70,087 research outputs found

    Coding and Probabilistic Inference Methods for Data-Dependent Two-Dimensional Channels

    Get PDF
    Recent advances in magnetic recording systems, optical recording devices and flash memory drives necessitate to study two-dimensional (2-D) coding techniques for reliable storage/retrieval of information. Most channels in such systems introduce errors in messages in response to certain data patterns, and messages containing these patterns are more prone to errors than others. For example, in a single-level cell flash memory channel, inter-cell interference (ICI) is at its maximum when 101 patterns are programmed over adjacent cells in either horizontal or vertical directions. As another example, in two-dimensional magnetic recording channels, 2-D isolated-bits patterns are shown empirically to be the dominant error event, and during the read-back process inter-symbol interference (ISI) and inter-track interference (ITI) arise when these patterns are recorded over the magnetic medium. Shannon in his seminal work, ``A Mathematical Theory of Communications," presented two techniques for reliable transmission of messages over noisy channels, namely error correction coding and constrained coding. In the first method, messages are protected via an error correction code (ECC) from random errors which are independent of input data. The theory of ECCs is well studied, and efficient code construction methods are developed for simple binary channels, additive white Gaussian noise (AWGN) channels and partial response channels. On the other hand, constrained coding reduces the likelihood of corruption by removing problematic patterns before transmission over data-dependent channels. Prominent examples of constraints include a family of binary one-dimensional (1-D) and 2-D (d,k)\left(d,k\right)-run-length-limited (RLL) constraints which improves resilience to ISI timing recovery and synchronization for bandwidth limited partial response channels, where d and k represent the minimum and maximum number of admissible zeros between two successive ones in any direction of array. In principle, the ultimate coding approach for such data-dependent channels is to design a set of sufficiently distinct error correction codewords that also satisfy channel constraints. Designing channel codewords satisfying both ECC and channel constraints is important as it would achieve the channel capacity. However, in practice this is difficult, and we rely on sub-optimal methods such as forward concatenation method (standard concatenation), reverse concatenation method (modified concatenation), and combinations of these approaches. In this dissertation, we focus on the problem of reliable transmission of binary messages over data-dependent 2-D communication channels. Our work is concerned with several challenges in regard to the transmission of binary messages over data-dependent 2-D channels. Design of Two-Dimensional Magnetic Recording (TDMR) Detector and Decoder: TDMR achieves high areal densities by reducing the size of a bit comparable to the size of the magnetic grains resulting in 2-D ISI and very high media noise. Therefore, it is critical to handle the media noise along with the 2-D ISI detection. In this work, we tune the Generalized Belief Propagation (GBP) algorithm to handle the media noise seen in TDMR. We also provide an intuition into the nature of hard decisions provided by the GBP algorithm. Investigation into Harmful Patterns for TDMR channels: This work investigates into the Voronoi based media model to study the harmful patterns over multi-track shingled recording systems. Through realistic quasi micromagnetic simulations studies, we identify 2-D data patterns that contribute to high media noise. We look into the generic Voronoi model and present our analysis on multi-track detection with constrained coded data. We show that 2-D constraints imposed on input patterns result in an order of magnitude improvement in the bit error rate for TDMR systems. Understanding of Constraint Gain for TDMR Channels: We study performance gains of constrained codes in TDMR channels using the notion of constraint gain. We consider Voronoi based TDMR channels with realistic grain, bit, track and magnetic-head dimensions. Specifically, we investigate the constraint gain for 2-D no-isolated-bits constraint over Voronoi based TDMR channels. We focus on schemes that employ the GBP algorithm for obtaining information rate estimates for TDMR channels. Design of Novel Constrained Coding Methods: In this work, we present a deliberate bit flipping (DBF) coding scheme for binary 2-D channels, where specific patterns in channel inputs are the significant cause of errors. The idea is to eliminate a constrained encoder and, instead, embed a constraint into an error correction codeword that is arranged into a 2-D array by deliberately flipping the bits that violate the constraint. The DBF method relies on the error correction capability of the code being used so that it should be able to correct both deliberate errors and channel errors. Therefore, it is crucial to flip minimum number of bits in order not to overburden the error correction decoder. We devise a constrained combinatorial formulation for minimizing the number of flipped bits for a given set of harmful patterns. The GBP algorithm is used to find an approximate solution for the problem. Devising Reduced Complexity Probabilistic Inference Methods: We propose a reduced complexity GBP that propagates messages in Log-Likelihood Ratio (LLR) domain. The key novelties of the proposed LLR-GBP are: (i) reduced fixed point precision for messages instead of computational complex floating point format, (ii) operations performed in logarithm domain, thus eliminating the need for multiplications and divisions, (iii) usage of message ratios that leads to simple hard decision mechanisms

    Time-Space Constrained Codes for Phase-Change Memories

    Get PDF
    Phase-change memory (PCM) is a promising non-volatile solid-state memory technology. A PCM cell stores data by using its amorphous and crystalline states. The cell changes between these two states using high temperature. However, since the cells are sensitive to high temperature, it is important, when programming cells, to balance the heat both in time and space. In this paper, we study the time-space constraint for PCM, which was originally proposed by Jiang et al. A code is called an \emph{(α,β,p)(\alpha,\beta,p)-constrained code} if for any α\alpha consecutive rewrites and for any segment of β\beta contiguous cells, the total rewrite cost of the β\beta cells over those α\alpha rewrites is at most pp. Here, the cells are binary and the rewrite cost is defined to be the Hamming distance between the current and next memory states. First, we show a general upper bound on the achievable rate of these codes which extends the results of Jiang et al. Then, we generalize their construction for (α≥1,β=1,p=1)(\alpha\geq 1, \beta=1,p=1)-constrained codes and show another construction for (α=1,β≥1,p≥1)(\alpha = 1, \beta\geq 1,p\geq1)-constrained codes. Finally, we show that these two constructions can be used to construct codes for all values of α\alpha, β\beta, and pp

    Analysis of a Waveguide-Fed Metasurface Antenna

    Get PDF
    The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wavefront shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider here, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically scanned antenna (ESA) architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers, but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. Here we derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation that the metamaterial elements do not perturb the waveguide mode and are non-interacting. We derive analytical approximations for the array factors of the 1D antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.Comment: Original manuscript as submitted to Physical Review Applied (2017). 14 pages, 14 figure

    A machine vision extension for the Ruby programming language

    Get PDF
    Dynamically typed scripting languages have become popular in recent years. Although interpreted languages allow for substantial reduction of software development time, they are often rejected due to performance concerns. In this paper we present an extension for the programming language Ruby, called HornetsEye, which facilitates the development of real-time machine vision algorithms within Ruby. Apart from providing integration of crucial libraries for input and output, HornetsEye provides fast native implementations (compiled code) for a generic set of array operators. Different array operators were compared with equivalent implementations in C++. Not only was it possible to achieve comparable real-time performance, but also to exceed the efficiency of the C++ implementation in several cases. Implementations of several algorithms were given to demonstrate how the array operators can be used to create concise implementations.</p

    On computing in fine-grained compartmentalised Belousov-Zhabotinsky medium

    Full text link
    We introduce results of computer experiments on information processing in a hexagonal array of vesicles filled with Belousov-Zhabotinsky (BZ) solution in a sub-excitable mode. We represent values of Boolean variables by excitation wave-fragments and implement basic logical gates by colliding the wave-fragments. We show that a vesicle filled with BZ mixture can implement a range of basic logical functions. We cascade BZ-vesicle logical gates into arithmetic circuits implementing addition of two one-bit binary numbers. We envisage that our theoretical results will be applied in chemical laboratory designs of massive-parallel computers based on fine-grained compartmentalisation of excitable chemical systems
    • …
    corecore