429 research outputs found

    Coxeter Groups and Wavelet Sets

    Full text link
    A traditional wavelet is a special case of a vector in a separable Hilbert space that generates a basis under the action of a system of unitary operators defined in terms of translation and dilation operations. A Coxeter/fractal-surface wavelet is obtained by defining fractal surfaces on foldable figures, which tesselate the embedding space by reflections in their bounding hyperplanes instead of by translations along a lattice. Although both theories look different at their onset, there exist connections and communalities which are exhibited in this semi-expository paper. In particular, there is a natural notion of a dilation-reflection wavelet set. We prove that dilation-reflection wavelet sets exist for arbitrary expansive matrix dilations, paralleling the traditional dilation-translation wavelet theory. There are certain measurable sets which can serve simultaneously as dilation-translation wavelet sets and dilation-reflection wavelet sets, although the orthonormal structures generated in the two theories are considerably different

    Reflection positive stochastic processes indexed by lie groups

    Get PDF
    Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Reflection Positivity---A Representation Theoretic Perspective

    Full text link
    Refection Positivity is a central theme at the crossroads of Lie group representations, euclidean and abstract harmonic analysis, constructive quantum field theory, and stochastic processes. This book provides the first presentation of the representation theoretic aspects of Refection Positivity and discusses its connections to those different fields on a level suitable for doctoral students and researchers in related fields.Comment: This is a preliminary version of a book on Reflection Positivit

    Integrals and Potentials of Differential 1-forms on the Sierpinski Gasket

    Full text link
    We provide a definition of integral, along paths in the Sierpinski gasket K, for differential smooth 1-forms associated to the standard Dirichlet form K. We show how this tool can be used to study the potential theory on K. In particular, we prove: i) a de Rham reconstruction of a 1-form from its periods around lacunas in K; ii) a Hodge decomposition of 1-forms with respect to the Hilbertian energy norm; iii) the existence of potentials of smooth 1-forms on a suitable covering space of K. We finally show that this framework provides versions of the de Rham duality theorem for the fractal K.Comment: Some proofs have been clarified, reference to previous literature is now more accurate, 33 pages, 6 figure

    The fundamental pro-groupoid of an affine 2-scheme

    Full text link
    A natural question in the theory of Tannakian categories is: What if you don't remember \Forget? Working over an arbitrary commutative ring RR, we prove that an answer to this question is given by the functor represented by the \'etale fundamental groupoid \pi_1(\spec(R)), i.e.\ the separable absolute Galois group of RR when it is a field. This gives a new definition for \'etale \pi_1(\spec(R)) in terms of the category of RR-modules rather than the category of \'etale covers. More generally, we introduce a new notion of "commutative 2-ring" that includes both Grothendieck topoi and symmetric monoidal categories of modules, and define a notion of π1\pi_1 for the corresponding "affine 2-schemes." These results help to simplify and clarify some of the peculiarities of the \'etale fundamental group. For example, \'etale fundamental groups are not "true" groups but only profinite groups, and one cannot hope to recover more: the "Tannakian" functor represented by the \'etale fundamental group of a scheme preserves finite products but not all products.Comment: 46 pages + bibliography. Diagrams drawn in Tik

    Resolving Prime Modules: The Structure of Pseudo-cographs and Galled-Tree Explainable Graphs

    Full text link
    The modular decomposition of a graph GG is a natural construction to capture key features of GG in terms of a labeled tree (T,t)(T,t) whose vertices are labeled as "series" (11), "parallel" (00) or "prime". However, full information of GG is provided by its modular decomposition tree (T,t)(T,t) only, if GG is a cograph, i.e., GG does not contain prime modules. In this case, (T,t)(T,t) explains GG, i.e., {x,y}E(G)\{x,y\}\in E(G) if and only if the lowest common ancestor lcaT(x,y)\mathrm{lca}_T(x,y) of xx and yy has label "11". Pseudo-cographs, or, more general, GaTEx graphs GG are graphs that can be explained by labeled galled-trees, i.e., labeled networks (N,t)(N,t) that are obtained from the modular decomposition tree (T,t)(T,t) of GG by replacing the prime vertices in TT by simple labeled cycles. GaTEx graphs can be recognized and labeled galled-trees that explain these graphs can be constructed in linear time. In this contribution, we provide a novel characterization of GaTEx graphs in terms of a set FGT\mathfrak{F}_{\mathrm{GT}} of 25 forbidden induced subgraphs. This characterization, in turn, allows us to show that GaTEx graphs are closely related to many other well-known graph classes such as P4P_4-sparse and P4P_4-reducible graphs, weakly-chordal graphs, perfect graphs with perfect order, comparability and permutation graphs, murky graphs as well as interval graphs, Meyniel graphs or very strongly-perfect and brittle graphs. Moreover, we show that every GaTEx graph as twin-width at most 1.Comment: 18 pages, 3 figure

    Author index to volumes 301–400

    Get PDF
    corecore