4,637 research outputs found

    JERS-1 SAR and LANDSAT-5 TM image data fusion: An application approach for lithological mapping

    Get PDF
    Satellite image data fusion is an image processing set of procedures utilise either for image optimisation for visual photointerpretation, or for automated thematic classification with low error rate and high accuracy. Lithological mapping using remote sensing image data relies on the spectral and textural information of the rock units of the area to be mapped. These pieces of information can be derived from Landsat optical TM and JERS-1 SAR images respectively. Prior to extracting such information (spectral and textural) and fusing them together, geometric image co-registration between TM and the SAR, atmospheric correction of the TM, and SAR despeckling are required. In this thesis, an appropriate atmospheric model is developed and implemented utilising the dark pixel subtraction method for atmospheric correction. For SAR despeckling, an efficient new method is also developed to test whether the SAR filter used remove the textural information or not. For image optimisation for visual photointerpretation, a new method of spectral coding of the six bands of the optical TM data is developed. The new spectral coding method is used to produce efficient colour composite with high separability between the spectral classes similar to that if the whole six optical TM bands are used together. This spectral coded colour composite is used as a spectral component, which is then fused with the textural component represented by the despeckled JERS-1 SAR using the fusion tools, including the colour transform and the PCT. The Grey Level Cooccurrence Matrix (GLCM) technique is used to build the textural data set using the speckle filtered JERS-1 SAR data making seven textural GLCM measures. For automated thematic mapping and by the use of both the six TM spectral data and the seven textural GLCM measures, a new method of classification has been developed using the Maximum Likelihood Classifier (MLC). The method is named the sequential maximum likelihood classification and works efficiently by comparison the classified textural pixels, the classified spectral pixels, and the classified textural-spectral pixels, and gives the means of utilising the textural and spectral information for automated lithological mapping

    Landslide Detection Using Remote Sensing Methods A Review of Current Techniques

    Get PDF
    Landslides are among the most dangerous natural disasters, as they generally follow other major disasters thereby causing significant damage to already weakened systems. In the U.S. alone they cause an excess of 1 billion in damages and an average 25-50 deaths annually(USGC). Remote sensing techniques for landslide monitoring and prediction has gained popularity in recent years since it enables hazard mitigation. Synthetic Aperture Radar (SAR) interferometry is among the remote sensing techniques used. DInSAR is an advanced interferometric technique which uses radar sensors to estimate the phase of a given area from which the landslide activity can be predicted. The analysis has been performed in 3 test areas each having unique conditions. These areas have been chosen to assess the effectiveness of the analysis in their respective conditions. The data for this analysis is obtained using Sentinel-1 satellite which is a C-band SAR sensor. The 3 locations have been analyzed for a period of 36 days with sensor taking acquisitions every 12 days. From this analysis, we have found in the case of Etna slope instability due to volcanic action has been observed. In the case of California highway-1 a unique phase activity was observed in the landslide region which suggest additional analysis to be performed in similar conditions to validate the findings. Finally, in the case of Anargyroi Greece bad phase readings in the region resulted in uncertain analysis prompting for longer time series analysis to mitigate these problems. Additional subsidence maps were also generated from the phase, but these results could not be calibrated and correlated with in situ readings. To assess the effectiveness of this method to quantify subsidence monitoring additional analysis must be done which take in to consideration old phase values for accurate results

    The Need for Accurate Pre-processing and Data Integration for the Application of Hyperspectral Imaging in Mineral Exploration

    Get PDF
    Die hyperspektrale Bildgebung stellt eine Schlüsseltechnologie in der nicht-invasiven Mineralanalyse dar, sei es im Labormaßstab oder als fernerkundliche Methode. Rasante Entwicklungen im Sensordesign und in der Computertechnik hinsichtlich Miniaturisierung, Bildauflösung und Datenqualität ermöglichen neue Einsatzgebiete in der Erkundung mineralischer Rohstoffe, wie die drohnen-gestützte Datenaufnahme oder digitale Aufschluss- und Bohrkernkartierung. Allgemeingültige Datenverarbeitungsroutinen fehlen jedoch meist und erschweren die Etablierung dieser vielversprechenden Ansätze. Besondere Herausforderungen bestehen hinsichtlich notwendiger radiometrischer und geometrischer Datenkorrekturen, der räumlichen Georeferenzierung sowie der Integration mit anderen Datenquellen. Die vorliegende Arbeit beschreibt innovative Arbeitsabläufe zur Lösung dieser Problemstellungen und demonstriert die Wichtigkeit der einzelnen Schritte. Sie zeigt das Potenzial entsprechend prozessierter spektraler Bilddaten für komplexe Aufgaben in Mineralexploration und Geowissenschaften.Hyperspectral imaging (HSI) is one of the key technologies in current non-invasive material analysis. Recent developments in sensor design and computer technology allow the acquisition and processing of high spectral and spatial resolution datasets. In contrast to active spectroscopic approaches such as X-ray fluorescence or laser-induced breakdown spectroscopy, passive hyperspectral reflectance measurements in the visible and infrared parts of the electromagnetic spectrum are considered rapid, non-destructive, and safe. Compared to true color or multi-spectral imagery, a much larger range and even small compositional changes of substances can be differentiated and analyzed. Applications of hyperspectral reflectance imaging can be found in a wide range of scientific and industrial fields, especially when physically inaccessible or sensitive samples and processes need to be analyzed. In geosciences, this method offers a possibility to obtain spatially continuous compositional information of samples, outcrops, or regions that might be otherwise inaccessible or too large, dangerous, or environmentally valuable for a traditional exploration at reasonable expenditure. Depending on the spectral range and resolution of the deployed sensor, HSI can provide information about the distribution of rock-forming and alteration minerals, specific chemical compounds and ions. Traditional operational applications comprise space-, airborne, and lab-scale measurements with a usually (near-)nadir viewing angle. The diversity of available sensors, in particular the ongoing miniaturization, enables their usage from a wide range of distances and viewing angles on a large variety of platforms. Many recent approaches focus on the application of hyperspectral sensors in an intermediate to close sensor-target distance (one to several hundred meters) between airborne and lab-scale, usually implying exceptional acquisition parameters. These comprise unusual viewing angles as for the imaging of vertical targets, specific geometric and radiometric distortions associated with the deployment of small moving platforms such as unmanned aerial systems (UAS), or extreme size and complexity of data created by large imaging campaigns. Accurate geometric and radiometric data corrections using established methods is often not possible. Another important challenge results from the overall variety of spatial scales, sensors, and viewing angles, which often impedes a combined interpretation of datasets, such as in a 2D geographic information system (GIS). Recent studies mostly referred to work with at least partly uncorrected data that is not able to set the results in a meaningful spatial context. These major unsolved challenges of hyperspectral imaging in mineral exploration initiated the motivation for this work. The core aim is the development of tools that bridge data acquisition and interpretation, by providing full image processing workflows from the acquisition of raw data in the field or lab, to fully corrected, validated and spatially registered at-target reflectance datasets, which are valuable for subsequent spectral analysis, image classification, or fusion in different operational environments at multiple scales. I focus on promising emerging HSI approaches, i.e.: (1) the use of lightweight UAS platforms, (2) mapping of inaccessible vertical outcrops, sometimes at up to several kilometers distance, (3) multi-sensor integration for versatile sample analysis in the near-field or lab-scale, and (4) the combination of reflectance HSI with other spectroscopic methods such as photoluminescence (PL) spectroscopy for the characterization of valuable elements in low-grade ores. In each topic, the state of the art is analyzed, tailored workflows are developed to meet key challenges and the potential of the resulting dataset is showcased on prominent mineral exploration related examples. Combined in a Python toolbox, the developed workflows aim to be versatile in regard to utilized sensors and desired applications

    High-Resolution and Hyperspectral Data Fusion for Classification

    Get PDF
    • …
    corecore