14 research outputs found

    Performance Analysis of MIMO-STBC Systems with Higher Coding Rate Using Adaptive Semiblind Channel Estimation Scheme

    Get PDF
    Semiblind channel estimation method provides the best trade-off in terms of bandwidth overhead, computational complexity and latency. The result after using multiple input multiple output (MIMO) systems shows higher data rate and longer transmit range without any requirement for additional bandwidth or transmit power. This paper presents the detailed analysis of diversity coding techniques using MIMO antenna systems. Different space time block codes (STBCs) schemes have been explored and analyzed with the proposed higher code rate. STBCs with higher code rates have been simulated for different modulation schemes using MATLAB environment and the simulated results have been compared in the semiblind environment which shows the improvement even in highly correlated antenna arrays and is found very close to the condition when channel state information (CSI) is known to the channel

    Two-group decodable distributed differential space-time code for wireless relay networks based on SAST codes 2

    Get PDF
    Space-time code can be implemented in wireless relay networks when all relays cooperate to generate the code at the receiver. In this case, it is called distributed space-time code. If the channel response changes very quickly, the idea of differential space-time coding is needed to overcome the difficulty of updating the channel state information at the receiver. As a result, the transmitted signal can be demodulated without any knowledge of the channel state information at the relays or the receiver. In this paper, development of new low decoding complexity distributed differential space-time codes is considered. The developed codes are designed using semiorthogonal algebraic space-time codes. They work for networks with an even number of relays and have a two-group decodable maximum likelihood receiver. The performance of the new codes is analyzed via MATLAB simulation which demonstrates that they outperform both cyclic codes and circulant codes

    Novel Methods in Quantum Error Correction

    Get PDF
    Quantum error correction is the backbone of fault-tolerant quantum computation, a necessary requirement for any large scale quantum computer. The fault-tolerance threshold theorem has long been a target for experimental precision, allowing for the possibility of reducing logical error rates to arbitrarily low levels without excessive overhead. While there are many promising fault-tolerant architectures, the path towards the most practical fault-tolerant scheme is far from decided and may vary for differing physical models. This thesis proposes new schemes for universal fault-tolerant quantum computation in both the concatenated and topological code settings. Through the concatenation of two different error correcting codes, a set of universal fault-tolerant gates can be obtained without requiring the need for magic state distillation. A lower bound of 1.28×1031.28 \times 10^{-3} for the fault-tolerance threshold under circuit level depolarizing noise is obtained. Additionally, stacked codes are proposed as a means to simulate the action of a 3D topological code in 2D, allowing for the application of a universal set of transversal operations. While fault-tolerant, unfortunately the scheme does not exhibit a threshold due to the decreasing pseudo-threshold with growing code distance, yet points to potential interesting avenues for fault-tolerant computation in 2D without distillation. One of the primary avenues to constructing fault-tolerant logical operations is through transversal operations. In this thesis, the set of single qubit logical gates that can be implemented transversally are characterized and determined to all belong to the Clifford hierarchy. Moreover, any diagonal two-qubit operation that can be applied transversally must belong to the same level of the Clifford hierarchy as the set of gates that can be implemented in the single-qubit case. The opposite to quantum error correction is privacy, where the output of a channel is disguised from its input. The two are fundamentally related through the complementary channel construction. This thesis presents a new class of private quantum channels, expanding the existing class beyond a seemingly fundamental restriction. This yields interesting insights into the structure of quantum information and the leaking of information to external environments. Additionally, the duality is only recovered when extending the complementary channel to sufficiently high environmental dimension. Finally, the error properties of bucket brigade quantum Random Access Memory (qRAM) are assessed. It is determined that using the bucket brigade qRAM architecture for the running of Grover's algorithm necessitates reducing the error rate of the individual components to exponentially small levels for an exponential sized memory. As such, fault-tolerant architectures will likely play an essential role in the construction of such computing primitives

    Synchronous Meteorological Satellite Phase B Study Report

    Get PDF
    Design of base line system for synchronous meteorological satellit

    Operational manual for MX-290 data-voice PN Mod, MX-291 data-voice PN DEMOD

    Get PDF
    This operation manual is also the final report of the program to design, assemble, checkout, and deliver to the customer three MX-290 transmitters and two MX-291 companion receivers. These equipments are designed and assembled to provide for maximum flexibility with respect to making changes in electrical circuits which may be required for future applications. A number of test points for monitoring and troubleshooting are provided along with easy access to subunits

    Online Entropy Estimation for Non-Binary Sources and Applications on iPhone

    Get PDF
    The design of a random number generator is a challenging task on systems in changing environment such as smartphones. Finding reliable and high-throughput sources of entropy is difficult. This paper proposes an online entropy estimation algorithm to test the quality of an entropy source when nothing is known \textit{a priori} on the source statistics. Our estimator can be executed at a low cost and is adapted for any type of sources. It extends the results of Bucci and Luzzi to non-binary sources and introduces a parameter that allows to trade time and memory for a better estimate. Our estimator is then applied to several sources available on an iPhone and compare to the state of the art

    Direct sequence spread spectrum techniques in local area networks

    Get PDF
    This thesis describes the application of a direct sequence spread spectrum modulation scheme to the physical layer of a local area networks subsequently named the SS-LAN. Most present day LANs employ erne form or another of time division multiplexing which performs well in many systems but which is limited by its very nature in real time, time critical and time demanding applications. The use of spread spectrum multiplexing removes these limitations by providing a simultaneous multiple user access capability to the channel which permits each and all nodes to utilise the channel independent of the activity being currently supported by that channel. The theory of spectral spreading is a consequence of the Shannon channel capacity in which the channel capacity may be maintained by the trading of signal to noise ratio for bandwidth. The increased bandwidth provides an increased signal dimensionality which can be utilised in providing noise immunity and/or a simultaneous multiple user environment: the effects of the simultaneous users can be considered as noise from the point of view of any particular constituent signal. The use of code sequences at the physical layer of a LAN permits a wide range of mapping alternatives which can be selected according to the particular application. Each of the mapping techniques possess the general spread spectrum properties but certain properties can be emphasised at the expense of others. The work has Involved the description of the properties of the SS-LAN coupled with the development of the mapping techniques for use In the distribution of the code sequences. This has been followed by an appraisal of a set of code sequences which has resulted in the definition of the ideal code properties and the selection of code families for particular types of applications. The top level design specification for the hardware required in the construction of the SS-LAN has also been presented and this has provided the basis for a simplified and idealised theoretical analysis of the performance parameters of the SS-LAN. A positive set of conclusions for the range of these parameters has been obtained and these have been further analysed by the use of a SS-LAN computer simulation program. This program can simulate any configuration of the SS-LAN and the results it has produced have been compared with those of the analysis and have been found to be in agreement. A tool for the further analysis of complex SS-LAN configurations has therefore been developed and this will form the basis for further work

    Transmit and receive techniques for MIMO-OFDM systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore