6,360 research outputs found

    On the upstream mobility scheme for two-phase flow in porous media

    Get PDF
    When neglecting capillarity, two-phase incompressible flow in porous media is modelled as a scalar nonlinear hyperbolic conservation law. A change in the rock type results in a change of the flux function. Discretizing in one-dimensional with a finite volume method, we investigate two numerical fluxes, an extension of the Godunov flux and the upstream mobility flux, the latter being widely used in hydrogeology and petroleum engineering. Then, in the case of a changing rock type, one can give examples when the upstream mobility flux does not give the right answer.Comment: A preprint to be published in Computational Geoscience

    Applications of the DFLU flux to systems of conservation laws

    Get PDF
    The DFLU numerical flux was introduced in order to solve hyperbolic scalar conservation laws with a flux function discontinuous in space. We show how this flux can be used to solve systems of conservation laws. The obtained numerical flux is very close to a Godunov flux. As an example we consider a system modeling polymer flooding in oil reservoir engineering

    Transport of polymer particles in a oil-water flow in porous media: enhancing oil recovery

    Get PDF
    We study a heuristic, core-scale model for the transport of polymer particles in a two phase (oil and water) porous medium. We are motivated by recent experimental observations which report increased oil recovery when polymers are injected after the initial waterflood. The recovery mechanism is believed to be microscopic diversion of the flow, where injected particles can accumulate in narrow pore throats and clog it, in a process known as a log-jamming effect. The blockage of the narrow pore channels lead to a microscopic diversion of the water flow, causing a redistribution of the local pressure, which again can lead to the mobilization of trapped oil, enhancing its recovery. Our objective herein is to develop a core-scale model that is consistent with the observed production profiles. We show that previously obtained experimental results can be qualitatively explained by a simple two-phase flow model with an additional transport equation for the polymer particles. A key aspect of the formulation is that the microscopic heterogeneity of the rock and a dynamic altering of the permeability must be taken into account in the rate equations.Comment: 20 pages, 9 Figures Submitted to Transport in Porous Medi

    Numerical Investigation of Two-Phase Flow through a Fault

    Get PDF
    Imperial Users onl

    Study of full implicit petroleum engineering finite volume scheme for compressible two phase flow in porous media

    Full text link
    An industrial scheme, to simulate the two compressible phase flow in porous media, consists in a finite volume method together with a phase-by-phase upstream scheme. The implicit finite volume scheme satisfies industrial constraints of robustness. We show that the proposed scheme satisfy the maximum principle for the saturation, a discrete energy estimate on the pressures and a function of the saturation that denote capillary terms. These stabilities results allow us to derive the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. The proof is given for the complete system when the density of the each phase depends on the own pressure
    • …
    corecore