456 research outputs found

    E³DOAS: balancing QoE and energy-saving for multi-device adaptation in future mobile wireless video delivery

    Get PDF
    Smart devices (e.g. smartphones, tablets, smart-home devices, etc.) have become important companions to most people in their daily activities, and are very much used for multimedia content exchange (i.e. video sharing, real-time/non-real-time multimedia streaming), contributing to the exponential increase in mobile traffic over the current wireless networks. While the next generation mobile networks will provide higher capacity than the current 4G systems, the network operators will face important challenges associated with the outstanding increase of both video traffic and user expectations in terms of their levels of perceived quality or Quality of Experience (QoE). Furthermore, the heterogeneity of mobile devices (e.g. screen resolution, battery life, hardware performance) also impacts severely the end-user QoE. In this context, this paper proposes an Evolved QoE-aware Energy-saving Device-Oriented Adaptive Scheme (E3DOAS ) for mobile multimedia delivery over future wireless networks. E3DOAS makes use of a coalition game-based rate allocation strategy within the multi-device heterogeneous environment, and optimizes the trade-off between the end-user perceived quality of the multimedia delivery and the mobile device energy-saving. Testing has involved a prototype of E3DOAS, a crowd-sourcing-based QoE assessment method to model non-reference perceptual video quality, and an energy measurement testbed introduced to collect power consumption parameters of the mobile devices. Simulation-based performance evaluation showed how E3DOAS outperformed other state of the art multimedia adaptive solutions in terms of energy saving, end-to-end Quality of Service (QoS) metrics and end-user perceived quality

    Maximizing Energy Efficiency in Multiple Access Channels by Exploiting Packet Dropping and Transmitter Buffering

    Get PDF
    Quality of service (QoS) for a network is characterized in terms of various parameters specifying packet delay and loss tolerance requirements for the application. The unpredictable nature of the wireless channel demands for application of certain mechanisms to meet the QoS requirements. Traditionally, medium access control (MAC) and network layers perform these tasks. However, these mechanisms do not take (fading) channel conditions into account. In this paper, we investigate the problem using cross layer techniques where information flow and joint optimization of higher and physical layer is permitted. We propose a scheduling scheme to optimize the energy consumption of a multiuser multi-access system such that QoS constraints in terms of packet loss are fulfilled while the system is able to maximize the advantages emerging from multiuser diversity. Specifically, this work focuses on modeling and analyzing the effects of packet buffering capabilities of the transmitter on the system energy for a packet loss tolerant application. We discuss low complexity schemes which show comparable performance to the proposed scheme. The numerical evaluation reveals useful insights about the coupling effects of different QoS parameters on the system energy consumption and validates our analytical results.Comment: in IEEE trans. Wireless communications, 201

    Energy and bursty packet loss tradeoff over fading channels: a system-level model

    Get PDF
    Energy efficiency and quality of service (QoS) guarantees are the key design goals for the 5G wireless communication systems. In this context, we discuss a multiuser scheduling scheme over fading channels for loss tolerant applications. The loss tolerance of the application is characterized in terms of different parameters that contribute to quality of experience (QoE) for the application. The mobile users are scheduled opportunistically such that a minimum QoS is guaranteed. We propose an opportunistic scheduling scheme and address the cross-layer design framework when channel state information (CSI) is not perfectly available at the transmitter and the receiver. We characterize the system energy as a function of different QoS and channel state estimation error parameters. The optimization problem is formulated using Markov chain framework and solved using stochastic optimization techniques. The results demonstrate that the parameters characterizing the packet loss are tightly coupled and relaxation of one parameter does not benefit the system much if the other constraints are tight. We evaluate the energy-performance tradeoff numerically and show the effect of channel uncertainty on the packet scheduler design

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches
    corecore