2,255 research outputs found

    Acta Cybernetica : Tomus 8. Fasciculus 3.

    Get PDF

    Semantic Cache Reasoners

    Get PDF

    Keyword search in graphs, relational databases and social networks

    Get PDF
    Keyword search, a well known mechanism for retrieving relevant information from a set of documents, has recently been studied for extracting information from structured data (e.g., relational databases and XML documents). It offers an alternative way to query languages (e.g., SQL) to explore databases, which is effective for lay users who may not be familiar with the database schema or the query language. This dissertation addresses some issues in keyword search in structured data. Namely, novel solutions to existing problems in keyword search in graphs or relational databases are proposed. In addition, a problem related to graph keyword search, team formation in social networks, is studied. The dissertation consists of four parts. The first part addresses keyword search over a graph which finds a substructure of the graph containing all or some of the query keywords. Current methods for keyword search over graphs may produce answers in which some content nodes (i.e., nodes that contain input keywords) are not very close to each other. In addition, current methods explore both content and non-content nodes while searching for the result and are thus both time and memory consuming for large graphs. To address the above problems, we propose algorithms for finding r-cliques in graphs. An r-clique is a group of content nodes that cover all the input keywords and the distance between each pair of nodes is less than or equal to r. Two approximation algorithms that produce r-cliques with a bounded approximation ratio in polynomial delay are proposed. In the second part, the problem of duplication-free and minimal keyword search in graphs is studied. Current methods for keyword search in graphs may produce duplicate answers that contain the same set of content nodes. In addition, an answer found by these methods may not be minimal in the sense that some of the nodes in the answer may contain query keywords that are all covered by other nodes in the answer. Removing these nodes does not change the coverage of the answer but can make the answer more compact. We define the problem of finding duplication-free and minimal answers, and propose algorithms for finding such answers efficiently. Meaningful keyword search in relational databases is the subject of the third part of this dissertation. Keyword search over relational databases returns a join tree spanning tuples containing the query keywords. As many answers of varying quality can be found, and the user is often only interested in seeing the·top-k answers, how to gauge the relevance of answers to rank them is of paramount importance. This becomes more pertinent for databases with large and complex schemas. We focus on the relevance of join trees as the fundamental means to rank the answers. We devise means to measure relevance of relations and foreign keys in the schema over the information content of the database. The problem of keyword search over graph data is similar to the problem of team formation in social networks. In this setting, keywords represent skills and the nodes in a graph represent the experts that possess skills. Given an expert network, in which a node represents an expert that has a cost for using the expert service and an edge represents the communication cost between the two corresponding experts, we tackle the problem of finding a team of experts that covers a set of required skills and also minimizes the communication cost as well as the personnel cost of the team. We propose two types of approximation algorithms to solve this bi-criteria problem in the fourth part of this dissertation

    Data management in cloud environments: NoSQL and NewSQL data stores

    Get PDF
    : Advances in Web technology and the proliferation of mobile devices and sensors connected to the Internet have resulted in immense processing and storage requirements. Cloud computing has emerged as a paradigm that promises to meet these requirements. This work focuses on the storage aspect of cloud computing, specifically on data management in cloud environments. Traditional relational databases were designed in a different hardware and software era and are facing challenges in meeting the performance and scale requirements of Big Data. NoSQL and NewSQL data stores present themselves as alternatives that can handle huge volume of data. Because of the large number and diversity of existing NoSQL and NewSQL solutions, it is difficult to comprehend the domain and even more challenging to choose an appropriate solution for a specific task. Therefore, this paper reviews NoSQL and NewSQL solutions with the objective of: (1) providing a perspective in the field, (2) providing guidance to practitioners and researchers to choose the appropriate data store, and (3) identifying challenges and opportunities in the field. Specifically, the most prominent solutions are compared focusing on data models, querying, scaling, and security related capabilities. Features driving the ability to scale read requests and write requests, or scaling data storage are investigated, in particular partitioning, replication, consistency, and concurrency control. Furthermore, use cases and scenarios in which NoSQL and NewSQL data stores have been used are discussed and the suitability of various solutions for different sets of applications is examined. Consequently, this study has identified challenges in the field, including the immense diversity and inconsistency of terminologies, limited documentation, sparse comparison and benchmarking criteria, and nonexistence of standardized query languages

    Profiling relational data: a survey

    Get PDF
    Profiling data to determine metadata about a given dataset is an important and frequent activity of any IT professional and researcher and is necessary for various use-cases. It encompasses a vast array of methods to examine datasets and produce metadata. Among the simpler results are statistics, such as the number of null values and distinct values in a column, its data type, or the most frequent patterns of its data values. Metadata that are more difficult to compute involve multiple columns, namely correlations, unique column combinations, functional dependencies, and inclusion dependencies. Further techniques detect conditional properties of the dataset at hand. This survey provides a classification of data profiling tasks and comprehensively reviews the state of the art for each class. In addition, we review data profiling tools and systems from research and industry. We conclude with an outlook on the future of data profiling beyond traditional profiling tasks and beyond relational databases

    Integrating and Ranking Uncertain Scientific Data

    Get PDF
    Mediator-based data integration systems resolve exploratory queries by joining data elements across sources. In the presence of uncertainties, such multiple expansions can quickly lead to spurious connections and incorrect results. The BioRank project investigates formalisms for modeling uncertainty during scientific data integration and for ranking uncertain query results. Our motivating application is protein function prediction. In this paper we show that: (i) explicit modeling of uncertainties as probabilities increases our ability to predict less-known or previously unknown functions (though it does not improve predicting the well-known). This suggests that probabilistic uncertainty models offer utility for scientific knowledge discovery; (ii) small perturbations in the input probabilities tend to produce only minor changes in the quality of our result rankings. This suggests that our methods are robust against slight variations in the way uncertainties are transformed into probabilities; and (iii) several techniques allow us to evaluate our probabilistic rankings efficiently. This suggests that probabilistic query evaluation is not as hard for real-world problems as theory indicates

    XML Matchers: approaches and challenges

    Full text link
    Schema Matching, i.e. the process of discovering semantic correspondences between concepts adopted in different data source schemas, has been a key topic in Database and Artificial Intelligence research areas for many years. In the past, it was largely investigated especially for classical database models (e.g., E/R schemas, relational databases, etc.). However, in the latest years, the widespread adoption of XML in the most disparate application fields pushed a growing number of researchers to design XML-specific Schema Matching approaches, called XML Matchers, aiming at finding semantic matchings between concepts defined in DTDs and XSDs. XML Matchers do not just take well-known techniques originally designed for other data models and apply them on DTDs/XSDs, but they exploit specific XML features (e.g., the hierarchical structure of a DTD/XSD) to improve the performance of the Schema Matching process. The design of XML Matchers is currently a well-established research area. The main goal of this paper is to provide a detailed description and classification of XML Matchers. We first describe to what extent the specificities of DTDs/XSDs impact on the Schema Matching task. Then we introduce a template, called XML Matcher Template, that describes the main components of an XML Matcher, their role and behavior. We illustrate how each of these components has been implemented in some popular XML Matchers. We consider our XML Matcher Template as the baseline for objectively comparing approaches that, at first glance, might appear as unrelated. The introduction of this template can be useful in the design of future XML Matchers. Finally, we analyze commercial tools implementing XML Matchers and introduce two challenging issues strictly related to this topic, namely XML source clustering and uncertainty management in XML Matchers.Comment: 34 pages, 8 tables, 7 figure
    • …
    corecore