1,138 research outputs found

    Approximate controllability of the Schr\"{o}dinger Equation with a polarizability term in higher Sobolev norms

    Get PDF
    This analysis is concerned with the controllability of quantum systems in the case where the standard dipolar approximation, involving the permanent dipole moment of the system, is corrected with a polarizability term, involving the field induced dipole moment. Sufficient conditions for approximate controllability are given. For transfers between eigenstates of the free Hamiltonian, the control laws are explicitly given. The results apply also for unbounded or non-regular potentials

    Dynamics and control of a class of underactuated mechanical systems

    Get PDF
    This paper presents a theoretical framework for the dynamics and control of underactuated mechanical systems, defined as systems with fewer inputs than degrees of freedom. Control system formulation of underactuated mechanical systems is addressed and a class of underactuated systems characterized by nonintegrable dynamics relations is identified. Controllability and stabilizability results are derived for this class of underactuated systems. Examples are included to illustrate the results; these examples are of underactuated mechanical systems that are not linearly controllable or smoothly stabilizable

    The power dissipation method and kinematic reducibility of multiple-model robotic systems

    Get PDF
    This paper develops a formal connection between the power dissipation method (PDM) and Lagrangian mechanics, with specific application to robotic systems. Such a connection is necessary for understanding how some of the successes in motion planning and stabilization for smooth kinematic robotic systems can be extended to systems with frictional interactions and overconstrained systems. We establish this connection using the idea of a multiple-model system, and then show that multiple-model systems arise naturally in a number of instances, including those arising in cases traditionally addressed using the PDM. We then give necessary and sufficient conditions for a dynamic multiple-model system to be reducible to a kinematic multiple-model system. We use this result to show that solutions to the PDM are actually kinematic reductions of solutions to the Euler-Lagrange equations. We are particularly motivated by mechanical systems undergoing multiple intermittent frictional contacts, such as distributed manipulators, overconstrained wheeled vehicles, and objects that are manipulated by grasping or pushing. Examples illustrate how these results can provide insight into the analysis and control of physical systems

    An hybrid system approach to nonlinear optimal control problems

    Full text link
    We consider a nonlinear ordinary differential equation and want to control its behavior so that it reaches a target by minimizing a cost function. Our approach is to use hybrid systems to solve this problem: the complex dynamic is replaced by piecewise affine approximations which allow an analytical resolution. The sequence of affine models then forms a sequence of states of a hybrid automaton. Given a sequence of states, we introduce an hybrid approximation of the nonlinear controllable domain and propose a new algorithm computing a controllable, piecewise convex approximation. The same way the nonlinear optimal control problem is replaced by an hybrid piecewise affine one. Stating a hybrid maximum principle suitable to our hybrid model, we deduce the global structure of the hybrid optimal control steering the system to the target

    Controllability of Discontinuous Systems

    Get PDF
    This report presents an approach to the local controllability problem for a discontinuous system. The approach is based on a concept of tangent vector field to a generalized dynamic system, which makes possible the differential geometry tools to be applied in the discontinuous case. Sufficient controllability conditions are derived

    Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and application to controllability

    Full text link
    In the discrete setting of one-dimensional finite-differences we prove a Carleman estimate for a semi-discretization of the parabolic operator tx(cx)\partial_t-\partial_x (c\partial_x) where the diffusion coefficient cc has a jump. As a consequence of this Carleman estimate, we deduce consistent null-controllability results for classes of semi-linear parabolic equations

    Characterization of well-posedness of piecewise linear systems

    Get PDF
    One of the basic issues in the study of hybrid systems is the well-posedness (existence and uniqueness of solutions) problem of discontinuous dynamical systems. The paper addresses this problem for a class of piecewise-linear discontinuous systems under the definition of solutions of Caratheodory. The concepts of jump solutions or of sliding modes are not considered here. In this sense, the problem to be discussed is one of the most basic problems in the study of well-posedness for discontinuous dynamical systems. First, we derive necessary and sufficient conditions for bimodal systems to be well-posed, in terms of an analysis based on lexicographic inequalities and the smooth continuation property of solutions. Next, its extensions to the multimodal case are discussed. As an application to switching control, in the case that two state feedback gains are switched according to a criterion depending on the state, we give a characterization of all admissible state feedback gains for which the closed loop system remains well-pose
    corecore