168 research outputs found

    Coloring, List Coloring, and Painting Squares of Graphs (and other related problems)

    Full text link
    We survey work on coloring, list coloring, and painting squares of graphs; in particular, we consider strong edge-coloring. We focus primarily on planar graphs and other sparse classes of graphs.Comment: 32 pages, 13 figures and tables, plus 195-entry bibliography, comments are welcome, published as a Dynamic Survey in Electronic Journal of Combinatoric

    Strong edge colorings of graphs and the covers of Kneser graphs

    Full text link
    A proper edge coloring of a graph is strong if it creates no bichromatic path of length three. It is well known that for a strong edge coloring of a kk-regular graph at least 2k12k-1 colors are needed. We show that a kk-regular graph admits a strong edge coloring with 2k12k-1 colors if and only if it covers the Kneser graph K(2k1,k1)K(2k-1,k-1). In particular, a cubic graph is strongly 55-edge-colorable whenever it covers the Petersen graph. One of the implications of this result is that a conjecture about strong edge colorings of subcubic graphs proposed by Faudree et al. [Ars Combin. 29 B (1990), 205--211] is false

    Is the five-flow conjecture almost false?

    Get PDF
    The number of nowhere zero Z_Q flows on a graph G can be shown to be a polynomial in Q, defining the flow polynomial \Phi_G(Q). According to Tutte's five-flow conjecture, \Phi_G(5) > 0 for any bridgeless G.A conjecture by Welsh that \Phi_G(Q) has no real roots for Q \in (4,\infty) was recently disproved by Haggard, Pearce and Royle. These authors conjectured the absence of roots for Q \in [5,\infty). We study the real roots of \Phi_G(Q) for a family of non-planar cubic graphs known as generalised Petersen graphs G(m,k). We show that the modified conjecture on real flow roots is also false, by exhibiting infinitely many real flow roots Q>5 within the class G(nk,k). In particular, we compute explicitly the flow polynomial of G(119,7), showing that it has real roots at Q\approx 5.0000197675 and Q\approx 5.1653424423. We moreover prove that the graph families G(6n,6) and G(7n,7) possess real flow roots that accumulate at Q=5 as n\to\infty (in the latter case from above and below); and that Q_c(7)\approx 5.2352605291 is an accumulation point of real zeros of the flow polynomials for G(7n,7) as n\to\infty.Comment: 44 pages (LaTeX2e). Includes tex file, three sty files, and a mathematica script polyG119_7.m. Many improvements from version 3, in particular Sections 3 and 4 have been mostly re-writen, and Sections 7 and 8 have been eliminated. (This material can now be found in arXiv:1303.5210.) Final version published in J. Combin. Theory

    Digraph Coloring Games and Game-Perfectness

    Get PDF
    In this thesis the game chromatic number of a digraph is introduced as a game-theoretic variant of the dichromatic number. This notion generalizes the well-known game chromatic number of a graph. An extended model also takes into account relaxed colorings and asymmetric move sequences. Game-perfectness is defined as a game-theoretic variant of perfectness of a graph, and is generalized to digraphs. We examine upper and lower bounds for the game chromatic number of several classes of digraphs. In the last part of the thesis, we characterize game-perfect digraphs with small clique number, and prove general results concerning game-perfectness. Some results are verified with the help of a computer program that is discussed in the appendix

    From light edges to strong edge-colouring of 1-planar graphs

    Get PDF
    International audienceA strong edge-colouring of an undirected graph GG is an edge-colouring where every two edges at distance at most~22 receive distinct colours. The strong chromatic index of GG is the least number of colours in a strong edge-colouring of GG. A conjecture of Erd\H{o}s and Ne\v{s}et\v{r}il, stated back in the 8080's, asserts that every graph with maximum degree Δ\Delta should have strong chromatic index at most roughly 1.25Δ21.25 \Delta^2. Several works in the last decades have confirmed this conjecture for various graph classes. In particular, lots of attention have been dedicated to planar graphs, for which the strong chromatic index decreases to roughly 4Δ4\Delta, and even to smaller values under additional structural requirements.In this work, we initiate the study of the strong chromatic index of 11-planar graphs, which are those graphs that can be drawn on the plane in such a way that every edge is crossed at most once. We provide constructions of 11-planar graphs with maximum degree~Δ\Delta and strong chromatic index roughly 6Δ6\Delta. As an upper bound, we prove that the strong chromatic index of a 11-planar graph with maximum degree Δ\Delta is at most roughly 24Δ24\Delta (thus linear in Δ\Delta). The proof of this result is based on the existence of light edges in 11-planar graphs with minimum degree at least~33

    Master index to volumes 251-260

    Get PDF
    corecore