73 research outputs found

    Adaptive Graduated Non-Convexity for Pose Graph Optimization

    Full text link
    We present a novel approach to robust pose graph optimization based on Graduated Non-Convexity (GNC). Unlike traditional GNC-based methods, the proposed approach employs an adaptive shape function using B-spline to optimize the shape of the robust kernel. This aims to reduce GNC iterations, boosting computational speed without compromising accuracy. When integrated with the open-source riSAM algorithm, the method demonstrates enhanced efficiency across diverse datasets. Accompanying open-source code aims to encourage further research in this area. https://github.com/SNU-DLLAB/AGNC-PGOComment: 4 pages, 3 figures. Accepted for the workshop on Robotic Perception and Mapping(ROPEM): Frontier Vision & Learning Techniques, organized at the 2023 International Conference on Intelligent Robots and Systems (IROS

    A novel elementary spatial expanding scheme form on SISR method with modifying Geman&McClure function

    Get PDF
    Because of the feasible and impressive fallout, the classical Super-Resolution Reconstruction (SRR) is the contemporary algorithm for improving spatial information and reducing noise and SISR (Single-Image Super-Resolution) method, which is form on the classical SRR, is solely developed for improving spatial information. Disastrously, deficiency of the classical SISR method is conceptually computed from three specifications (b, h, k) and the simulating calculation of the optimized specifications for interpolating the better and higher spatial information images with highest PSNR is so burdersome. For figuring out this issue, the Geman&Mcclure function is proposed to replace with the ordinary SISR function because this function is conceptually computed from only one specification (T), contrary to three specifications similar to classical SISR method hence this analytic article focuses to offer a novel elementary spatial expanding scheme form on SISR method with modifying Geman&Mcclure function. Therefore, the fallout of a proposed spatial expanding scheme approximately matches to classical SISR method. From these reason, a novel elementary spatial expanding scheme is easily implemented for real works

    Discontinuity Preserving Regularization for Modeling Sliding in Medical Image Registration

    Full text link
    Sliding effects often occur along tissue/organ boundaries. However, most conventional registration techniques either use smooth parametric bases or apply homogeneous smoothness regularization, and fail to address the sliding issue. In this study, we propose a class of discontinuity-preserving regularizers that fit naturally into optimization-based registration. The proposed regularization encourages smooth deformations in most regions, but preserves large discontinuities supported by the data. Variational techniques are used to derive the descending flows. We discuss general conditions on such discontinuity-preserving regularizers, and their properties based on an anisotropic filtering interpretation. Preliminary tests with 2D CT data show promising results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85986/1/Fessler234.pd

    Robust Andrew's sine estimate adaptive filtering

    Full text link
    The Andrew's sine function is a robust estimator, which has been used in outlier rejection and robust statistics. However, the performance of such estimator does not receive attention in the field of adaptive filtering techniques. Two Andrew's sine estimator (ASE)-based robust adaptive filtering algorithms are proposed in this brief. Specifically, to achieve improved performance and reduced computational complexity, the iterative Wiener filter (IWF) is an attractive choice. A novel IWF based on ASE (IWF-ASE) is proposed for impulsive noises. To further reduce the computational complexity, the leading dichotomous coordinate descent (DCD) algorithm is combined with the ASE, developing DCD-ASE algorithm. Simulations on system identification demonstrate that the proposed algorithms can achieve smaller misalignment as compared to the conventional IWF, recursive maximum correntropy criterion (RMCC), and DCD-RMCC algorithms in impulsive noise. Furthermore, the proposed algorithms exhibit improved performance in partial discharge (PD) denoising.Comment: 5 pages, 5 figure

    Robust Principal Component Analysis for Background Subtraction: Systematic Evaluation and Comparative Analysis

    Get PDF
    The analysis and understanding of video sequences is currently quite an active research field. Many applications such as video surveillance, optical motion capture or those of multimedia need to first be able to detect the objects moving in a scene filmed by a static camera. This requires the basic operation that consists of separating the moving objects called "foreground" from the static information called "background". Many background subtraction methods have been developed (Bouwmans et al. (2010); Bouwmans et al. (2008)). A recent survey (Bouwmans (2009)) shows that subspace learning models are well suited for background subtraction. Principal Component Analysis (PCA) has been used to model the background by significantly reducing the data's dimension. To perform PCA, different Robust Principal Components Analysis (RPCA) models have been recently developed in the literature. The background sequence is then modeled by a low rank subspace that can gradually change over time, while the moving foreground objects constitute the correlated sparse outliers. However, authors compare their algorithm only with the PCA (Oliver et al. (1999)) or another RPCA model. Furthermore, the evaluation is not made with the datasets and the measures currently used in the field of background subtraction. Considering all of this, we propose to evaluate RPCA models in the field of video-surveillance. Contributions of this chapter can be summarized as follows: 1) A survey regarding robust principal component analysis and 2) An evaluation and comparison on different video surveillance dataset

    A Decoupled and Linear Framework for Global Outlier Rejection over Planar Pose Graph

    Full text link
    We propose a robust framework for the planar pose graph optimization contaminated by loop closure outliers. Our framework rejects outliers by first decoupling the robust PGO problem wrapped by a Truncated Least Squares kernel into two subproblems. Then, the framework introduces a linear angle representation to rewrite the first subproblem that is originally formulated with rotation matrices. The framework is configured with the Graduated Non-Convexity (GNC) algorithm to solve the two non-convex subproblems in succession without initial guesses. Thanks to the linearity properties of both the subproblems, our framework requires only linear solvers to optimally solve the optimization problems encountered in GNC. We extensively validate the proposed framework, named DEGNC-LAF (DEcoupled Graduated Non-Convexity with Linear Angle Formulation) in planar PGO benchmarks. It turns out that it runs significantly (sometimes up to over 30 times) faster than the standard and general-purpose GNC while resulting in high-quality estimates.Comment: 7 pages, 4 figures. Submitted to the IEEE International Conference on Robotics and Automation (ICRA

    Robust Incremental Smoothing and Mapping (riSAM)

    Full text link
    This paper presents a method for robust optimization for online incremental Simultaneous Localization and Mapping (SLAM). Due to the NP-Hardness of data association in the presence of perceptual aliasing, tractable (approximate) approaches to data association will produce erroneous measurements. We require SLAM back-ends that can converge to accurate solutions in the presence of outlier measurements while meeting online efficiency constraints. Existing robust SLAM methods either remain sensitive to outliers, become increasingly sensitive to initialization, or fail to provide online efficiency. We present the robust incremental Smoothing and Mapping (riSAM) algorithm, a robust back-end optimizer for incremental SLAM based on Graduated Non-Convexity. We demonstrate on benchmarking datasets that our algorithm achieves online efficiency, outperforms existing online approaches, and matches or improves the performance of existing offline methods.Comment: Accepted to ICRA 202
    • …
    corecore