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Abstract—Dynamically typed scripting languages have be-
come popular in recent years. Although interpreted languages
allow for substantial reduction of software development time,
they are often rejected due to performance concerns.

In this paper we present an extension for the programming
language Ruby, called HornetsEye, which facilitates the devel-
opment of real-time machine vision algorithms within Ruby.
Apart from providing integration of crucial libraries for input
and output, HornetsEye provides fast native implementations
(compiled code) for a generic set of array operators. Different
array operators were compared with equivalent implementa-
tions in C++. Not only was it possible to achieve comparable
real-time performance, but also to exceed the efficiency of the
C++ implementation in several cases.

Implementations of several algorithms were given to demon-
strate how the array operators can be used to create concise
implementations.

Index Terms—Computer Vision, Image Processing, Signal
Processing

I. Introduction

Machine vision is a broad field and in many cases there are

several independent approaches solving a particular problem.

Also, it is often difficult to preconceive which approach

will yield the best results. The machine vision software can

only be tested in a particular environment after the hardware

platform to run it on is sufficiently developed and the software

can be installed. Experience shows that - since hardware and

software developers in a project often get to start and finish

at the same time - it is important to preserve the agility of

the software to be able to implement necessary changes in

the final stages of a project.

This paper presents HornetsEye1 which is an extension

for Y. Matsumoto’s programming language Ruby to facilitate

rapid development of machine vision software. We have

found that it is possible to provide a high amount of flexibility

without sacrificing real-time capabilities. For example, in [1]

the software library was used to implement the dual-tree

complex wavelet transform.

The work presented in this paper was funded by the

EPSRC Nanorobotics project. Furthermore, it benefits from

∗This work was supported by the Nanorobotics EPSRC Basic Technology
grant GR/S85696/01

1Available at http://rubyforge.org/projects/hornetseye/
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Figure 1. Overview of typical object recognition algorithm

the accumulated experience of developing machine vision

software within the EU MINIMAN and EU MiCRoN project

and from a continued effort to develop software which is

useful beyond a single project. While development of this

software was driven by the demands of projects in the micro-

and nano-environment, we believe that the results presented

in this paper apply to other environments as well.

Figure 1 shows an overview of a typical object recognition

algorithm.

In chapter II the current state of the art is discussed and the

approach of developing a Ruby-extension is justified. Chapter

III presents optimized array operations. Chapter IV shows

how different applications facilitated by these generic oper-

ations. Chapter V demonstrates the achieved performance.

Chapter VI is the conclusion and VII is about future work.

II. State of the art

There are a number of active free and open source software

projects in the area of machine vision. These include ITK,

NASA Vision Workbench, OpenCV, OpenVidia, Camellia,

PyGPU, and Gamera to name only a few. Machine vision

systems require software for handling video and image files,

accessing cameras, and visualizing results. To keep the size

of the project manageable it is mandatory to make use of

existing software projects.

Altough open source packages and libraries are available

for free, integrating it requires significant time and effort[2].
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Furthermore with increasing size and adoption, software

projects face the evolution dilemma[3]: As soon as there

are multiple stakeholders, they require that it is a stable

basis for development. But if making changes becomes too

cumbersome, the project sooner or later will be superseded

by a more progressive one.

The Ruby scripting language alleviates both problems.

Ruby is a reflective, dynamically typed, object-oriented pro-

gramming language. Furthermore Ruby uses code blocks as

a unifying concept for loops, iterators, and function objects.

Dynamically typed languages have become popular in

recent years. For example Camellia, PyGPU, and Gamera

are all making use of dynamically typed languages (the

other projects listed above are implemented in C/C++).

Dynamically typed languages are not new and many features

of Ruby already can be found in Smalltalk-80[4]. Projects

such as SageMath are successfully using dynamic scripting

languages to integrate a wide range of other projects into a

large solution.

Integrating software in Ruby is easy because

• interfacing with native code for writing extensions is

simple

• classes can still be modified after declaration

• Ruby uses duck-typing, i.e. two objects are compatible

if they support the same methods and properties

The last feature also alleviates the evolution dilemma since

changes do not propagate as far through the class-hierarchy

as they do in statically typed languages.

It would be desirable to port all required software to

Ruby so as to take full advantage of the language properties.

However for input and output (e.g. capturing camera images

and displaying videos) it is necessary to interface with native

code. Furthermore it is necessary to implement computation-

ally expensive parts of the code in C/C++ as long as there

is no sufficiently strong run-time optimizer for Ruby.

III. Optimization

The quickest way to integrate an existing C/C++ library

into Ruby is to use the bindings-generator of the SWIG[5]

project. However simply making the static data types of

a C/C++ library visible in Ruby is insufficient for fully

exploiting the features of Ruby.

An array data type to handle multi-dimensional arrays with

elements of a single type was implemented. It is heavily in-

spired by M. Tanaka’s NArray. NArray provides fast element-

wise operations combined with methods to manipulate single

elements or subarrays. However in contrast to NArray our

data type is largely implemented in Ruby and thus allows

definition of custom element-types.

Ruby offers methods to pack numerical data into a

platform-dependent binary representation. E.g. integers can

be converted to bytes and later on be retrieved as follows

[1,2].pack("cc") => "\001\002"

"\001\002".unpack("cc") => [1, 2]

Using this methods an array data type was implemented

in Ruby which operates on binary data[1]. Similar as in the

NArray implementation, array elements are only temporarily

represented as Ruby objects. Because the many run-time

checks make string objects in Ruby too slow for our purpose,

a class named Malloc for storing raw data was added to

the extension. An object of type Malloc is used by a class

named Sequence for storing sequences of elements with

same element-type.

In Ruby the the existence of a method with a certain

name can be checked during run-time using the method

Object::respond to?. This can be used to develop a

method which tries to invoke an efficient native imple-

mentation before falling back to using a slower generic

implementation[1]. Fast native implementations for the fol-

lowing operations on number sequences were added to the

extension

• accumulative operations: min, max, sum

• element-wise unary operations: minus, abs, sqrt, cos,

sin, tan, cosh, sinh, tanh, acos, asin, atan, type

conversions

• element-wise binary operations: bitwise and, bitwise or,

atan2, plus, minus, div, mul, pow, clip, binarise

• selecting/redistributing a subset of elements using a

mask: mask, unmask

• element-wise application of a lookup table: map

Note that each native implementation needs to be instantiated

for some or all element types. The basic element-types are

• 6 integer types: 8-,16-, and 32-bit, signed/unsigned

• 2 floating-point types: single/double precision

• 2 complex number types: single/double precision

• 8 red-green-blue triples: integer/floating-point

Furthermore binary operations need to be instantiated for

several combinations of element-types and they appear as

array-array operations, array-scalar operations, and scalar-

array operations.

The native implementations of binary operations were

instantiated and registered using the three template classes

• WrapArrayArray< T1, T2, F >
• WrapElementArray< T1, T2, F >
• WrapArrayElement< T1, T2, F >

where T1 and T2 are element-types and F is a function object

wrapping a binary operation such as plus or pow. The

different combinations were instantiated recursively by using

the following template classes

• WrapBinaryFirst< T2, F, O >
• WrapBinarySecond< W, F, O >
• WrapBinaryAll< F, O >

were O is one of WrapArrayArray, WrapArrayElement,

or WrapElementArray. In this case W always is

WrapBinaryFirst. Note that in practise the implementation
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Figure 2. Binary operations for different element types

also needs to address the problem that binary operations

usually only have a meaningful definition for some

combinations of element-types as shown in fig. 2.

The remaining obstacle is that the native implementations

needs to imitate the type coercions of Ruby at compile-time.

These problems can be overcome by using template meta-

programming techniques which were developed within the

Boost project[6]. E.g. an entry of the default compile-time

look-up table for return-types looks like this

template<>
struct _coercion< RGB< char >, double >
{
typedef RGB< double > type;

};

The function object representing the binary plus operator

for example makes use of the default compile-time look-up

table as follows

template< typename T1, typename T2 >
struct _plus
{
typedef typename _coercion< T1, T2 >::type
result_type;

result_type operator()( const T1 &x,
const T2 &y ) const

{ return (result_type)x + (result_type)y; }
};

Meta-programming techniques are also used to convert the

C++ data type of the return value to a Ruby-identifier.

Using the class Sequence, a class named MultiArray was

implemented which represents multidimensional arrays. In a

similar fashion as for Sequence, native implementations for

the following operations which are specific to multidimen-

sional arrays were instantiated

• copying of sub-arrays

• convolutions with small filter kernels

• filling of sub-arrays

While within Ruby two objects supporting the same meth-

ods are compatible, this is not sufficient if a native library is

expecting a certain data type. For this reason both NArray

and RMagick provide methods for importing and exporting

raw data in the form of string objects. Our implementation

also offers raw data to be imported and exported using the

methods import and to s.

IV. Applications

Developing array operations as shown in the previous

chapter is sophisticated and time consuming. We shall

demonstrate however that due to its generic nature the

current implementation already facilitates concise, real-time

implementations of various algorithms.

A. Filtering

Both the Harris-Stephens combined corner- and edge-

detector[7] as well as the Kanade-Lucas-Tomasi corner-

detector[8] are based on the eigenvalues of the covariance

matrix of gradient vectors taken from a local region of

the image. Given a two-dimensional array of floating-point

values img, that represents a grey-level image, the following

code computes the Sobel gradient and then the values of the

symmetric covariance matrix for each pixel. A Gaussian blur

filter is used to accumulate the gradient values over a local

region of the image. Finally the trace and determinant of the

covariance matrix are computed for each pixel

sigma = 1
x = img.sobel_x
y = img.sobel_y
cxx = ( x ** 2 ).gauss_blur( sigma )
cyy = ( y ** 2 ).gauss_blur( sigma )
cxy = ( x * y ).gauss_blur( sigma )
tr = cxx + cyy
det = cxx * cyy - cxy * cxy

The Harris-Stephens corner- and edge-detector uses a

heuristic value based on the trace and determinant of the local

covariance matrix[7] and can be computed for each pixel as

follows

k = 0.1
result = det - tr * tr * k

The Kanade-Lucas-Tomasi corner-detector simply uses the

smallest eigenvalue as a heuristic[8]. The smallest eigenvalue

of a 2 × 2 matrix can be computed for each pixel using the

trace and determinant as follows

dissqrt = ( tr ** 2 - det * 4 ).
clip_lower( 0.0 ).sqrt

result = 0.5 * ( tr - dissqrt )
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Figure 3. Masking an x-ramp

The invocation of clip lower is required to deal with

minor numerical deviations leading to negative values.

B. Bounding box

This section introduces x-ramps, y-ramps, and masking

operations and gives an example on how they can be used to

compute a bounding box.

A two-dimensional array img of integer values represent-

ing a grey-level image is given. The array is then binarized by

thresholding (i.e. applying a step function to each element)

mask = 1 - img.binarise( 128 )

To find the bounding box with C/C++, one would usually

use a nested loop which increments a pointer to the data

and the body of the loop would update the parameters of

the bounding box when a pixel of the mask is encountered.

Implementing this in Ruby is not an option if there are real-

time constraints. However using x-ramps and y-ramps which

were inspired by the visualizations in [9] one can solve this

problem using array operations. An x-ramp for example can

be created using the following method

def xramp( *shape )
retval = MultiArray.new( MultiArray::LINT,

*shape )
for x in 0...shape[0]
retval[ x, 0...shape[1] ] = x

end
retval

end

By selecting only the pixel of the x-ramp which are indi-

cated by the mask one obtains an array of which the minimum

and maximum are the lower and upper x-coordinates of the

bounding box (see fig. 3).

The Ruby code is as follows

x = xramp( *mask.shape )
y = yramp( *mask.shape )
box = [ x.mask( mask ).range, y.mask( mask ).range ]

C. Warping images

This section introduces warps. The function map together

with the x- and y-ramps can be used to implement a function

for warping images. The input image is warped using a three-

dimensional array v of size w × h × 2 containing the warp

Figure 4. Warping images

vectors. The warp vectors are computed by applying array

operations to x- and y-ramps. The following code warps an

equirectangular projection on an azimuthal projection

w, h = img.shape[0], img.shape[1] / 2
v = MultiArray.new( MultiArray::LINT, h, h, 2 )
x = xramp( h, h )
y = yramp( h, h )
c = 0.5 * h
v[ 0...h, 0...h, 0 ] =
( ( ( x - c ).atan2( y - c ) / PI + 1 ) *
w / 2 - 0.5 )

v[ 0...h, 0...h, 1 ] =
( ( x - c ) ** 2 + ( y - c ) ** 2 ).sqrt

result = img.warp_clipped( v )

The input image2 and result are shown in fig. 4

D. Lucas-Kanade Tracker

In this final example we want to use all techniques intro-

duced in the previous sections to make a concise implemen-

tation of the inverse compositional Lucas-Kanade tracker[9].

The Lucas-Kanade algorithm tracks an object by warping the

input image on a template image and iteratively updating the

transformation parameters to reduce the difference between

the template and the warped image. In this example we

are modelling two-dimensional translations and rotations as

shown in the following equation.

W(�x; �p) =

(
x cos(p3) − y sin(p3) + p1

x sin(p3) + y cos(p3) + p2

)
(1)

The input image and the template are given as two-

dimensional floating-point arrays img and tpl. Furthermore

a vector p with the initial parameters of the model is required.

Then the gradient of the template (gx and gy), the product

of the Jacobian and the gradients (c), and the Hessian (hs)

are initialized as follows

# p = Vector[ ?, ?, ? ]
w, h = *tpl.shape
x, y = xramp( w, h ), yramp( w, h )
sigma = 5.0
gx = tpl.gauss_gradient_x( sigma )
gy = tpl.gauss_gradient_y( sigma )
c = Matrix[ [ 1, 0 ], [ 0, 1 ], [ -y, x ] ] *

Vector[ gx, gy ]
hs = ( c * c.covector ).collect { |e| e.sum }

2Image source: NASA Visible Earth project
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Figure 5. Tracking template (left) and input image (right)

Table I
Perfomance of Lucas-Kanade implementation

load image track (5 iterations) display total

26 ms 128 ms 137 ms 290 ms

After that a new image img is acquired and the parameters

of the model are updated a number of times until the error

is sufficiently small. This requires computing the difference

between the warped image and the template. The difference

is used to estimate the change of the parameters using the

Hessian and the product of Jacobian and gradients[9]. The

code for performing a single update follows here

field = MultiArray.new( MultiArray::LINT, w, h, 2 )
field[ 0...w, 0...h, 0 ] =
x * cos( p[2] ) - y * sin( p[2] ) + p[0]

field[ 0...w, 0...h, 1 ] =
x * sin( p[2] ) + y * cos( p[2] ) + p[1]

diff = img.warp_clipped( field ).
to_type( MultiArray::SFLOAT ) - tpl

s = c.collect { |e| ( e * diff ).sum }
d = hs.inverse * s
p += Matrix[ [ cos(p[2]), -sin(p[2]), 0 ],

[ sin(p[2]), cos(p[2]), 0 ],
[ 0, 0, 1 ] ] * d

Fig. 5 shows a video frame of a nano-indenter operating in

a transmission electron microscope3. The tracking algorithm

is able to track the object if the nano-indenter moves with

a limited speed. The video was processed for demonstration

purposes only with no specific application in mind. Table

I shows the time the implementation requires to process a

frame (AMD Athlon, 64-bit, 2.2 GHz, 1 GByte RAM, GCC

version 4.1.3, Ruby version 1.8.6). The images have a size

of 640 × 480 pixel and the size of the tracking template is

80 × 50 pixel.

V. Results

Table (II) shows the required processing time in millisec-

onds for performing equivalent operations with Mimas (the

3Images courtesy of Sheffield University Nanorobotics Group

Table II
Speed comparison of equivalent operations

Mimas/Boost NArray HornetsEye

constructor 2.7 ms 16.2 ms 17.8 ms
m.fill(1) 2.7 ms 17.8 ms 17.9 ms
m*m 6.8 ms 19.0 ms 19.3 ms
m*2 6.7 ms 19.0 ms 19.4 ms
subarray 3.0 ms 16.2 ms 18.1 ms

Table III
Speed comparison with weakly constrained garbage collector

Mimas/Boost NArray HornetsEye

constructor 2.7 ms 8.4 ms 7.8 ms
m.fill(1) 2.7 ms 2.7 ms 2.8 ms
m*m 6.8 ms 10.0 ms 8.1 ms
m*2 6.7 ms 8.9 ms 7.2 ms
subarray 3.0 ms 2.2 ms 3.7 ms

C++ library we developed in the MINIMAN and MiCRoN

project), NArray, and HornetsEye. Different operations on

a 1000 × 1000 single-precision floating-point array were

executed 1000 times and the average time was taken.

The C++ library seems to be much faster when copying

arrays or when filling them with a value is required. This is

probably due to the fact that neither NArray nor HornetsEye

are currently making use of the highly optimized routines of

the C++ standard template library. However to ensure that

equivalent operations are measured in Ruby and C++, the

mark-and-sweep garbage collector of Ruby was invoked after

every command to force destruction of the result as it happens

in C++. This puts Ruby at a disadvantage.

Table (III) shows how the results change if the garbage

collector of Ruby is only invoked once at the end of a

measurement loop.

In this case NArray outperforms the C++ implementation

in some cases. As expected HornetsEye requires slightly

more processing time than NArray since it is not implemented

solely in C++. We have not yet found the reason why our

implementation for copying subarrays is significantly slower

than the one of NArray.

Figure 6 shows the average processing time for multiplying

one-dimensional arrays of different sizes with a scalar. The

C++ implementation was compared with HornetsEye’s and

NArray’s. For different array sizes the multiplication was

performed 100 times with a weakly constrained garbage col-

lector. For small sizes the C++ implementation is much faster

than both Ruby implementations. This is due to the fact that

the array manipulations in Ruby and the garbage collector

have a larger overhead. For larger arrays the benefits of the

garbage collector become dominant. The sudden change in

slope of all curves at a certain array size can be attributed to

the memory cache of the CPU. For bigger arrays HornetsEye

is the most efficient implementation.
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VI. Conclusion

A Ruby-extension providing native optimized implemen-

tations of generic array manipulation methods for machine

vision was presented. The Ruby-extension already facilitates

implementation of various machine vision algorithms. We

have shown that no major compromise in speed is required

for adopting a dynamically typed language for machine

vision algorithms, where the major part of the processing

time is used for basic operations on arrays. We believe that

this is the case for most machine vision algorithms. We are

not aware of any other free and open source software package

for machine vision which combines speed and flexibility in

an equal way.

A drawback is increased memory requirements. The imple-

mentations require intermediate results to be stored when a

sequence of element-wise operations is performed. This could

pose a problem for embedded platforms. The large number of

instantiated array operations for different element-types also

leads to a large shared library (currently 9.1 MByte).

Contrary to common belief, an interpreted language can

be faster than a static implementation. Table III shows that

the garbage collector of Ruby can be faster than the static

memory management of a naive C++ implementation.

In a similar way, as manually optimizing assembler pro-

grams largely became redundant after optimizing compil-

ers reached maturity, the labor of supporting interpreted

languages with native extensions for the mere purpose of

increasing performance could become unnecessary if inter-

preters with sufficiently strong run-time optimization would

become available.

VII. FutureWork

Possible future work is the integration of GPU (graphical

processing unit) operations and the use of parallel processing.

This could be done in the same way as the current native

implementations are integrated. Further opportunities for

optimization are loop-ordering and -merging for operations

on subarrays. Also the software is currently only tested by

running a set of examples after compilation. An improvement

would be to use the unit-testing library of Ruby. Also a

number of I/O facilities still need to be integrated under

GNU/Linux as well as Microsoft Windows Finally implemen-

tations of a feature-based object-recognition and -tracking

algorithm are planned.
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