data) allowing the creation of a nation-wide wetland inventory system

    Mapping Plant Functional Types in Floodplain Wetlands: An Analysis of C-Band Polarimetric SAR Data from RADARSAT-2

    Get PDF
    The inclusion of functional approaches on wetland characterizations and on biodiversity assessments improves our understanding of ecosystem functioning. In the Lower Paraná River floodplain, we assessed the ability of C-band polarimetric SAR data of contrasting incidence angles to discriminate wetland areas dominated by different plant functional types (PFTs). Unsupervised H/ and H/A/ Wishart classifications were implemented on two RADARSAT-2 images differing in their incidence angles (FQ24 and FQ08). Obtained classes were assigned to the information classes (open water, bare soil and PFTs) by a priori labeling criteria that involved the expected interaction mechanisms between SAR signal and PFTs as well as the relative values of H and . The product obtained with the shallow incidence angle scene had a higher accuracy than the one obtained with the steep incidence angle product (61.5% vs. 46.2%). We show how a systematic analysis of the H/A/ space can be used to improve the knowledge about the radar polarimetric response of herbaceous vegetation. The map obtained provides novel ecologically relevant information about plant strategies dominating the floodplain. Since the obtained classes can be interpreted in terms of their functional features, the approach is a valuable tool for predicting vegetation response to floods, anthropic impacts and climate change.Fil: Morandeira, Natalia Soledad. Universidad Nacional de San Martín; ArgentinaFil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Faccinetti, Claudia. Agenzia Spaziale Italiana; ItaliaFil: Kandus, Patricia. Universidad Nacional de San Martín; Argentin

    TerraSAR-X and Wetlands: A Review

    Get PDF
    Since its launch in 2007, TerraSAR-X observations have been widely used in a broad range of scientific applications. Particularly in wetland research, TerraSAR-X\u27s shortwave X-band synthetic aperture radar (SAR) possesses unique capabilities, such as high spatial and temporal resolution, for delineating and characterizing the inherent spatially and temporally complex and heterogeneous structure of wetland ecosystems and their dynamics. As transitional areas, wetlands comprise characteristics of both terrestrial and aquatic features, forming a large diversity of wetland types. This study reviews all published articles incorporating TerraSAR-X information into wetland research to provide a comprehensive study of how this sensor has been used with regard to polarization, and the function of the data, time-series analyses, or the assessment of specific wetland ecosystem types. What is evident throughout this literature review is the synergistic fusion of multi-frequency and multi-polarization SAR sensors, sometimes optical sensors, in almost all investigated studies to attain improved wetland classification results. Due to the short revisiting time of the TerraSAR-X sensor, it is possible to compute dense SAR time-series, allowing for a more precise observation of the seasonality in dynamic wetland areas as demonstrated in many of the reviewed studies

    Delineation of Surface Water Features Using RADARSAT-2 Imagery and a TOPAZ Masking Approach over the Prairie Pothole Region in Canada

    Get PDF
    The Prairie Pothole Region (PPR) is one of the most rapidly changing environments in the world. In the PPR of North America, topographic depressions are common, and they are an essential water storage element in the regional hydrological system. The accurate delineation of surface water bodies is important for a variety of reasons, including conservation, environmental management, and better understanding of hydrological and climate modeling. There are numerous surface water bodies across the northern Prairie Region, making it challenging to provide near-real-time monitoring and in situ measurements of the spatial and temporal variation in the surface water area. Satellite remote sensing is the only practical approach to delineating the surface water area of Prairie potholes on an ongoing and cost-effective basis. Optical satellite imagery is able to detect surface water but only under cloud-free conditions, a substantial limitation for operational monitoring of surface water variability. However, as an active sensor, RADARSAT-2 (RS-2) has the ability to provide data for surface water detection that can overcome the limitation of optical sensors. In this research, a threshold-based procedure was developed using Fine Wide (F0W3), Wide (W2) and Standard (S3) modes to delineate the extent of surface water areas in the St. Denis and Smith Creek study basins, Saskatchewan, Canada. RS-2 thresholding results yielded a higher number of apparent water surfaces than were visible in high-resolution optical imagery (SPOT) of comparable resolution acquired at nearly the same time. TOPAZ software was used to determine the maximum possible extent of water ponding on the surface by analyzing high-resolution LiDAR-based DEM data. Removing water bodies outside the depressions mapped by TOPAZ improved the resulting images, which corresponded more closely to the SPOT surface water images. The results demonstrate the potential of TOPAZ masking for RS-2 surface water mapping used for operational purposes

    Remote sensing based assessment of land cover and soil moisture in the Kilombero floodplain in Tanzania

    Get PDF
    Wetlands provide important ecological, biological, and social-economic services that are critical for human existence. The increasing demand for food, arable land shortage and changing climate conditions in East Africa have created a paradigm shift from upland cultivation to wetland use due to their year-round soil water availability. However, there is need to control and manage the activities within the wetlands to ensure sustainable use while negating any negative effects caused by these activities. This is implemented through the decisions made by the land managers within the wetlands. Providing the users of the wetlands with scientific knowledge acts as a support tool for policy-making geared towards the sustainable use of the wetlands. The overall research contains two main components: First, the need for timely land cover maps at a reasonable scale, and secondly, the assessment of soil moisture as a major contributor to agricultural production. The objectives of the study were to generate land cover maps from multi-sensor optical datasets and to assess the performance of single-polarized Sentinel-1 Gray Level Co-occurrence Matrix (GLCM) texture and Principal Component Analysis (PCA) features by applying multiple classification algorithms in a floodplain in the Kilombero catchment. Furthermore, soil moisture spatial-temporal patterns over three hydrological zones was assessed, estimation of soil moisture from radar data and generation of soil moisture products from global products was investigated. The correlation of the merged products to Normalized Difference Vegetation Index (NDVI) measures was also investigated. RapidEye, Sentinel-2 and Landsat images were used in determining the areal extents of four major land cover classes namely vegetated, bare, water and built up. The acquisition period of the images ranges from August 2013 to June 2015 for the RapidEye images, December 2015 to August 2016 for the Sentinel-2 images and 2013 to 2016 Landsat-8 images were included in the land cover time series dynamic study. However, the major challenge arising was cloud coverage and hence Sentinel-1 images were tested in the application of Synthetic Aperture Radar (SAR) in wetland mapping. Variograms were used in spatial-temporal assessment of soil moisture data collected from three hydrological zones, riparian, middle and fringe. A roughness parameter was derived from a semi-empirical model. Soil moisture was retrieved from TerraSAR-X and RadarSAT-2 with the retrieved roughness parameter as an input in a linear regression equation. Triple collocation was applied in error assessment of the global soil moisture products prior to development of a merged product. Cross-correlation was applied in relating NDVI to soil moisture. Optical data (RapidEye, Landsat-8, and Sentinel-2) generated land cover maps used in assessing the land cover dynamics over time. The land cover ratios were related to depth to groundwater. As the depth to groundwater reduced in June the bare land coverage was 45-57% while that of vegetation was 34-47%. In December when the depth to groundwater was highest, bare land coverage was 62-69% while that of the vegetated area was 27-25%. This indicates that depth of groundwater and vegetation coverage responds to seasonality. During the dry season, 68-81% of the total vegetation class is within the riparian zone. In the classification of the SAR images, the overall accuracies for the single polarized VV images ranged from 54-76%, 60-81% and 61-80% for Random Forest (RF), Neural Network (NN) and Support Vector Machine (SVM) respectively. GLCM features had overall accuracies of 64-86%, 65-88% and 65-86% for RF, NN, and SVM respectively. PCA derived images had similar overall accuracies of 68-92% for NN, RF, and SVM respectively. The PCA images had the highest overall accuracy for the entire time series indicating that reduction in the number of texture features to layers containing the maximum variance improves the accuracy. The standard deviation of soil moisture was noted to increase with increasing soil moisture. Soil texture plays a key role in soil moisture retention. The riparian fields had a high water content explained by the high clay and organic matter content. A roughness parameter was derived and utilized in the retrieval of soil moisture from SAR resulting to R2 of 0.88- 0.92 between observed and simulated soil moisture values from co-polarized RadarSAT-2 HH and TerraSAR-X HH and VV. Merged soil moisture product from FEWSNET Land Data Assimilation System_NOAH (FLDAS_NOAH), ECMWF Re-Analysis Interim (ERA-Interim) and Soil Moisture and Ocean Salinity (SMOS) and FLDAS_Variable Infiltration Capacity (VIC), ERA-Interim and SMOS had similar patterns attributed to FLDAS_NOAH and FLDAS_VIC forced by the same precipitation product (RFE). Cross-correlation of Moderate-resolution Imaging Spectrometer (MODIS) NDVI and the merged soil moisture products revealed a 2-month lag of NDVI. Hence, the relationship is useful in determining the Start of Season from soil moisture products. In conclusion, the successful land cover mapping of the study area demonstrated the use of satellite imagery for wetland characterization. The vast coverage and frequent acquisitions of optical and microwave remotely sensed data additionally make the approaches transferable to other locations and allow for mapping at larger scales. Soil moisture assessment from point data revealed varied soil moisture patterns whereas global remotely sensed and modeled products rather provide complementary information about growing conditions, and hence a situational assessment tool of potential of physical availability dimension of food security. This study forms a baseline upon which additional monitoring and assessment of the Kilombero wetland ecosystem can be performed with the current results marked as a reference. Moreover, the study serves as a demonstration case of remote sensing based approaches for land cover and soil moisture mapping, whose results are useful to stakeholders to aid in the implementation of adapted production techniques for yield optimization while minimizing the unsustainable use of the natural resources.Feuchtgebiete erbringen wichtige ökologische, biologische und sozial-ökonomische Dienstleistungen, welche entscheidend für das menschliche Dasein sind. Der steigende Bedarf an Nahrung, der Mangel an landwirtschaftlichen Nutzflächen und die Veränderung der klimatischen Bedingungen in Ostafrika haben zu einem Paradigmenwechsel vom Anbau im Hochland hin zur Nutzung von Feuchtgebieten geführt. Allerdings sind Kontrolle und Management der Aktivitäten in Feuchtgebieten notwendig, um die nachhaltige Nutzung zu sichern und negative Effekte dieser Aktivitäten zu vermeiden. Die Implementierung erfolgt durch die Landverwalter in den Feuchtgebieten. Den Nutzern von Feuchtgebieten wissenschaftliche Erkenntnisse bereitzustellen dient als Hilfsmittel zur politischen Entscheidungsfindung für die nachhaltige Feuchtgebietsnutzung. Die Forschung im Rahmen der Dissertation beinhaltet zwei Hauptkomponenten: erstens den Bedarf an aktuellen Landbedeckungskarten auf einer angemessenen Skalenebene und zweitens die Erfassung der Bodenfeuchte als wichtiger Einflussfaktor auf die landwirtschaftliche Produktion. Das Ziel der Untersuchung war, Landbedeckungskarten auf Grundlage von multisensorischen optischen Daten zu erstellen und die Eignung der Textur der einfach polarisierten Sentinel-1 Grauwertmatrix (GLCM) sowie der einer Hauptkomponentenanalyse (PCA) bei Anwendung unterschiedlicher Klassifikationsalgorithmen zu beurteilen. Des Weiteren wurden raum-zeitliche Bodenfeuchtemuster über drei hydrologische Zonen hinweg modelliert, die Bodenfeuchte aus Radardaten abgeleitet sowie die Erstellung von Bodenfeuchteprodukten auf Basis von globalen Produkten untersucht. Die Korrelation der Bodenfeuchteprodukte mit dem Normalisierten Differenzierten Vegetationsindex (NDVI) wurde ebenfalls analysiert. RapidEye, Sentinel-2 und Landsat Bilder wurden genutzt um die räumliche Ausdehnung der vier Hauptklassen (Vegetation, freiliegender Boden, Wasser und Bebauung) der Landbedeckung zu ermitteln. Für die Zeitreihenanalyse der der Landbedeckungsdynamik wurden RapidEye-Daten von August 2013 bis Juni 2015, Sentinel-2-Bilder von Dezember 2015 bis August 2016 und Landsat-8-Bilder von 2013 bis 2016 verwendet. Die größte Herausforderung war jedoch die Wolkenbedeckung, weshalb die Anwendung von Synthetic Aperture Radar (SAR) für die Feuchtgebietskartierung getestet wurde. Die gemessene Bodenfeuchte wurde mittels Variogrammen für die drei hydrologischen Zonen (Uferzone, Mitte und Randgebiete) raum-zeitlich interpoliert. Ein Rauhigkeitsparameter wurde aus einem semi-empirischen Modell hergeleitet. Die Bodenfeuchte wurde aus TerraSAR-X und RadarSAT-2- Bildern unter Verwendung des Rauhigkeitsparameters als Eingangsgröße in einer linearen Regression abgeleitet. Vor der Zusammenführung der Produkte wurde das globale Bodenfeuchteprodukt mithilfe von dreifacher Kollokation auf Fehler überprüft. Die Kreuzkorrelation zwischen NDVI und Bodenfeuchte wurde berechnet. Optische Daten (RapidEye, Landsat-8 und Sentinel-2) wurden genutzt, um die zeitliche Dynamik der Landbedeckung zu bestimmen. Die Landbedeckungsverhältnisse wurde mit der Höhe des Grundwasserspiegels korreliert. Ein hoher Grundwasserstand im Juni resultierte in 45-57% unbedecktem Boden, während der Anteil der Vegetation 34-47% betrug. Im Dezember, als der Grundwasserspiegel seinen Tiefststand hatte, erhöhte sich der Anteil des freiliegenden Bodens auf 62-69% und der Anteil der Vegetation verringerte sich auf 27-25%. Das zeigt, dass Grundwasserspiegel und Vegetation saisonalen Schwankungen unterworfen sind. Während der Trockenzeit liegen 68-81% der gesamten als Vegetation klassifizierten Fläche innerhalb der Uferzone. In der Klassifikation der SAR-Bilder liegt die Gesamtgenauigkeit der einfach polarisierten VV-Bilder im Rahmen von 54-76%, 60-81% und 61-80%, entsprechend für Random Forest (RF), Neuronale Netze (NN) und Support Vector Machine (SVM). Die GLCM ergab eine Gesamtgenauigkeit von 64-86%, 65-88% und 65-86% für RF, NN und SVM. Die über eine PCA abgeleiteten Bilder erreichten eine ähnliche Genauigkeit von 68-92% für NN, RF und SVM. Die PCA-Bilder weisen die höchste Gesamtgenauigkeit der gesamten Zeitreihe auf, was darauf hinweist, dass eine Reduktion von Textureigenschaften auf Layer der maximalen Varianz enthalten, die Genauigkeit erhöht. Die Standardabweichung der Bodenfeuchte stieg mit zunehmender Bodenfeuchte. Die Bodentextur spielt dabei eine Schlüsselrolle für das Wasserhaltevermögen des Bodens. Die Uferzone wies einen hohen Wassergehalt auf, was durch den hohen Anteil von Ton und Humus zu erklären ist. Die beobachteten und simulierten Bodenfeuchtewerte von co-polarisierten RadarSAT-2 HH, TerraSAR-X HH und VV Daten korrelieren mit einem R2 von 0.88 - 0.92. Die zusammengesetzten globalen Bodenfeuchteprodukte von FLDAS_NOAH, ERA-Interim sowie SMOS und FLDAS_VIC, ERA-Interim und SMOS zeigen ähnliche Muster wie FLDAS_NOAH und FLDAS_VIC, was über die Verwendung desselben Niederschlagsproduktes (RFE) zu erklären ist. Die Kreuzkorrelation von MODIS NDVI und den zusammengeführten Bodenfeuchteprodukten ergab eine zeitliche Verzögerung des NDVI von zwei Monaten. Dieser Zusammenhang kann daher bei der Bestimmung des Saisonbeginns aus Bodenfeuchtigkeitsprodukten nützlich sein. Zusammengefasst hat die Studie gezeigt, wie Satellitenbilder zur Charakterisierung von Wetlands genutzt werden können. Die große Abdeckung und häufige Aufnahme der optischen und Mikrowellen-Fernerkundungsdaten ermöglichen darüber hinaus die Übertragung der Ansätze auf weitere Gebiete und Kartierung auf größeren Skalen. Die Punktmessungen zeigen kleinräumige Muster der Bodenfeuchte, während globale Fernerkundungsprodukte und Modelle Informationen über die Wachstumsbedingungen liefern und somit ein Bewertungsinstrument der Ernährungssicherheit darstellen können. Weiterhin bildet die Studie eine Basis, auf der ein weitergehendes Monitoring und eine Bewertung des Feuchtgebietsökosystems durchgeführt werden kann. Sie ist ein Beispiel für fernerkundungsbasierte Ansätze zur Landbedeckungs- und Bodenfeuchtekartierung; ihre Ergebnisse sind nützlich, um Akteuren bei der Implementierung von Produktionstechniken zu unterstützen, welche die Erträge maximieren und gleichzeitig die nicht nachhaltige Nutzung der natürlichen Ressourcen minimieren

    Mapping intra- and inter-annual dynamics in wetlands with multispectral, thermal and SAR time series

    Get PDF
    Kartierung der intra- und interannuellen Dynamik von Feuchtgebieten mit multispektralen, thermischen und SAR-Zeitreihen Die Analyse der aktuellen räumlichen Verbreitung und der zeitlichen Entwicklung von Feuchtgebieten stellt eine äußerst komplexe Aufgabe dar, welche durch die Saisonalität, die schwierige Zugänglichkeit und die besonderen Eigenschaften als Ökoton bedingt ist. Erdbeobachtungssysteme sind somit das am besten geeignete Werkzeug, um zeitliche und räumliche Muster von Feuchtgebieten auf globaler Ebene zu beobachten (saisonale Veränderungen und Langzeit-Trends) und um den Einfluss der menschlichen Aktivitäten auf ihre physischen und biologischen Eigenschaften zu untersuchen. Zur Kartierung von raum-zeitlichen Mustern wurden Zeitreihen von Radar- (Sentinel-1), Multispektral- (Sentinel-2) und Thermal-Satellitendaten (MODIS) in fünf Untersuchungsgebieten, mit für Feuchtgebiete unterschiedlichen typischen Charakteristika, untersucht. In Kapitel 1 werden die Problematik in Bezug auf die Definition von Feuchtgebieten erläutert und allgemeine Degradations-Trends beschrieben. Die Kapitel 2 und 3 behandeln einen Algorithmus, der Veränderungen mithilfe von SAR-Zeitreihen feststellt, sowie die Vorteile des Cloud-Computings für das operationelle Monitoring saisonaler Muster und die Erkennung kurzfristig auftretender Veränderungen. In den Kapiteln 4 und 5 werden die zwei Hauptursachen für den Verlust von Feuchtgebieten betrachtet: der Staudammbau und die Ausdehnung landwirtschaftlicher Flächen. In Kapitel 4 werden dichte Zeitreihen multispektraler (Sentinel-2) und SAR-Daten (Sentinel-1) verwendet, um die Feuchtgebiete Albaniens – eines Landes in dem konträre Pläne zum Ausbau seines Wasserkraftpotentials und dem Schutz intakter Flussökosysteme zu Spannungen führen – landesweit zu kartieren. Die synergetischen Vorteile, die sich durch die Fusionierung von multispektralen und SAR-Daten für die Klassifikation ergeben, werden dabei herausgestellt. Kapitel 5 veranschaulicht, dass die Kilombero-Überschwemmungsebene in Tansania ein großes und bedeutendes Feuchtgebiet ist, das in den vergangenen Jahren infolge der weitgehend unkontrollierten Ausbreitung landwirtschaftlicher Flächen in seiner Ausdehnung und seiner Ökologie stark beeinträchtigt wurde. Um die Auswirkungen der Landnutzungsänderungen des Feuchtgebietes während der vergangenen 18 Jahre zu analysieren, wurden eine Zeitreihe (2000 bis 2017) thermaler Daten (MODIS) analysiert. Die drei für die Zeitreihenanalyse angewandten Modelle zeigen, wie landwirtschaftliche Praktiken die Landoberflächentemperatur in den landwirtschaftlich genutzten Gebieten sowie in den angrenzenden natürlichen Feuchtgebieten erhöht haben.Due to wetlands’ seasonality, their difficult access and ecotone character, determining their actual extension and trends over time is a complex task. Earth Observation systems are the most appropriate tool to monitor their spatio-temporal patterns (seasonal changes and long term trends) at global scales, and to study the effects that human activities have in their physical and biological properties. In this work I use time series of radar (Sentinel-1), multispectral (Sentinel-2) and thermal (MODIS) imagery to map the spatio-temporal patterns in 5 wetlands of different characteristics. First, I introduce in chapter 1 the problematic of wetlands’ definitions and their degradation trends. I continue with a brief introduction on remote sensing, time series analysis, and their applications on wetlands’ research and management. In chapters 2 and 3 I implement an algorithm for change detection of time series of Sentinel-1 images and demonstrate the advantages of cloud computation for operational monitoring. In chapters 4 and 5 I address two of the main causes of wetland degradation: dam building and agricultural expansion. In chapter 4 I use dense time series of Sentinel-1 and Sentinel-2 images map all the wetlands of Albania; a country struggling between developing its large hydropower potential or preserving its intact and valuable river ecosystems. I evaluate the synergic advantages of fusing multispectral and radar imagery in combination with knowledge-based rules to produce classification of higher thematic and spatial resolutions. In chapter 5 I present how the Kilombero Floodplain, in Tanzania, has been degraded during the last years due to uncontrolled farmland expansion. I use a time series of thermal imagery (MODIS) from 2000 until 2017 to analyze the effect of land use changes on the wetland. I compare three models for time series analysis and reveal how farming practices have increased the surface temperature of the farmed area, as well as in adjacent natural wetlands.Mapeo de las dinámicas inter- e intra-anuales en humedales con series temporales de imágenes multiespectrales, termales y de radar Debido a la estacionalidad de los humedales, su difícil acceso y sus características de ecotono, determinar su actual extensión y sus tendencias a lo largo del tiempo es una tarea compleja. Los sistemas de observación terrestres son la herramienta más apropiada para monitorear sus patrones espacio-temporales (estacionalidad y tendencias a largo plazo) a escalas globales, y para estudiar los efectos que las actividades humanas causan en sus propiedades físicas y biológicas. En esta tesis uso series temporales de imágenes radar (Sentinel-1), multiespectrales (Sentinel-2) y termales (MODIS) para mapear los patrones espacio-temporales de 5 humedales de diferentes características. En el capítulo 1 describo los retos que derivan de las diferentes definiciones que existen de los humedales. También presento las tendencias globales de degradación que la mayoría de los humedales continúan experimentando en los últimos años. Continúo con una breve introducción de los sistemas de teledetección remota, análisis de series temporales, y sus aplicaciones a la investigación y gestión de los humedales. En los capítulos 2 y 3 implemento un algoritmo de detección de cambios para series temporales de imágenes radar, y muestro las ventajas de usar sistemas de computación en la nube para monitorear cambios en la cobertura del suelo a corto plazo. En los capítulos 4 y 5 trato con dos de las causas más comunes de degradación de humedales: la construcción de presas y la expansión de la agricultura. En el capítulo 4 uso series temporales de imágenes multiespectrales (Sentinel-2) y radar (Sentinel-1) para mapear todos los humedales Albania; un país que se debate entre desarrollar su potencial hidroenergético o preservar sus valiosos e intactos ecosistemas de rivera. Mediante la fusión de imágenes radar y multiespectrales y el uso de reglas de decisión genero un mapa de suficiente resolución espacial y temática para que pueda ser usado por sectores interesados y gestores. En el capítulo 5 presento como las llanuras inundables de Kilombero, en Tanzania, han sido degradadas durante los últimos años debido a la expansión incontrolada de la agricultura. Usando series temporales de imágenes termales (MODIS) desde 2000 hasta 2017 y mapas de cambios de usos del suelo, determino los efectos que estos cambios han tenido en el humedal. Comparo 3 modelos diferentes de análisis de series temporales y muestro cómo la expansión de la agricultura ha incrementado la temperatura superficial terrestre, no solo de la zona cultivada, sino también de zonas adyacentes aún naturales

    Wetland mapping and monitoring using polarimetric and interferometric synthetic aperture radar (SAR) data and tools

    Get PDF
    Wetlands are home to a great variety of flora and fauna species and provide several unique environmental functions, such as controlling floods, improving water-quality, supporting wildlife habitat, and shoreline stabilization. Detailed information on spatial distribution of wetland classes is crucial for sustainable management and resource assessment. Furthermore, hydrological monitoring of wetlands is also important for maintaining and preserving the habitat of various plant and animal species. This thesis investigates the existing knowledge and technological challenges associated with wetland mapping and monitoring and evaluates the limitations of the methodologies that have been developed to date. The study also proposes new methods to improve the characterization of these productive ecosystems using advanced remote sensing (RS) tools and data. Specifically, a comprehensive literature review on wetland monitoring using Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) techniques is provided. The application of the InSAR technique for wetland mapping provides the following advantages: (i) the high sensitivity of interferometric coherence to land cover changes is taken into account and (ii) the exploitation of interferometric coherence for wetland classification further enhances the discrimination between similar wetland classes. A statistical analysis of the interferometric coherence and SAR backscattering variation of Canadian wetlands, which are ignored in the literature, is carried out using multi-temporal, multi-frequency, and multi-polarization SAR data. The study also examines the capability of compact polarimetry (CP) SAR data, which will be collected by the upcoming RADARSAT Constellation Mission (RCM) and will constitute the main source of SAR observation in Canada, for wetland mapping. The research in this dissertation proposes a methodology for wetland classification using the synergistic use of intensity, polarimetry, and interferometry features using a novel classification framework. Finally, this work introduces a novel model based on the deep convolutional neural network (CNN) for wetland classification that can be trained in an end-to-end scheme and is specifically designed for the classification of wetland complexes using polarimetric SAR (PolSAR) imagery. The results of the proposed methods are promising and will significantly contribute to the ongoing efforts of conservation strategies for wetlands and monitoring changes. The approaches presented in this thesis serve as frameworks, progressing towards an operational methodology for mapping wetland complexes in Canada, as well as other wetlands worldwide with similar ecological characteristics

    Temporal data fusion approaches to remote sensing-based wetland classification

    Get PDF
    This thesis investigates the ecology of wetlands and associated classification in prairie and boreal environments of Alberta, Canada, using remote sensing technology to enhance classification of wetlands in the province. Objectives of the thesis are divided into two case studies, 1) examining how satellite borne Synthetic Aperture Radar (SAR), optical (RapidEye & SPOT) can be used to evaluate surface water trends in a prairie pothole environment (Shepard Slough); and 2) investigating a data fusion methodology combining SAR, optical and Lidar data to characterize wetland vegetation and surface water attributes in a boreal environment (Utikuma Regional Study Area (URSA)). Surface water extent and hydroperiod products were derived from SAR data, and validated using optical imagery with high accuracies (76-97% overall) for both case studies. High resolution Lidar Digital Elevation Models (DEM), Digital Surface Models (DSM), and Canopy Height Model (CHM) products provided the means for data fusion to extract riparian vegetation communities and surface water; producing model accuracies of (R2 0.90) for URSA, and RMSE of 0.2m to 0.7m at Shepard Slough when compared to field and optical validation data. Integration of Alberta and Canadian wetland classifications systems used to classify and determine economic value of wetlands into the methodology produced thematic maps relevant for policy and decision makers for potential wetland monitoring and policy development.Funding for this thesis was provided by the NSERC CREATE AMETHYST Program, and the Government of Alberta (Economic Development and Trade, Environment and Parks), Campus Alberta Innovates Program

    Spaceborne synthetic aperture radar: Current status and future directions. A report to the Committee on Earth Sciences, Space Studies Board, National Research Council

    Get PDF
    This report provides a context in which questions put forth by NASA's Office of Mission to Planet Earth (OMPTE) regarding the next steps in spaceborne synthetic aperture radar (SAR) science and technology can be addressed. It summarizes the state-of-the-art in theory, experimental design, technology, data analysis, and utilization of SAR data for studies of the Earth, and describes potential new applications. The report is divided into five science chapters and a technology assessment. The chapters summarize the value of existing SAR data and currently planned SAR systems, and identify gaps in observational capabilities needing to be filled to address the scientific questions. Cases where SAR provides complementary data to other (non-SAR) measurement techniques are also described. The chapter on technology assessment outlines SAR technology development which is critical not only to NASA's providing societally relevant geophysical parameters but to maintaining competitiveness in SAR technology, and promoting economic development

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans
    corecore