research

Coxeter Groups and Wavelet Sets

Abstract

A traditional wavelet is a special case of a vector in a separable Hilbert space that generates a basis under the action of a system of unitary operators defined in terms of translation and dilation operations. A Coxeter/fractal-surface wavelet is obtained by defining fractal surfaces on foldable figures, which tesselate the embedding space by reflections in their bounding hyperplanes instead of by translations along a lattice. Although both theories look different at their onset, there exist connections and communalities which are exhibited in this semi-expository paper. In particular, there is a natural notion of a dilation-reflection wavelet set. We prove that dilation-reflection wavelet sets exist for arbitrary expansive matrix dilations, paralleling the traditional dilation-translation wavelet theory. There are certain measurable sets which can serve simultaneously as dilation-translation wavelet sets and dilation-reflection wavelet sets, although the orthonormal structures generated in the two theories are considerably different

    Similar works

    Full text

    thumbnail-image

    Available Versions