155,792 research outputs found

    A functional limit theorem for the profile of search trees

    Full text link
    We study the profile Xn,kX_{n,k} of random search trees including binary search trees and mm-ary search trees. Our main result is a functional limit theorem of the normalized profile Xn,k/EXn,kX_{n,k}/\mathbb{E}X_{n,k} for k=αlognk=\lfloor\alpha\log n\rfloor in a certain range of α\alpha. A central feature of the proof is the use of the contraction method to prove convergence in distribution of certain random analytic functions in a complex domain. This is based on a general theorem concerning the contraction method for random variables in an infinite-dimensional Hilbert space. As part of the proof, we show that the Zolotarev metric is complete for a Hilbert space.Comment: Published in at http://dx.doi.org/10.1214/07-AAP457 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multicritical continuous random trees

    Full text link
    We introduce generalizations of Aldous' Brownian Continuous Random Tree as scaling limits for multicritical models of discrete trees. These discrete models involve trees with fine-tuned vertex-dependent weights ensuring a k-th root singularity in their generating function. The scaling limit involves continuous trees with branching points of order up to k+1. We derive explicit integral representations for the average profile of this k-th order multicritical continuous random tree, as well as for its history distributions measuring multi-point correlations. The latter distributions involve non-positive universal weights at the branching points together with fractional derivative couplings. We prove universality by rederiving the same results within a purely continuous axiomatic approach based on the resolution of a set of consistency relations for the multi-point correlations. The average profile is shown to obey a fractional differential equation whose solution involves hypergeometric functions and matches the integral formula of the discrete approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps

    Polynomial tuning of multiparametric combinatorial samplers

    Full text link
    Boltzmann samplers and the recursive method are prominent algorithmic frameworks for the approximate-size and exact-size random generation of large combinatorial structures, such as maps, tilings, RNA sequences or various tree-like structures. In their multiparametric variants, these samplers allow to control the profile of expected values corresponding to multiple combinatorial parameters. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain subpatterns in strings. However, such a flexible control requires an additional non-trivial tuning procedure. In this paper, we propose an efficient polynomial-time, with respect to the number of tuned parameters, tuning algorithm based on convex optimisation techniques. Finally, we illustrate the efficiency of our approach using several applications of rational, algebraic and P\'olya structures including polyomino tilings with prescribed tile frequencies, planar trees with a given specific node degree distribution, and weighted partitions.Comment: Extended abstract, accepted to ANALCO2018. 20 pages, 6 figures, colours. Implementation and examples are available at [1] https://github.com/maciej-bendkowski/boltzmann-brain [2] https://github.com/maciej-bendkowski/multiparametric-combinatorial-sampler

    The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees

    Full text link
    A unicellular map is a map which has only one face. We give a bijection between a dominant subset of rooted unicellular maps of fixed genus and a set of rooted plane trees with distinguished vertices. The bijection applies as well to the case of labelled unicellular maps, which are related to all rooted maps by Marcus and Schaeffer's bijection. This gives an immediate derivation of the asymptotic number of unicellular maps of given genus, and a simple bijective proof of a formula of Lehman and Walsh on the number of triangulations with one vertex. From the labelled case, we deduce an expression of the asymptotic number of maps of genus g with n edges involving the ISE random measure, and an explicit characterization of the limiting profile and radius of random bipartite quadrangulations of genus g in terms of the ISE.Comment: 27pages, 6 figures, to appear in PTRF. Version 2 includes corrections from referee report in sections 6-

    Invariance principles for random bipartite planar maps

    Full text link
    Random planar maps are considered in the physics literature as the discrete counterpart of random surfaces. It is conjectured that properly rescaled random planar maps, when conditioned to have a large number of faces, should converge to a limiting surface whose law does not depend, up to scaling factors, on details of the class of maps that are sampled. Previous works on the topic, starting with Chassaing and Schaeffer, have shown that the radius of a random quadrangulation with nn faces, that is, the maximal graph distance on such a quadrangulation to a fixed reference point, converges in distribution once rescaled by n1/4n^{1/4} to the diameter of the Brownian snake, up to a scaling constant. Using a bijection due to Bouttier, Di Francesco and Guitter between bipartite planar maps and a family of labeled trees, we show the corresponding invariance principle for a class of random maps that follow a Boltzmann distribution putting weight qkq_k on faces of degree 2k2k: the radius of such maps, conditioned to have nn faces (or nn vertices) and under a criticality assumption, converges in distribution once rescaled by n1/4n^{1/4} to a scaled version of the diameter of the Brownian snake. Convergence results for the so-called profile of maps are also provided. The convergence of rescaled bipartite maps to the Brownian map, in the sense introduced by Marckert and Mokkadem, is also shown. The proofs of these results rely on a new invariance principle for two-type spatial Galton--Watson trees.Comment: Published in at http://dx.doi.org/10.1214/009117906000000908 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Random walks on complex trees

    Get PDF
    We study the properties of random walks on complex trees. We observe that the absence of loops is reflected in physical observables showing large differences with respect to their looped counterparts. First, both the vertex discovery rate and the mean topological displacement from the origin present a considerable slowing down in the tree case. Second, the mean first passage time (MFPT) displays a logarithmic degree dependence, in contrast to the inverse degree shape exhibited in looped networks. This deviation can be ascribed to the dominance of source-target topological distance in trees. To show this, we study the distance dependence of a symmetrized MFPT and derive its logarithmic profile, obtaining good agreement with simulation results. These unique properties shed light on the recently reported anomalies observed in diffusive dynamical systems on trees
    corecore