1,465 research outputs found

    A matrix-free high-order discontinuous Galerkin compressible Navier-Stokes solver: A performance comparison of compressible and incompressible formulations for turbulent incompressible flows

    Full text link
    Both compressible and incompressible Navier-Stokes solvers can be used and are used to solve incompressible turbulent flow problems. In the compressible case, the Mach number is then considered as a solver parameter that is set to a small value, M≈0.1\mathrm{M}\approx 0.1, in order to mimic incompressible flows. This strategy is widely used for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. The present work raises the question regarding the computational efficiency of compressible DG solvers as compared to a genuinely incompressible formulation. Our contributions to the state-of-the-art are twofold: Firstly, we present a high-performance discontinuous Galerkin solver for the compressible Navier-Stokes equations based on a highly efficient matrix-free implementation that targets modern cache-based multicore architectures. The performance results presented in this work focus on the node-level performance and our results suggest that there is great potential for further performance improvements for current state-of-the-art discontinuous Galerkin implementations of the compressible Navier-Stokes equations. Secondly, this compressible Navier-Stokes solver is put into perspective by comparing it to an incompressible DG solver that uses the same matrix-free implementation. We discuss algorithmic differences between both solution strategies and present an in-depth numerical investigation of the performance. The considered benchmark test cases are the three-dimensional Taylor-Green vortex problem as a representative of transitional flows and the turbulent channel flow problem as a representative of wall-bounded turbulent flows

    A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow

    Full text link
    We present an efficient discontinuous Galerkin scheme for simulation of the incompressible Navier-Stokes equations including laminar and turbulent flow. We consider a semi-explicit high-order velocity-correction method for time integration as well as nodal equal-order discretizations for velocity and pressure. The non-linear convective term is treated explicitly while a linear system is solved for the pressure Poisson equation and the viscous term. The key feature of our solver is a consistent penalty term reducing the local divergence error in order to overcome recently reported instabilities in spatially under-resolved high-Reynolds-number flows as well as small time steps. This penalty method is similar to the grad-div stabilization widely used in continuous finite elements. We further review and compare our method to several other techniques recently proposed in literature to stabilize the method for such flow configurations. The solver is specifically designed for large-scale computations through matrix-free linear solvers including efficient preconditioning strategies and tensor-product elements, which have allowed us to scale this code up to 34.4 billion degrees of freedom and 147,456 CPU cores. We validate our code and demonstrate optimal convergence rates with laminar flows present in a vortex problem and flow past a cylinder and show applicability of our solver to direct numerical simulation as well as implicit large-eddy simulation of turbulent channel flow at Reτ=180Re_{\tau}=180 as well as 590590.Comment: 28 pages, in preparation for submission to Journal of Computational Physic

    On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations

    Full text link
    The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for coarse spatial resolutions and small time step sizes. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.Comment: 31 page

    h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems

    Full text link
    In this work we exploit agglomeration based hh-multigrid preconditioners to speed-up the iterative solution of discontinuous Galerkin discretizations of the Stokes and Navier-Stokes equations. As a distinctive feature hh-coarsened mesh sequences are generated by recursive agglomeration of a fine grid, admitting arbitrarily unstructured grids of complex domains, and agglomeration based discontinuous Galerkin discretizations are employed to deal with agglomerated elements of coarse levels. Both the expense of building coarse grid operators and the performance of the resulting multigrid iteration are investigated. For the sake of efficiency coarse grid operators are inherited through element-by-element L2L^2 projections, avoiding the cost of numerical integration over agglomerated elements. Specific care is devoted to the projection of viscous terms discretized by means of the BR2 dG method. We demonstrate that enforcing the correct amount of stabilization on coarse grids levels is mandatory for achieving uniform convergence with respect to the number of levels. The numerical solution of steady and unsteady, linear and non-linear problems is considered tackling challenging 2D test cases and 3D real life computations on parallel architectures. Significant execution time gains are documented.Comment: 78 pages, 7 figure

    Robust and efficient discontinuous Galerkin methods for under-resolved turbulent incompressible flows

    Full text link
    We present a robust and accurate discretization approach for incompressible turbulent flows based on high-order discontinuous Galerkin methods. The DG discretization of the incompressible Navier-Stokes equations uses the local Lax-Friedrichs flux for the convective term, the symmetric interior penalty method for the viscous term, and central fluxes for the velocity-pressure coupling terms. Stability of the discretization approach for under-resolved, turbulent flow problems is realized by a purely numerical stabilization approach. Consistent penalty terms that enforce the incompressibility constraint as well as inter-element continuity of the velocity field in a weak sense render the numerical method a robust discretization scheme in the under-resolved regime. The penalty parameters are derived by means of dimensional analysis using penalty factors of order 1. Applying these penalty terms in a postprocessing step leads to an efficient solution algorithm for turbulent flows. The proposed approach is applicable independently of the solution strategy used to solve the incompressible Navier-Stokes equations, i.e., it can be used for both projection-type solution methods as well as monolithic solution approaches. Since our approach is based on consistent penalty terms, it is by definition generic and provides optimal rates of convergence when applied to laminar flow problems. Robustness and accuracy are verified for the Orr-Sommerfeld stability problem, the Taylor-Green vortex problem, and turbulent channel flow. Moreover, the accuracy of high-order discretizations as compared to low-order discretizations is investigated for these flow problems. A comparison to state-of-the-art computational approaches for large-eddy simulation indicates that the proposed methods are highly attractive components for turbulent flow solvers

    Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved turbulent incompressible flows

    Full text link
    The present paper addresses the numerical solution of turbulent flows with high-order discontinuous Galerkin methods for discretizing the incompressible Navier-Stokes equations. The efficiency of high-order methods when applied to under-resolved problems is an open issue in literature. This topic is carefully investigated in the present work by the example of the 3D Taylor-Green vortex problem. Our implementation is based on a generic high-performance framework for matrix-free evaluation of finite element operators with one of the best realizations currently known. We present a methodology to systematically analyze the efficiency of the incompressible Navier-Stokes solver for high polynomial degrees. Due to the absence of optimal rates of convergence in the under-resolved regime, our results reveal that demonstrating improved efficiency of high-order methods is a challenging task and that optimal computational complexity of solvers, preconditioners, and matrix-free implementations are necessary ingredients to achieve the goal of better solution quality at the same computational costs already for a geometrically simple problem such as the Taylor-Green vortex. Although the analysis is performed for a Cartesian geometry, our approach is generic and can be applied to arbitrary geometries. We present excellent performance numbers on modern, cache-based computer architectures achieving a throughput for operator evaluation of 3e8 up to 1e9 DoFs/sec on one Intel Haswell node with 28 cores. Compared to performance results published within the last 5 years for high-order DG discretizations of the compressible Navier-Stokes equations, our approach reduces computational costs by more than one order of magnitude for the same setup

    Multigrid Preconditioning for a Space-Time Spectral-Element Discontinuous-Galerkin Solver

    Get PDF
    In this work we examine a multigrid preconditioning approach in the context of a high- order tensor-product discontinuous-Galerkin spectral-element solver. We couple multigrid ideas together with memory lean and efficient tensor-product preconditioned matrix-free smoothers. Block ILU(0)-preconditioned GMRES smoothers are employed on the coarsest spaces. The performance is evaluated on nonlinear problems arising from unsteady scale- resolving solutions of the Navier-Stokes equations: separated low-Mach unsteady ow over an airfoil from laminar to turbulent ow. A reduction in the number of ne space iterations is observed, which proves the efficiency of the approach in terms of preconditioning the linear systems, however this gain was not reflected in the CPU time. Finally, the preconditioner is successfully applied to problems characterized by stiff source terms such as the set of RANS equations, where the simple tensor product preconditioner fails. Theoretical justification about the findings is reported and future work is outlined

    Non-modal analysis of spectral element methods: Towards accurate and robust large-eddy simulations

    Get PDF
    We introduce a \textit{non-modal} analysis technique that characterizes the diffusion properties of spectral element methods for linear convection-diffusion systems. While strictly speaking only valid for linear problems, the analysis is devised so that it can give critical insights on two questions: (i) Why do spectral element methods suffer from stability issues in under-resolved computations of nonlinear problems? And, (ii) why do they successfully predict under-resolved turbulent flows even without a subgrid-scale model? The answer to these two questions can in turn provide crucial guidelines to construct more robust and accurate schemes for complex under-resolved flows, commonly found in industrial applications. For illustration purposes, this analysis technique is applied to the hybridized discontinuous Galerkin methods as representatives of spectral element methods. The effect of the polynomial order, the upwinding parameter and the P\'eclet number on the so-called \textit{short-term diffusion} of the scheme are investigated. From a purely non-modal analysis point of view, polynomial orders between 22 and 44 with standard upwinding are well suited for under-resolved turbulence simulations. For lower polynomial orders, diffusion is introduced in scales that are much larger than the grid resolution. For higher polynomial orders, as well as for strong under/over-upwinding, robustness issues can be expected. The non-modal analysis results are then tested against under-resolved turbulence simulations of the Burgers, Euler and Navier-Stokes equations. While devised in the linear setting, our non-modal analysis succeeds to predict the behavior of the scheme in the nonlinear problems considered

    An advection-robust Hybrid High-Order method for the Oseen problem

    Get PDF
    In this work, we study advection-robust Hybrid High-Order discretizations of the Oseen equations. For a given integer k≥0k\ge 0, the discrete velocity unknowns are vector-valued polynomials of total degree ≤k\le k on mesh elements and faces, while the pressure unknowns are discontinuous polynomials of total degree ≤k\le k on the mesh. From the discrete unknowns, three relevant quantities are reconstructed inside each element: a velocity of total degree ≤(k+1)\le(k+1), a discrete advective derivative, and a discrete divergence. These reconstructions are used to formulate the discretizations of the viscous, advective, and velocity-pressure coupling terms, respectively. Well-posedness is ensured through appropriate high-order stabilization terms. We prove energy error estimates that are advection-robust for the velocity, and show that each mesh element TT of diameter hTh_T contributes to the discretization error with an O(hTk+1)\mathcal{O}(h_T^{k+1})-term in the diffusion-dominated regime, an O(hTk+12)\mathcal{O}(h_T^{k+\frac12})-term in the advection-dominated regime, and scales with intermediate powers of hTh_T in between. Numerical results complete the exposition
    • …
    corecore