
Integrating and Ranking Uncertain Scientific Data

University of Washington Technical Report, UW-CSE-08-06-03

Landon Detwiler 1, Wolfgang Gatterbauer 2, Brent Louie 1, Dan Suciu 2, Peter Tarczy-Hornoch 1

1Biomedical and Health Informatics, University of Washington, Seattle, USA
{det,brlouie,pth}@u.washington.edu

2Computer Science and Engineering, University of Washington, Seattle, USA
{gatter,suciu}@cs.washington.edu

Abstract

The BioRank project investigates formalisms for modeling uncertainties of scientific data in a
mediator-based data integration system. Our motivating application is predicting previously not
known functions of proteins. Much can be learned in biology by integrating known information
with biological similarity functions and confidence values of experimental results. In this paper,
we evaluate the role that probabilities can play in such a scenario with the help of real-world
data. In particular, we show that: (i) explicit modeling of uncertainties increases the quality of
our functional predictions for less- and unknown, not however for well-known protein functions.
This suggests exploratory search and new knowledge discovery as ideal application domains for
probabilistic data integration; (ii) slight perturbations of the input probabilities do not severely
affect the quality of our predictions. This suggests that probabilistic information integration is
actually robust against slight variations in the way uncertainties are transformed into probabil-
ities by domain experts; and (iii) our probabilistic scoring functions can be evaluated efficiently
with the help of several techniques. This suggests that probabilistic query evaluation is not as
hard for real-world problems as theory indicates.

1 Introduction

Explicit management of uncertainties is becoming imperative in the scientific domain. Data in the
life sciences and especially in molecular biology is highly dispersed and inherently uncertain. New
insights can be gained by integrating and analyzing existing information from separate sources, but
current database techniques are not suited for integrating data with many kinds of uncertainties [1,
33]. Most of the recent work on managing data with uncertainties has postulated that uncertainties
are quantified with probabilities and then mostly focused on efficient evaluation techniques on
probabilistic databases [11, 45, 35, 37, 12, 15, 2]. Comparatively little has been done to examine the
actual validity of the fundamental assumption, that probabilities are the right model for representing
uncertainties in real-world applications.

In this paper, we study the validity of this assumption in the context of an important problem
in molecular biology: assigning functions to proteins, also known as functional protein annota-
tion. Thousands of proteins have no known function or their full complement of functions is not
known. Having a complete list of known and possible further functions is essential to e.g. biologists
that study the pathogenic pathways of protein complexes. The two major approaches for protein

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Washington Structural Informatics Group Publications

https://core.ac.uk/display/9412358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

function prediction are actually modeling the physical folding process and structure of proteins
[6], or integrating existing knowledge with biological similarity functions and manually handling
experimental and computational evidence in the process [33, 25]. The role of a data integration
system is to help in the second approach: in this paper we study how the explicit management of
uncertainties in scientific data integration helps during protein predication.

Motivating example. We give a simple example of how scientists deal with uncertainties
during manual data integration. Suppose a researcher is searching for some new, possible yet
unknown functions of the protein corresponding to gene ABCC8. Some previously studied proteins
have well-known functions, which are recorded somewhere in the data sources, and our researcher
definitely wants to retrieve these. But she is especially interested in unknown yet likely functions,
which she can later validate. There are several data sources where she can search for ABCC8.
One is EntrezGene, a curated database, which returns 12 GO functions for ABCC8. The Gene
Ontology (GO) is a shared vocabulary of biological functions. Each of those functions is annotated
with a status code like “reviewed” or “predicted” that represents the certainty that this function
is correct: she can use these annotations to rank the 12 functions. She can also get the protein’s
sequence from EntrezProtein and then paste it into TigrFam, a Hidden Markov Model matching
algorithm, which returns 53 GO functions: 3 are included in the previous 12 from EntrezGene,
the rest are new. The functions have a new kind of uncertainty: the expectation values (e-values)
that represent the certainty of the result on an exponential scale. There are more such sources,
NCBIBlast returns protein sequences that are similar to that of ABCC8 (there are 100 such), whose
GO functions (41) are further obtained from EntrezGene; and Pfam (another sequence matching
database) returns more functions. Altogether she ends up with a list of 97 candidate functions for
her protein. At this point her data integration task has ended, and she would have to continue to
evaluate these candidate functions manually, giving preference to those that are more “certain” or
likely to be correct.

The only way to validate the functions of a protein is to experimentally test it for that function.
Such experiments are always function-specific and costly. Researchers, therefore, have to decide
which functions to focus on and test for. Any tool that allows biologists to pre-sort and rank can-
didate functions given available but heterogeneous evidence is valuable. The goal of an automatic
data integration system is to help her rank these results according to the degree of uncertainty, and
this is not an easy task. ABCC8 is a well studied gene, and 13 of the 97 candidate functions are
well-known: they are confirmed in iProClass, a reference curated database. Clearly we want the
system to rank these functions high. But this turns out to be the easier part, since for confirmed
functions there is usually enough redundant evidence in the data sources which can be used to
rank them highly. The question is whether the system can also rank highly the unknown functions,
which are likely functions but for which there is not a lot of evidence in the data. For ABCC8 we
have manually examined the other 84 (97-13) functions and searched for them in PubMed: we have
been able to find 3 recently discovered functions that are reported in recent publications but that
had not yet been inserted in iProClass. Unlike the well-known functions, the unknown functions
did not have lots of redundant evidence, but had a small number of supporting evidence with high
confidence score. Our goal is to enable the data integration system to also highly rank the unknown,
but likely functions.

Contributions. We introduce BioRank, a system that integrates scientific data from various
sources, takes into account the uncertainty of each result and ranks information by the level of
combined evidence. We address the following important questions: (i) what ranking method is
best suited in this setting, (ii) how robust are those rankings to errors in the input probabilities,

2

and (iii) how can rankings be computed efficiently. To answer (i), we examine two classes of
ranking methods: one uses only deterministic information [26], s.a. the number of paths leading
to an answer (e.g. GO functions found through several paths are ranked higher), and the other
that explicitly takes into account a probabilistic score of the degree of uncertainty in the data. Our
main finding is that the deterministic ranking methods are as good as, or slightly better than the
best probabilistic ones (reliability and propagation) for ranking well-known functions. However, the
probabilistic ranking methods are better for ranking yet unknown functions; since researchers are
likely to use the system to find unknown functions, we believe that our finding offer proof of the main
postulate in uncertain data: that uncertainties have to be quantified probabilistically. Question (ii)
is especially important in our system because we have determined the input probabilities manually,
after extensive consultation with experts. This raises the question of how robust these probabilities
are, and for that we have examined the influence of perturbations in the input probabilities on the
quality of final ranking results. Our finding is the rankings were very robust, which suggests that
the probabilistic semantics is robust against slightly subjective and varying estimates by domain
experts. To answer (iii), we propose three heuristics for speeding up the computation of a network
reliability score, which is used in the main probabilistic ranking function.

Outline. Section 2 presents our formal model of uncertain information integration for ex-
ploratory search. Section 3 describes the three probabilistic and two deterministic ranking methods,
as well as several optimization techniques for speeding up the ranking function. In Sect. 4 present
several experiments designed to answer the three questions mentioned above. We discuss our main
findings in Sect. 5, related work in Sect. 6 and conclude in Sect. 7.

2 A Model for Integrating Uncertain Data

In this section, we describe the data and the query models that allow biologists to explore multiple
biological databases in the presence of uncertainties in the data. We describe here only from the
mediated schema, since the rest of the integration system (mappings, wrappers, query translations,
connection to sources) is based on our previous work [31, 38, 14, 39].

Schema integration. We use an Entity-Relationship (E/R) schema as the mediated schema.
An entity set has a schema P (id, a1, a2, . . .), where id is the key, and a relationship has a schema
Q(id, id′, b1, b2, . . .) where id, id′ are foreign keys to two entity sets P, P ′ that Q relates. Here
a1, a2, . . . , b1, b2, . . . denote attributes. Every data source that we integrate exports one ore more
entity sets. Examples of such entity sets are:

EntrezProtein(name, seq)
EntrezGene(idEG,StatusCode, idGO)

Our system computes a number of relationships between the sources to achieve the actual integra-
tion, e.g. by following foreign keys, looking up aliases, or even matching keywords. When necessary,
we translated ternary relationships to binary ones. For example, given a sequence seq1, NCBIBlast
computes a set of similar sequences seq2 together with an e-value for the similarity score of the
two sequences. It also returns a foreign key into EntrezGene:

NCBIBlast(seq1, seq2, idEG, e-value)

Here seq1, seq2 are foreign keys in EntrezProtein, and idEG is a foreign key to EntrezGene. In the

3

mediated schema we split this ternary relationship into two binary ones:

NCBIBlast1(seq1, seq2, e-value)

NCBIBlast2(seq2, idEG)

Our system currently connects to the following 11 data sources. #E and #R stand for the
number of entities and relationships that they expose. Some relationships are not in the sources,
but are instead computed during integration.

Source #E #R
AmiGO 1 4
NCBIBlast 2 3
CDD 3 1
EntrezGene 2 3
EntrezProtein 1 11
PDB 1 0
Pfam 2 2
PIRSF 2 2
UniProt 2 2
SuperFamily 3 1
TIGRFAM 2 2

Transforming uncertainties into probabilities. Our method allows to populate 4 proba-
bilistic metrics. Let P (id, a1, a2, . . .) be an entity set and Q(id, id′, b1, b2, . . .) be a relationship. We
define a probabilistic score ps for the entire set P , and a probabilistic score qs for the set Q. In
addition, we define transformation functions pr(a1, a2, . . .) and qr(b1, b2, . . .) on the attributes of
P and of Q, respectively, which return a probabilistic score for each record in P and Q.

Sets Records

Entity ps ∈ [0, 1] pr(a1, a2, . . .) ∈ [0, 1]
Relationship qs ∈ [0, 1] qr(b1, b2, . . .) ∈ [0, 1]

More detail on our four probabilistic metrics:

• First, ps represents the degree of confidence in a data source as a whole. Biologists generally
have more confidence in some sources than others. This can depend on their problem or the
type of query. We provide ps as a user-tunable parameter for every entity set. For example,
our collaborators have evidence that results from PIRSF are more accurate than Pfam, two
well known functional annotation databases.

• Analogously, qs refers to the degree of confidence in a relationship as a whole. For instance,
Pfam uses a sequence comparison algorithm which takes adjacency of amino acids into ac-
count. The BLAST algorithm, used by NCBIBlast does not. Algorithms like those in Pfam
are believed to be more accurate in general.

• The pr score indicates the degree of confidence in a single record and is computed from its
attributes. Typically, there is one attribute that indicates the status of that entry, how it was
curated, or some numerical attribute for the degree of confidence in that record. A transfor-
mation function converts the value of that attribute into a probability. E.g. for EntrezGene,
the pr score is computed from its StatusCode attribute; for AmiGO from the EvidenceCode
attribute. Example evidence codes are IDA (“Inferred from Direct Assay”, very reliable) or
IEA (“Inferred from Electronic Annotation”, less reliable).

4

EntrezGene
StatusCode pr

Reviewed 1.0
Validated 0.8
Provisional 0.7
Predicted 0.4
Model 0.3
Inferred 0.2

AmiGo
EvidenceCode pr

IDA / TAS 1.0
IGI / IMP / IPI 0.9
IEP / ISS / RCA 0.7
IC 0.6
NAS 0.5
IEA 0.3
ND / NR 0.2

• Similarly, the qr metric is computed from the attributes of a relationship. Some cross-
references use unique identifiers (foreign keys), and then we set qr = 1. E.g. NCBIBlast
has a foreign key idEG to EntrezGene. Then we set qr = 1. But NCBIBlast also returns an
e-value measuring the likelihood that these 2 sequences are similar by chance. We translate
this e-value into a probability as follows:

qr = − 1
300

log(e-value) .

For BioRank, these probabilities were determined after extensive discussions with our collabo-
rators from Seattle Children’s Hospital Research Institute. This raises the question of how robust
the system is to errors in the input probabilities: we address this in Sect. 4. Thus, our data model
is a probabilistic database, where each schema component and each data record has a probabilistic
score representing the confidence in that item.

Graph representation of the integrated data. Conceptually, we represent the entire
integrated data as a probabilistic entity graph, which is defined as follow:

Definition 2.1 (Probabilistic Entity Graph). A probabilistic entity graph is a labeled, directed
graph G = (N,E, p, q), where N is the set of nodes, E ⊆ N ×N the set of edges, and p : N → [0, 1]
and q : E → [0, 1] are probability labels for each node and edge, respecitvely.

The mapping from the E/R data to the probability entity graph is straightforward: data records
become nodes, and relationships become edges. The node and edge probabilities p(i), and q(i, j)
are defined:

p(i) = ps(i) · pr(i)
q(i, j) = qs(i, j) · qr(i, j)

where ps(i), pr(i) are the set and record probabilities, of the entity i, and similarly qs(i, j), qr(i, j)
are the set and record probability of the relationship (i, j).

Exploratory Queries. The precursor of BioRank had a standard interface to the integrated
schema, based on conjunctive queries [31]. However, biologists were not using such an interface
effectively, because they needed the data integration system mostly for exploratory tasks, and not
for data retrieval tasks. BioRank supports a simpler, yet more powerful class of queries, which we
call exploratory queries. A user selects an input entity set P , one of its attributes attr, a value,
and a set of output entity sets P1, . . . , Pn. The system retrieves all records in P whose attribute
matches the value, then follows all links recursively to find all reachable records and returns those
entities that are in P1, . . . , Pn. The result is a ranked answer set of records which can be reached
from the query node. Note that ranking according to decreasing certainty is critical in exploratory
queries: without ranking, users get flooded with irrelevant answers [27].

5

Definition 2.2 (Exploratory Query). An exploratory query is

(P.attr = “value”, {P1, . . . , Pn}) .

The result to such a query is a ranked answer set with

A = {v | ∃x ∈ P, “value” ∈ x.attr, x→ v,∃i.v ∈ Pi} ,

were x → v means that there exists a path from node x to node v in the entity graph and ranking
is determined by some defined relevance function on the probabilistic query graph.

Definition 2.3 (Probabilistic Query Graph). A probabilistic query graph is a probabilistic entity
graph G = (N,E, p, q, s, A) where s ∈ N represents the query and A ⊂ N the answer set to the
query.

Definition 2.4 (Relevance Function). Assume a probabilistic query graph G = (N,E, p, q, s, A). A
relevance function r : A → R assigns each node in the answer set t ∈ A a relevance score r ∈ R,
where R stands for the range. This relevance function imposes a partial order on the answer set
which can be used for ranking.

Fig_Query_Source_Graph

5

Query Source Graph

EntrezProtein Pfam

TigrFam

NCBIBlast EntrezGen

AmiGO

1:0/1

n:1

n:1

VERSION 11-18-2008

1:1 1:n

1:n

1:n

n:m

n:m

n:m

data source

entitiy set

input entitiy set

output entity set

expanded relations

query or source node s

Pi

Po

s Pi Po

Figure 1: The subset of the E/R schema relevant to the exploratory query (EntrezProtein.name =
“ABCC8”,AmiGO).

Motivating example (continued). We illustrate the working of our system within the con-
text of our example from the introduction and Fig. 1. The system creates a new node, called query
node (blue node on the left), then links to all records in EntrezProtein that match the keyword
ABCC8. From here the system continues in three separate sources, searching for all possible paths
to some record in AmiGo (the red node on the righ). Note that the figure illustrates the graph
only at the schema level: the real graph has 684 nodes, 977 edges, and the answer set consists of
97 nodes (all represented by the single red node). This is a typical case for all exploratory queries:
the system will return many incorrect answers because of uncertainty and imprecision in the data.
Therefore, BioRank evaluates the level of certainty in each function to assigns a relevance scores r
to each function and presents the user with a ranked list of protein functions:

Function (abbr.) GO term r score
1 sulphonylurea receptor activity GO:0008281 0.7000
2 potassium ion conductance GO:0006813 0.7000
3 Interacting selectively with ATP GO:0005524 0.6999
4 cytoplasmic membrane GO:0005886 0.6996
5 small-molecule carrier or transporter GO:0005215 0.6977
...

6

3 Methods for Ranking Integrated Data

Previous work [26] on ranking integrated biological data proposed to use simple graph metrics like
link cardinality and length of paths from a query to a target node to rank connected information
in a data integration system. In contrast, we next introduce 3 probabilistic ranking methods that
explicitly take into account the uncertainties at each integration step and give efficient methods to
evaluate such queries. As benchmark, we also define 2 non-probabilistic ranking methods which we
then text against each other in the later experimental section.

3.1 Reliability

Our first semantics calculates relevance scores by interpreting the query graph as a network reliabil-
ity problem [?]. More specifically, we use the generalized source-target reliability problem with node
failures that can be reduced to the standard network reliability problem by removing node failures
and reifying the graph [?, Sect. 1.4]). Given a probabilistic query graph G = (N,E, p, q, s, A)
where p : N → [0, 1] and q : E → [0, 1] are the probabilities p(n) and q(e) that the node or edge
are present1, and s ∈ N and A ⊂ N are the source node and the answer set, respectively. For
each target node t ∈ A, the reliability score r(t) is then the probability that t is connected to s and
active. We use these relevance scores to rank the nodes in the answer set.

Our rationale for the reliability semantics is that it is equivalent to the possible worlds semantics
in probabilistic databases [12]: each subgraph of the network graph is a world, and the reliability
score of an answer is the probability over all worlds that the answer is reachable from the query
node. However, query evaluation is difficult under this semantics. The network reliability problem
is #P-hard in general [42]. While it has a long history in Computer Science [?], most of the
earlier algorithms are based on some form of state enumeration. A polynomial time approximation
algorithm was given recently [22], which however relies on enumerating cut sets, and therefore
does not work well in our setting (multiple parallel paths with a common source and target have
exponentially many cut sets). We, therefore, developed three techniques to make query evaluation
tractable in our setting.

1. Monte Carlo simulations. A naive Monte Carlo simulation computes the source-target
network reliabilities for all target nodes t ∈ A by repeating the following step: randomly choose a
subgraph by including each node i ∈ N with probability p(i) and each edge e ∈ E with probability
q(e); check if there exists a path from s to each t in the random subgraph and t is present. If m
out of n trials resulted in subgraphs with nodes s and t connected, then r(t) is approximated by
r̂(t) = m/n. Such Monte Carlo methods have been previously proposed [23], and applied e.g. for
the purpose of inferring protein complex membership [3].

In practice, we implemented an improved version as shown in Algorithm 3.1. The key observa-
tion for the improvement is that it is not necessary to simulate every node and every edge in each
trial. After simulating a subset of the nodes and/or edges we will have already chosen some to
exclude. Such exclusions may leave entire subgraphs disconnected from the source node. We need
not simulate further, for this trial, any nodes or edges in the disconnected portion. Our resulting
idea is to perform a depth first search from the source node s. For a node x to be reachable, there
must be a contingent path from s to x. If no such path exists in a trial, we do not visit x nor its
downstream subgraph, unless it is reachable by another path. In this manner we don’t simulate any
nodes or edges only to later discover that they are disconnected. Whereas such improvements do

1The traditional network reliability problem uses the complement, i.e. the probability that the edge fails.

7

not change the theoretical complexity of the algorithm, they yield significant runtime performance
gains, the extent of which is determined by the characteristics of the underlying graph. The greatest
benefit occurs when (i) the node and/or edge weights are very low (i.e. we exclude them often),
particularly if these low weights occur close to the source node, (ii) when paths are long (i.e. greater
chance of excluding a node or edge somewhere along a path), and (iii) there are fewer converging
paths (i.e. less chance that a node is reachable via some other path). In the experimental section,
we show an average speed-up of factor 3.4 (-70%) on our test set.

Algorithm 3.1: Reliability Traversal Monte Carlo Simulation

Input : Probabilistic query graph G = (N,E, p, q, s), #Iterations n
Output: Vector r̂ of approximate relevance scores r̂(x),∀x ∈ N

∀x ∈ N : x.lastSim← 0 ∧ x.reachCount← 01:

for iteration t = 1 to n do2:

Traverse(G, s, t)3:

forall nodes x ∈ N do4:

r̂(x)← x.reachCount/n5:

return r̂6:

Traverse(G, x, t):7:

if x.lastSim = t then8:

return9:

x.lastSim← t10:

if Random([0, 1]) ≤ p(x) then11:

increment x.reachCount12:

forall edges (x, y) ∈ x.outEdges do13:

if Random([0, 1]) ≤ q(x, y) then14:

Traverse(G, y, t)15:

16:

17:

We use bounds for estimating the necessary number of trials under assumption of independent
coin flips. We prove the following theorem in Appendix A and test those bounds in the experimental
section.

Theorem 3.1. Assume the scores of two nodes i and j are r(i) and r(j), with r(i) = r(j)+ε (ε > 0).
Running n independent random trials for each node suffices to guarantee that the simulated scores
are not incorrectly ranked with probability at least 1− δ, where

n ≥ (1 + ε)3

ε2(1 + ε
3)

ln
(

1
δ

)
.

The motivation for this bound is that the predicted relevance scores r̂(i) and r̂(j) can be
incorrectly ranked when ε and n are small. If our ranking semantics is a good one, very close ties
between relevant and non-relevant nodes should happen infrequently, and if they do, then we do
not have enough evidence to distinguish them. Choosing a 95% confidence and separable difference
between two scores ε = 0.02, we learn that 10,000 trials should be enough. We will test these
bounds in the experimental section.

2. Graph Reductions. Consider the following graph transformation rules:

8

• Delete inaccessible nodes. Remove a sink node x (i.e. without outgoing edges), if x is not a
target node.

• Collapse serial paths. If x has a single incoming edge (y, x) and a single outgoing edge (x, z),
remove x and add an edge (y, z) with q(y, z) = q(y, x) · p(x) · q(x, z).
• Collapse parallel paths. If there are two or more edges e1, e2, . . . from x to y (e.g. introduced

by a serial reduction) then replace them with one edge with probability 1−
∏
i(1− q(ei)).

These transformations can be applied repeatedly until no rule changes the graph anymore. In
the best case, the graph then consists of single edges from the source s to each target node ni and
the reliability is r(i) = q(s, i)·p(i). But that is usually not the case. Such, or similar transformations
have been considered for a long time in network reliability [?, Ch. 2.2]. We apply them repeatedly
to any graph to reduce it before running the more expensive Monte Carlo simulation algorithm. In
general these transformations are known not to reduce significantly the complexity of the reliability
problem: they get stuck, for example, on the Wheatstone Bridge graph (Fig. 2c). However, we
found them to work surprisingly well in scientific workflow-type data integration with uncertainties
(-78% in edges and nodes in our experiments), because the query graphs of scientific workflows [13]
have a certain regularity.

3. Tractable closed solution. We found that the above transformation rules often allow
us to calculate reliability in a tractable closed form by applying them not to the whole graph,
but individually to each subgraph connecting the source and each target node. To discern when
such reductions are possible, we have to study the possible E/R schemas of graphs. If Q is a
relationship in the E/R schema, we denote its type with [1:n], or [n:1], or [m:n]. We are interested
in characterizing an E/R Schema such that the following holds: for any data graph instance of that
schema, the graph transformation rules will completely reduce the graph. We call such schemas
reducible.

0 1 2 3

1:n n:m n:1

(a)

1:n 1:n n:1 n:1

0 1 2 3 4

(b)

Wheatstone Bridge

(c)

1:n n:m n:1

0 1 2 3

(d)

Figure 2: The concatenations in the probabilistic source graph partly determine the query complexity
of our probabilistic entity graph.

In general, [n:m] relations lead to irreducible graphs (Fig. 2a), because instances of such schemas
may contain Wheatstone bridges (Fig. 2c). Even if all relations [1:n] or [n:1], the graph may still be
irreducible (Fig. 2b), and some [n:m] can actually be reduced (Fig. 2d). To check if an E/R schema

9

is reducible we need to examine compositions of relationships: Q ◦Q′. Note that [1:n] ◦ [1:n] = [1:n]
and [n:1] ◦ [n:1] = [n:1]. In general [1:n] ◦ [n:1] can be either of [m:n], [n:1], or [1:n] (we include
[1:1] into one of the latter two), but with domain knowledge we can often determine the type of the
composed relationship. Then:

Theorem 3.2. Let S be an E/R schema.

A) If S is a tree consisting only of [1:n] relationships, then the schema S is reducible.

B) Suppose that there is an entity set P that has exactly one incoming relationship Q of type
[1:n] and exactly one outgoing relationship Q′ of type [n:1]. If:

a) the composition Q ◦Q′ is either [1:n] or [n:1] (but not [m:n]), and

b) the schema S′ obtained by removing P and replacing Q and Q′ with Q ◦Q′ is reducible.

Then the schema S is reducible.

They key insight of the theorem is the order in which one has to compose the relationships.
Two relationships of types [1:n] and [1:n] can be composed at the schema level and result in a
[1:n] relationship, but at the data level no serial-path reduction is possible in general. By contrast,
given a sequence of two relationships [1:n] and [n:1], all intermediate nodes can be removed using
the serial-path rule, followed by the parallel-path rule to remove duplicate edges (Fig. 3). We prove
Theorem 3.2 in Appendix B.

1:n n:1 1:n n:1

1:1

1:n

n:1

n:1
1:n n:1

1:n

0 1 2 3 4 5

(a)

1:n n:1 1:n n:1

1:1

1:n

n:1

n:1
n:m n:1

1:n

0 1 2 3 4 5

(b)

Figure 3: Illustration for Theorem 3.2. The schema on the left is reducible, because there is a
sequence of composing the innermost [1:n] and [n:1] relationships s.t. all intermediate relationships
are either [1:n] or [n:1]. The schema on the right is not reducible, because the first composition
results in an [m:n] relationship.

3.2 Propagation

The motivation for this model is to break the complexity of network reliability and introduce a
‘local’ view on calculating relevance scores. In this model, relevance ‘propagates’ along the edges
from the query node to all other nodes, similarly to PageRank [9]. In this semantics, each node
y ∈ N has a propagation score r(y) that depends only on its parents and that ignore mutual
dependencies or correlations between parents:

r(y) =
(

1−
∏

(x,y)∈E

(
1− r(x) · q(x, y)

))
· p(y)

10

Fig_Example_Topologies_2A

10

VERSION 7-4-2008

PathCount InEdge

r = 2 r = 2

u

s

Reliability Diffusion Propagation

r = 0.5 r = 0.75 r = 0.11

u

s

u

s

0.5

1 1

1 1

u

s

0.5

1 1

1 1

u

s

0.5

1 1

1 1

 .

(a)

Fig_Example_Topologies_1A

9

VERSION 6-5-2008

PathCount InEdge

r = 2 r = 3

u

s

u

s

u

s

0.5

0.5

0.5

0.5

0.5

Reliability Diffusion Propagation

r = 0.469 r = 0.484 r = 0.11

u

s

0.5

0.5

0.5

0.5

0.5

u

s

0.5

0.5

0.5

0.5

0.5

 .

(b)

Figure 4: Illustration of the 5 relevance scoring functions on a serial-parallel graph (a) and a
Wheatstone bridge (b).

This semantics also admits a probabilistic interpretation, but here the score of each node or
edge depends only on its local neighborhood. In fact, the following proposition is easy to verify:

Proposition 3.1. Let G = (N,E, q, s) be a graph with probabilities on edges. If the graph is a tree
with root s, then for every node x the reliability and the propagation scores coincide.

When the graph is not a tree, however, then reliability and propagation differ. We show with
the help of Fig. 4a. There are two paths from source to target, each with probability 0.5 · 1 · 1.
The reliability score is 0.5, because it accounts for the fact that the 0.5 edge is common to both
paths. The propagation score is 0.75 because it considers the two paths independent. In general,
the propagation scores will always be bigger or equal to reliability scores.

The main advantage of propagation is that it is efficient to compute. We compute it using the
straightforward iterative Algorithm 3.2. In contrast to the Monte carlo simulation, this iterative
approximation converges faster. For DAGs like in our scientific workflow scenarios, this algorithm
actually reaches equilibrium already after the maximum pathlength. The disadvantage is that
propagation considers all paths leading to an answer node as independent, as illustrated in Fig. 4.
This can lead to artificially high scores for certain graph topologies. A particularly troublesome
case is when the graph has a cycle: in this case the propagation semantics unfolds the cycle into
an infinite sequences of independent paths, and boosts considerably (and incorrectly) the scores for
some answer nodes.

3.3 Diffusion

In this model, we keep the locality aspect, but change the semantics of probabilistic evidence
accumulation. Its main intuition is that the relevance r(x) of a node x is allowed to “flow” to a
neighbor y only if r(x) > r̄(y), where r̄(y) is a new intermediate variable used for the incoming
diffusion along all edges into node y. Hence, in this model, diffusion along an edge depends on the

11

Algorithm 3.2: Relevance Propagation

Input : Probabilistic query graph (N,E, p, q, s), #Iterations n
Output: Vector r of relevance scores r(x),∀x ∈ N

r(s)← 1;∀x ∈ N \{s} : r(x)← 01:

for iteration t = 1 to n do2:

forall nodes y ∈ N \{s} do3:

r∗(y)←
(

1−
∏

(x,y)∈E

(
1− r(x) · q(x, y)

))
· p(y)4:

r← r∗5:

return r6:

relatedness scores at both ends. Also, in this model, the total incoming diffusion at a node is we
use addition, not inverse multiplication. Formally, the relevance r(x) of a node x in the diffusion
semantics is defined by the following recursive equations:

r̄(y) =
∑

(x,y)∈E

max
[(
r(x)− r̄(y)

)
· q(x, y), 0

]
r(y) = r̄(y) · p(y)

An interesting aspect of the diffusion semantics is that it tends to favor nodes that have fewer
stronger paths over nodes that with more but weaker paths, which should help discover less-known
information. However, the influence of the shortest pathlength between query and target node is
far stronger than in reliability and propagation. Also, the requirement of introducing a direction
into diffusion (which is, in nature, an undirected, dissipative process) makes this semantics less
interpretable and the quality of ranking a priori unpredictable, a priori. In addition, calculation
is more intricate than propagation. Diffusion defines recursively two quantities r̄(x) and r(x),
which requires us to split the main iteration into two loops. The outer loop computes new values
r∗(x) from the results of the previous iteration r(x). The inner loop, shown as function solve in
Algorithm 3.3, computes the value r̄(x). As r̄(x) is defined implicitly, we iterate until we find a
good approximation. This process is guaranteed to converge, however it requires O(nm) iterations,
where m is the number of iterations in the inner loop; by contrast the propagation algorithm
requires O(n) iterations. In practice, however, diffusion is only moderately slower to evaluate than
propagation overall as the inner recursive loop is not evaluated in each step.

3.4 Incoming Edges

The simple topological measure InEdge, proposed in [26] as “cardinality”, assigns the total number
of incoming edges to each target node as its relevance score. The big advantage is that it is very
fast to calculate. The disadvantages are: (i) it completely ignores the evidence supporting each
entity or relation in the query graph; (ii) it only considers the part of the query graph adjacent to
a target node; and (iii) as InEdge relevance scores are natural numbers instead of real numbers,
we expect more ties between nodes and, therefore, less discrimination between nodes with little
evidence.

12

Algorithm 3.3: Relevance Diffusion

Input : Probabilistic query graph (N,E, p, q, s), #Iterations n
Output: Vector r of relevance scores r(x),∀x ∈ N

r(s)← 1;∀x ∈ N \{s} : r(x)← 01:

for iteration t = 1 to n do2:

forall nodes y ∈ N \{s} do3:

solve
(
r̄(y) =

∑
(x,y)∈E max

[(
r(x)− r̄(y)

)
· q(x, y), 0

])
4:

r∗(y)← r̄(y) · p(y)5:

r← r∗6:

return r7:

3.5 Counting Paths

For PathCount, we count the total number of paths that connect the query and a target node. Our
rationale is that, in contrast to InEdge, PathCount measures connectivity in the whole subgraph
between query and target node (compare Fig. 4). A possible disadvantage of PathCount is that it
can only work on DAGs and, therefore, workflow-type graphs. Cycles lead to infinite PathCounts.

4 Experiments

In this section, we evaluate our framework in the context of an important problem in molecular
biology: functional protein annotation, which is determining the complete set of functions for pro-
teins [36]. Determining the function of a single protein in isolation is a very difficult biological
problem. However, much in biology can be learned from already known information by using simi-
larity functions. Our collaborators at Seattle Children’s Hospital Research Institute (SCHRI) have
surmised that integrating similarity functions from multiple sources has the potential to increase
the accuracy of function predictions [28]. This rationale underlines our information integration ap-
proach. We are especially interested in comparing the performance of our ranking methods under
decreasing levels of certainty in the data, as the aim of BioRank is to allow scientists to discover
previously not known information. For this purpose, we created different scenarios with varying
degrees of difficulty in finding the information. This required considerable experimental effort on
our part.

Measuring Ranking Performance. BioRank assigns a relevance score to all functions con-
nected to the query protein and ranks them. The output to the user is an ordered list of predicted
functions for a query protein. To compare ranking performance across different scenarios, we use
the measure average precision (AP) as uniform method to assess ranking quality. AP is a standard
evaluation metric in information retrieval [5] and rewards rankings that place relevant items earlier
in rankings. Our biological rationale is that users prefer that the system suggest which functions
have the strongest evidence. Given an ordered list of n items of which k are relevant. Let reli de-
note the relevance of the item at rank i, which is 1 if it is relevant according to a predefined golden
standard or 0 otherwise. Further write P@i for the precision or the ratio of retrieved and relevant
items over the total retrieved at item i. Representing the ranking by a binary vector rel = (reli),
we can write

AP(rel) =
∑n

i=1 P@i · reli
k

.

13

AP can be calculated at a specified number of results (e.g. AP@20), at a certain percentage of
recall (e.g. AP@80%), or at predefined recall points (e.g. 11-point interpolated average precision).
We calculate AP at 100% recall for two reasons: (i) we want to evaluate ranking on the complete
set of functions for each protein and (ii) the total number of functions returned varies considerably
for different queries. Averaging over all retrieved relevant functions allows a consistent performance
comparison across different scenarios.

Scoring functions sometimes lead to ties between functions and, therefore, only partial order-
ings in the result list. We use the analytic method recently proposed in [30] to calculate AP in
the presence of ties. The idea behind the method is to calculate the mean AP over all possible
permutations. We refer to their paper for details of the method. The alternative to ranking is
presenting the list of n results in arbitrary order. We, therefore, use the expected average precision
of an arbitrarily ranked result list as benchmark. The following equation can be derived analytically
following ideas proposed in [30].

Definition 4.1 (Random average precision). APrand is the expected AP when a list of k relevant
and n total items is randomly sorted. It is given by

APrand(k, n) =
n∑
i=1

(k − 1)(i− 1) + (n− 1)
i(n− 1)n

Scenario 1: Well-known functions for well-studied proteins. In our first experimental
setup, we chose 20 well-studied proteins from the iProClass database [46] to serve as a test set for
our function assignments. These were chosen because they serve as a reference standard in that they
have highly reliable experimental evidence for their functions. Experimental function assignment is
more reliable (and expensive) than computational prediction, which is the most common method.
Over 46% of functions in our test set are experimental versus 5% in general [41]. The biological data
sources which provide function predictions which were considered for this study were Pfam [17],
TIGRFAM [18], BLAST at NCBI [47], and Entrez [29]. The iProClass database was not considered
because it was the source of the test set. The others were chosen because of their familiarity to
biologists and their use of Gene Ontology (GO) terms, a shared vocabulary for protein functions
[4]. The databases were accessed in June 2007. Table 1 shows the 20 proteins, the number of
functions returned by iProClass, the number of functions returned in BioRank’s anwer set, and
their relative ratio. Fig. 5a compares the performance of our 5 ranking approaches on these 20
proteins. All 5 ranking approaches perform significantly better than randomly sorting functions.
The two deterministic ones, InEdge and PathCount, perform slightly better than reliability and
propagation. Diffusion performs worst.

Scenario 2: Less-known functions for well-studied proteins. All previous 306 functions
in scenario 1 are contained in iProClass and, as such, are well-known. For scenario 2, we tried to
find new, yet unknown GO functions for any of the 20 iProClass proteins which were not contained
in iProClass at the time we accessed the database (June 2007). Newly discovered protein functions
are usually first described in publications before they are entered into curated databases such as
iProClass and become, de facto well-known. We manually searched through PubMed for recently
published papers that described any functions for the 20 proteins that were not already contained
in iProClass. We found 7 new functions for 3 of the 20 proteins. Table 2 lists those proteins, their
newly found functions together with the PubMed ID of the publication describing this function.
It also contrasts their respective ranks for our 5 ranking methods. Ties are marked by intervals.
E.g., InEdge and PathCount rank GO:0006855 between 35 and 97 out of 97 possible ranks, as

14

Rel Prop Diff InEdge PathC Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scoring function

Av
er

ag
e

Pr
ec

is
io

n
Scenario 1

306 well−known functions, 20 well−studied proteins

0.84 0.85

0.73

0.85 0.87

0.42

Mean
Stdv

(a)

Rel Prop Diff InEdge PathC Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scoring function

Av
er

ag
e

Pr
ec

is
io

n

Scenario 2
7 less−known functions, 3 well−studied proteins

0.46

0.33

0.62

0.15 0.16
0.12

Mean
Stdv

(b)

Rel Prop Diff InEdge PathC Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scoring function

Av
er

ag
e

Pr
ec

is
io

n

Scenario 3
11 less−known functions, 11 less−studied proteins

0.68
0.62

0.48 0.50 0.50

0.29

Mean
Stdv

(c)

Figure 5: Scenario 1: InEdge and PathCount perform slightly better than probabilistic rankings
(a). Scenario 2: Probabilistic rankings perform better than InEdge and PathCount on less-known
functions for well-studied genes (b). Scenario 3: Reliability and propagation perform best on less
studied genes (c).

Table 1: Scenario 1: 20 chosen golden standard proteins
Protein # iProClass # BioRank %

Functions Functions
ABCC8 13 97 13%
ABCD1 15 79 19%
AGPAT2 10 16 63%
ATP1A2 31 108 29%
ATP7A 35 130 27%
CFTR 19 90 20%
CNTS 8 15 53%
DARE 18 39 46%
EIF2B1 15 35 43%
EYA1 12 38 32%
FGFR3 16 65 25%
GALT 8 15 53%
GCH1 10 21 48%
GLDC 7 17 41%
GNE 13 24 54%
LPL 13 36 36%
MLH1 19 52 37%
MUTL 13 28 46%
RYR2 18 66 27%
SLC17A5 13 66 20%
Sum 306 1036 37%

only one single, but strong path connects that function to the protein. The result is that the
deterministic measures do not significantly rank those new functions better than random, whereas
all 3 probabilistic ranking methods successfully differentiate those functions. Fig. 5b lists AP just
on the 3 genes and just for the newly found functions for contrast with scenario 1.

Scenario 3: Unknown functions for less-studied proteins. This scenario models a real-
world problem in biology: assigning function to proteins of unknown function, otherwise known as
hypothetical proteins. For this scenario, and to evaluate the various ranking functions, we created
a reference set of hypothetical proteins for which functions were determined independently by
biological experts. The method used to assign function is an innovative approach developed with

15

Table 2: Scenario 2: Additional 7 functions for 3 proteins

Protein Function PubMedID (year) Method & assigned rank
Rel Prop Diff InEdge PathC Random

ABCC8 GO:0006855 18025464 (2007) 21-22 24-25 1-3 34-97 35-97 1-97
GO:0015559 18025464 (2007) 21-22 24-25 1-3 34-97 35-97 1-97
GO:0042493 18025464 (2007) 17 20 1-3 22-33 25-34 1-97

Cftr GO:0030321 17869070 (2007) 1-2 8 1-2 17-31 22-23 1-90
GO:0042493 18045536 (2007) 24 24 16-18 17-31 22-23 1-90

EYA1 GO:0007501 17637804 (2007) 4 10 15 32-38 27 1-38
GO:0042472 17637804 (2007) 14 6 6 13-16 18 1-38

Mean 14.8 16.7 6.5 36.6 35.9 39.6
Stdv 8.5 8.1 6.5 26.9 26.5 44.2

our collaborators at SCHRI. This method allows assignment of function to hypothetical proteins
by comparing them to experimentally characterized functions manually and following carefully
designed protocols. The approach is described in more detail in [28]. However, this procedure
is very costly in terms of human effort. Therefore our reference set for less-studied proteins is
very small with only 11 proteins. Table 3 lists the 11 bacterial proteins, their functions (generally
only one in bacteria), and the respective ranks assigned by our 5 ranking functions. Fig. 5c shows
these results in terms of average precision. Clearly, reliability and propagation perform better than
deterministic rankings.

Table 3: Scenario 3: 11 hypothetical proteins and their functions

Protein Function Method & assigned rank
Rel Prop Diff InEdge PathC Random

DP0843 GO:0003973 5 5 3-20 4-5 4-5 1-47
DP1954 GO:0019175 2 2 1-2 2-3 2-3 1-18
NMC0498 GO:0016226 1 1 1-2 1-3 1-3 1-5
NMC1442 GO:0050518 1 1 1-2 1 1 1-17
NMC1815 GO:0019143 1-2 1-2 1-2 1-3 1-3 1-14
SO 0025 GO:0004729 4-5 4-5 4-5 4-5 4-5 1-5
SO 0599 GO:0005524 1-10 1-10 1-10 4-19 4-19 1-19
SO 0828 GO:0008990 1 1 4 1-4 1-4 1-4
SO 0887 GO:0047632 1-2 1-2 4-6 4-6 4-6 1-6
SO 1523 GO:0003951 1-2 1-2 1-2 1-2 1-2 1-24
WGLp528 GO:0004017 1 3 3-4 1 1 1-9

Mean 2.3 2.5 3.8 3.5 3.5 15.3
Stdv 2.2 2.2 4.2 3.8 3.8 12.5

Sensitivity analysis. In Sect. 2, we described the translation of uncertainties in the data into
probabilities. The remaining question is how we can make sure that we use correct probability
estimates. One way is machine learning, but this has a high cost due to hard-to get training data
and possible lack of generality due to overfitting. [16]. In contrast, we use biological experts to
estimate the default parameters for BioRank [27]. This is easier but problematic in that human
estimates can be imprecise [40]. But how exactly are those parameters determined, and how do we
know they are correct? We address these concerns with a reformulated question: how robust are
the predictions of BioRank to variations in its parameter estimates? If the average precision of the
system is good under default parameters (i.e. ranks correct functions highly) and under systematic
variations, then the performance of the approach is good as well as stable (i.e. robust) and the

16

estimation method sufficient.
To answer this question, we perform a sensitivity analysis of the quality of ranking results

with respect to changes in the input probabilities. Specifically, we compare AP in our 3 scenarios
under default parameters and under systematic variations. For that purpose, we use a multi-way
sensitivity analysis approach which perturbs all parameters simultaneously and is representative
of our situation where all parameters may be imprecise. For the systematic variations, we use a
method proposed by [19]: normally distributed random noise is added to a log-odds probability
then converted back to a probability. This approach avoids the need for range checks and enables
control over amount of noise added. Given the original probability p ∈ (0, 1), a chosen standard
deviation σ, a function Lo that converts a probability to its log-odds, and Lo−1 its inverse, we
create a randomly perturbed probability p′ as

p′ = Lo−1
(
Lo(p) + e

)
,

where e = Normal(0, σ) is random Gaussian noise. Figure 6 shows the effects on AP for each of the

Initial 0.5 1 2 3 Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
m=100

Random perturbations of probabilistic weights [!]

Av
er

ag
e

Pr
ec

isi
on

Sensitivity analysis
(Scenario 1, reliability)

0.84 0.86 0.85
0.80

0.72

0.42

Mean
Stdv

(a)

Default 0.5 1 2 3 Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability assignment

Av
er

ag
e

Pr
ec

isi
on

Sensitivity: Scenario 1, Propagation

0.85 0.85 0.85 0.82
0.78

0.42

Mean
Stdv

(b)

Default 0.5 1 2 3 Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability assignment

Av
er

ag
e

Pr
ec

isi
on

Sensitivity: Scenario 1, Diffusion

0.73 0.74 0.74 0.72
0.67

0.42

Mean
Stdv

(c)

Initial 0.5 1 2 3 Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
m=100

Random perturbations of probabilistic weights [!]

Av
er

ag
e

Pr
ec

isi
on

Sensitivity analysis
(Scenario 2, reliability)

0.46 0.46 0.46
0.41

0.34

0.12
Mean
Stdv

(d)

Default 0.5 1 2 3 Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability assignment

Av
er

ag
e

Pr
ec

isi
on

Sensitivity: Scenario 2, Propagation

0.33 0.35 0.36 0.33 0.31

0.12
Mean
Stdv

(e)

Default 0.5 1 2 3 Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability assignment

Av
er

ag
e

Pr
ec

isi
on

Sensitivity: Scenario 2, Diffusion

0.62 0.64 0.63
0.57

0.46

0.12
Mean
Stdv

(f)

Initial 0.5 1 2 3 Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
m=100

Random perturbations of probabilistic weights [!]

Av
er

ag
e

Pr
ec

isi
on

Sensitivity analysis
(Scenario 3, reliability)

0.68 0.67 0.64
0.60 0.57

0.29

Mean
Stdv

(g)

Default 0.5 1 2 3 Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability assignment

Av
er

ag
e

Pr
ec

isi
on

Sensitivity: Scenario 3, Propagation

0.62 0.63 0.62
0.58 0.58

0.29

Mean
Stdv

(h)

Default 0.5 1 2 3 Random
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability assignment

Av
er

ag
e

Pr
ec

isi
on

Sensitivity: Scenario 3, Diffusion

0.47 0.50 0.48
0.44 0.46

0.29

Mean
Stdv

(i)

Figure 6: Effect of random perturbations of the input probabilities on the 3 probabilistic ranking
methods. Performance remains robust over a wide range.

3 probabilistic ranking methods and for each of the 3 scenarios after perturbing the probabilistic
default parameters of UII for nodes (p) and edges (q) with noise at σ = 0.5, 1, 2, 3 and averaging

17

over m = 100 repeated experiments. Confidence intervals (95%) were very narrow (0.001 to 0.022
over all noise perturbations), indicating a sufficient number of simulations.

The interesting result is that the quality of ranking does not significantly decrease before adding
3 standard deviations of noise and is still higher than the deterministic alternatives for less known
information. In some instances, AP even increases with slight noise. Therefore, a slightly different
choice of default probabilities could have improved our rankings, but overall, the probabilistic
ranking methods are very robust in their quality against slightly subjective and varying estimates
of default probabilities by domain experts. Our results are consistent with observations made in
artificial intelligence that probabilistic belief networks often show a similar robustness to imprecise
input probabilities [34].

Efficiency of query evaluation. We evaluate the time requirements of our 5 different ranking
approaches on the 20 query graphs for for scenarios 1 and 2 as those are the largest. We treat
reliability in more depth as it is the one that follows our desired possible world semantics and that
turned out to be the most predictive for less-known information.

(1) Closed solution: Theorem 3.2 developed an indicator when reliability rankings can be cal-
culated efficiently in closed form. Applying the theorem to our setup (Fig. 1), we see: (i) the total
graph is not reducible due to the last [n:m] relation; (ii) the individual queries, however, can be
solved in a closed solution. The reason is that the last [n :m] relationship becomes [n : 1] from
the point of view of each node in the answer set. And the theory predicts that the queries can
be reduced by just evaluating the subtrees to each answer node sequentially by themselves. Our
theory proves to be right and useful.

(2) Monte Carlo: We previously estimated that 10000 runs of Monte Carlo simulations should be
enough to achieve the correct reliability rankings with high confidence. To verify that, we repeated
Monte Carlo simulations (m = 100) for varying number of simulations (n = 1, 3, 10, . . . , 10000)
and calculated mean and standard deviation. Figure 4 shows that already 1000 trials achieve high
average accuracy.

100 101 102 103 104 105
0

0.42

0.84

1

1,000 10,000

m=100

Number of simulations

Av
er

ag
e

Pr
ec

isi
on

Speed of Convergence for Monte Carlo
(Scenario 1, reliability)

Mean
Stdv
Closed solution
Random AP

Figure 7: Effect of number of trials in the Monte Carlo algorithm on reliability ranking performance.
1000 trials already deliver very reliable results.

(3) Graph reductions: Our 20 original graphs have on average 520 nodes and 695 edges. Applying
our graph reductions, we can reduce their number on average by 78%. Those reductions can help
speed up both, the closed solution and the Monte Carlo calculation.

(4) Results: Fig. 8a compares the different approaches for calculating reliability. M1, M2 stand
for Monte Carlo simulations on the original graphs with 10000 and 1000 trials, respecively, and C
for the closed solution. For each of these 3 approaches, we contrast with the time it takes for first

18

performing graph reductions (R&). In order to account for the effects of disk latency, we first loaded
the vector of ranks and scores for our example queries into main memory. The result is that the
graph reduction together with 1000 Monte Carlo trials is actually the fastest method for calculating
reliability, even faster than the closed solution. To put that result in context, we compared our
Monte Carlo implementation to the naive method: we got an average speed-up of 3.4 (-70%) for
our Monte Carlo method and 13.4 (-93%) for reduction and Monte Carlo. Given that Monte Carlo
can be run on all graphs, even such where no efficient closed solution exists, we use that method as
our benchmark. Fig. 8b then contrasts this method with the less expensive alternative semantics.
It is well-known that probabilistic approaches are more expensive than deterministic ones. The
fact that our system can evaluate probabilistic queries of a possible world semantics, however, in
considerably less than a 100 msec and within 1-2 orders of magnitude of deterministic ones, is a
positive result.

M1 M2 C R&M1 R&M2 R&C
101

102

103

Method

Ti
m

e
[m

se
c]

Complexity of calculating reliability scores

731

74
97

151

18 20

Mean
Stdv

(a)

Rel Prop Diff InEdge PathC
10−1

100

101

Ranking Method

Ti
m

e
[m

se
c]

Complexity of 5 ranking methods

17.9

5.2 5.8

0.5

1.0

Mean
Stdv

(b)

Figure 8: (M1: Monte Carlo 10000 simulations, M2: Monte Carlo 1000 simulations, R: Reduction
of graph, C: Closed solution)

5 Discussion

The value of retaining probabilities. Our experiments showed a good ranking performance
of the non-probabilistic redundancy measures, InEdge and PathCount, for ranking well-known
information. The intuitive explanation for that result is that, commonly, many different ways lead
to the same well-known conclusion, and simply counting the number of such different paths seems a
good approach to rank information (Fig. 9a). In contrast, we built BioRank to provide scientists a
means to discover less-known or less-disseminated information. Finding new functions for proteins
is an arms race against time for biologists. Intuitively, redundancy cannot be used for ranking in
that scenario. Instead, the strength of each piece of evidence has to be taken into account (Fig. 9b).

Indeed, our experiments showed that ranking methods that take into account uncertainties
perform increasingly better for less-known information. Providing examples of such less-known
information bascially required us standing at the forefront of scientific discovery and having access
to information which is not yet widely disseminated. In scenario 2, we were able to assign new
functions to several proteins, which are extensively studied and curated by multiple organizations
(PIR, GeneTests, etc.). Given that, discovering 7 new functions is an accomplishment. We say
“new” functions as database records for these genes do not list these functions at this time. In
scenario 3, we were able to better predict functions for hypothetical proteins, whose proteins are

19

3

VERSION 6-27-2008 Fig_ValueOfProbabilities

Well-known information Less-known information

#1

#2

#3

#1

#2

#3

Query Supporting
evidence

Ranked
answer set

Query Supporting
evidence

Ranked
answer set

(a)

3

VERSION 6-27-2008 Fig_ValueOfProbabilities

Well-known information Less-known information

#1

#2

#3

#1

#2

#3

Query Supporting
evidence

Ranked
answer set

Query Supporting
evidence

Ranked
answer set

(b)

Figure 9: Ranking with simple redundancy measures is successful for well-known information (a).
For less-known information, the uncertainty of each data item and each connection (shown by dotted
line) has to be considered for discriminating more from less relevant information (b).

not yet studied.
Our main conclusion is that ignoring both (i) probabilities and (ii) dependencies between data

sources works fine for well-known information (e.g. highly ranked in search results). However, for
yet not widely known information, retaining probabilities and taking dependencies explicitly into
account allows to better predict relevant scientific information (Fig. 10).

Fig_Applicability_Of_UII_vertical

3

VERSION 6-17-2008

Uncertainty of information

Information integration approach

Deterministic Probabilistic

Unknown
information

Less-known
information

Well-known
information

Figure 10: The value of uncertain information integration: Probabilistic approaches perform about
as well as deterministic ones on well-known information. However, they outperform them on less-
known information. This makes them better suited for discovery-based scientific applications such
as exploratory search.

The semantics of accumulating probabilistic evidence. We conceived of the diffusion
method to find out if the method by which probabilistic evidence is accumulated affects the results,
or if the mere fact of probabilistically adding evidence suffices. For this purpose, we created the
diffusion method in which, at each node in the graph, probabilities are aggregated in a additive
instead of a standard multiplicative fashion. This change of semantics, however, comes at the cost
of being highly dependent of path length. In our experiments, diffusion turns out to be worse than
all other measures and highly unpredictable. In the one case that diffusion works considerably
better than all other scoring functions (new functions for ABCC8 in Table 2), the single but strong
evidence comes from one database which has a shorter connection to the query node. For its
overall bad performance, we do not suggest using the diffusion semantics for uncertain information
integration and take the results as evidence that those changes in probabilistic semantics actually
affect the outcome considerably and the standard possible world semantics better models reality.

20

Divergent and non-workflow schemas. Our experiments were performed on convergent,
scientific workflow graphs [13]. Those are characterized by (i) directed edges, and (ii) alternative
paths leading to the same information. We have also conceived of scenarios where entries from
different databases cannot be linked together and the result is a divergent star schema. This might
arise when common vocabularies like the Gene Ontology do not exist and linking between different
databases is difficult and unreliable. In such a scenario, InEdge and PathCount cannot be used
as each piece of evidence has only exactly one path and taking into account the strength of each
individual path is the only way to rank results.

6 Related Work

Probabilistic databases. There has been recent interest in developing general-purpose query
evaluation methods on probabilistic databases [11, 45, 35, 37, 12, 2]. Probabilities are typically
associated at the tuple level, and the query language is a subset of SQL. Probabilistic data is
used in data integration in [32, 43, 15]. These studies start from the assumption that the data is
probabilistic, or assume that the data is uncertain but that it can be modeled as probabilistic data.

Ranking of integrated biological data. Approaches have been proposed that exploit the
global link structure between integrated data items for ranking biological entities. Lacroix et al.
[26] for example, propose path-length and cardinality for ranking data. Hussels et al. [21] add to the
above by highly ranking “surprising” results, such which are less connected among sources. Biozon
[8] uses a ranking algorithm based on the PageRank model. However, uncertainty of individual data
points are not taken into account and play no role in determining ranks. BioRank is unique in that
it models uncertainty inherent in data entities, links between entities, and at the data source level.
In addition, our model implicitly accounts for the link structure between data items. Whereas our
approach is computationally more expensive than simple non-probabilistic ranking methods, our
experiments indicate that ranking by link structure alone is insufficient to find new and less-known,
but valuable information.

Reliability and Propagation for biological inference. Network Reliability and Propaga-
tion algorithms have previously been proposed for inferring protein complex membership [3, 44].
These studies have shown promise in terms of efficient calculation of reliability and propagation as
well as biological inference. They differ from our approach however in that they are creating and
evaluating a specific model. They are not concerned with general-purpose data integration and
information retrieval uncertainty semantics.

Robustness of ranking results. Work related to our robustness results can be found in the
AI literature. There is a long work discussing if and when Bayesian belief networks are sensitive
to their input parameters (see e.g. [24, 10]). Studies which conclude that belief networks can be
sensitive are concerned with (i) rank-order “swaps” in result lists, and (ii) large changes in output
probabilities. We use average precision as an evaluation metric for UII because our primary goal
is to separate the good results from the poor. So long as we cluster the most relevant results
towards the top of our ranked list, we are not overly concerned with individual rank-order swaps.
Additionally we do not attach meaning to the probabilities (relevance scores) beyond their relative
ordering. In this regard, we are similar to findings of robustness in belief networks [19]. The
important implication of our results is that also for data integration, retaining probabilities in the
process of integrating data can increase the ranking quality even though the actual “correctness”
of the individual probabilities may not be guaranteed.

21

7 Conclusions

Much recent work has investigated techniques for efficient processing of probabilistic data. Sur-
prisingly little has been done to compare probabilistic methods to their alternative deterministic
counterparts and examine the actual trade-off between (i) the added complexity of probabilistic
query processing and (ii) the assumed added value in the quality of results. In this paper, we in-
vestigated this fundamental trade-off in the context of a concrete scientific research problem. Our
experiments led to the following observations:

• Introducing a probabilistic framework into an existing biological data integration application
allowed us to consistently higher rank less-known information, which is such information that
is true, but not widely known. In contrast, probabilities did not improve our results for highly
ranking already well-known information.

• Slight perturbations in our uncertainty-to-probability transformations do not significantly
affect the ranking quality. Our rankings were very robust, which suggests that our method is
robust against slightly subjective and varying estimates of domain experts.

• We could find several methods that allowed us to perform probabilistic query evaluations on
real data graphs in consistently short time (< 0.1s). We could also provide a new theorem
when closed solutions are actually tractable for our applications. This results suggests that,
whereas probabilistic query evaluation is more expensive and, in theory often prohibitive,
practical problems of real importance seem to actually allow efficient methods.

The high-level take-away from our work is that while probabilistic approaches are not necessary
and valuable for all data integration problems, they are ideally suited for highly uncertain domains
such as new scientific knowledge discovery.

8 Acknowledgment

We thank Dr. Eugene Kolker and Dr. Peter Myler for their ongoing collaboration, and Nilesh Dalvi
for his useful comments. This work was partially supported by NSF IIS-0513877, NSF IIS- 0454425,
NSF IIS-0713576, NIH NLM T15 LM07442, and a gift from Microsoft.

References

[1] S. Abiteboul et al. The lowell database research self-assessment. Commun. ACM, 48(5):111–
118, 2005.

[2] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational processing of
uncertain data. In Proc. ICDE, 2008.

[3] S. Asthana, O. D. King, F. D. Gibbons, and F. P. Roth. Predicting protein complex member-
ship using probabilistic network reliability. Genome Res., 14(6):1170–1175, 2004.

[4] T. Attwood. The quest to deduce protein function from sequence: the role of pattern databases.
The International Journal of Biochemistry and Cell Biology, 32:139–155, 2000.

22

[5] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.

[6] D. Baker and A. Sali. Protein structure prediction and structural genomics. Science,
294(5540):93–96, 2001.

[7] G. Bennett. Probability inequalities for the sum of independent random variables. Journal of
the American Statistical Association, 57(297):33–45, March 1962.

[8] A. Birkland and G. Yona. BIOZON: a system for unification, management and analysis of
heterogeneous biological data. BMC Bioinformatics, 7:70, 2006.

[9] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Computer
Networks, 30(1-7):107–117, 1998.

[10] H. Chan and A. Darwiche. When do numbers really matter? Journal of Artificial Intelligence
Research, 17:265–287, 2002.

[11] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In Proc. VLDB,
2004.

[12] N. Dalvi and D. Suciu. Management of probabilistic data: foundations and challenges. In
Proc. PODS, 2007.

[13] S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludäscher, T. M. McPhillips, S. Bowers, M. K.
Anand, and J. Freire. Provenance in scientific workflow systems. IEEE Data Eng. Bull., 30(4),
2007.

[14] L. Donelson, P. Tarczy-Hornoch, P. Mork, C. Dolan, J. Mitchell, M. Barrier, and H. Mei. The
BioMediator system as a data integration tool to answer diverse biologic queries. In Medinfo,
pages 768–72, 2003.

[15] X. Dong, A. Halevy, and C. Yu. Data integration with uncertainty. In Proc. VLDB, 2007.

[16] M. Druzdzel and L. Van Der Gaag. Building probabilistic networks: ‘where do the numbers
come from?’. IEEE Transactions on Knowledge and Data Engineering, 12(4):481–486, 2000.

[17] R. Finn, J. Mistry, B. Bockler-Shuster, S. Griffiths-Jones, V. Hollich, T. Lassmann, S. Moxon,
M. Marshall, A. Khanna, R. Durbin, S. Eddy, E. Sonhammer, and A. Bateman. Pfam: clans,
web tools and services. Nucleic Acids Research, 34(Database Issue):D247–D251, 2006.

[18] D. Haft, J. Selengut, and O. White. The TIGRFAMs database of protein families. Nucleic
Acids Research, 31:371–373, 2003.

[19] M. Henrion, M. Pradhan, B. Favero, K. Huang, G. Provan, and P. O’Rourke. Why is diagnosis
using belief networks insensitive to imprecision in probabilities? In Proc. UAI, 1996.

[20] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, March 1963.

[21] P. Hussels, S. Trißl, and U. Leser. What’s new? what’s certain? - scoring search results in the
presence of overlapping data sources. In Proc. 4th DILS. Springer, 2007.

23

[22] D. Karger. A randomized fully polynomial time approximation scheme for the all-terminal
network reliability problem. SIAM Review, 43(3):499–422, 2001.

[23] R. M. Karp and M. Luby. Monte-carlo algorithms for enumeration and reliability problems.
In FOCS, 1983.

[24] O. Kiersztok and H. Wang. Another look at sensitivity of bayesian networks to imprecise
probabilities. In AISTAT, 2001.

[25] E. Kolker, A. Piccone, M. Galperin, R. Smith, C. Giometti, K. Nealson, J. Fredrickson, and
J. Tiedje. Global profiling of shewanella oneidensis mr-1: Expression of hypothetical genes
and improved functional annotations. PNAS, 102(6):2099–2104, 2005.

[26] Z. Lacroix, L. Raschid, and M.-E. Vidal. Efficient techniques to explore and rank paths in life
science data sources. In Proc. DILS, 2004.

[27] B. Louie, T. Detwiler, N. Dalvi, R. Shaker, P. Tarczy-Hornoch, and D. Suciu. Incorporating
uncertainty metrics into a general-purpose data integration system. In Proc. SSDBM, 2007.

[28] B. Louie, P. Tarczy-Hornoch, R. Higdon, and E. Kolker. Validating annotations for uncharac-
terized proteins in Shewanella oneidensis, 2008. (manuscript in preparation).

[29] D. Maglott, J. Ostell, K. Pruitt, and T. Tatusova. Entrez gene: gene-centered information at
ncbi. Nucleic Acids Research, 33(Database Issue):D54–D58, 2005.

[30] F. McSherry and M. Najork. Computing information retrieval performance measures efficiently
in the presence of tied scores. In Proc. ECIR, 2008.

[31] P. Mork, A. Y. Halevy, and P. Tarczy-Hornoch. A model for data integration systems of
biomedical data applied to online genetic databases. In AMIA Annual Fall Symposium, 2001.

[32] A. Nierman and H. Jagadish. ProTDB: Probabilistic data in XML. In Proc. VLDB, 2002.

[33] S. Philippi and J. Kohler. Addressing the problems with life-science databases for traditional
uses and systems biology. Nature Reviews Genetics, 7:481–488, June 2006.

[34] M. Pradhan, M. Henrion, G. Provan, B. Del Favero, and K. Huang. The sensitivity of belief
networks to imprecise probabilities: an experimental investigation. Artificial Intelligence, 85(1-
2):363–397, 1996.

[35] C. Re, N. Dalvi, and D. Suciu. Efficient Top-k query evaluation on probabilistic data. In Proc.
ICDE, 2007.

[36] R. J. Roberts. Identifying protein function–a call for community action. PLoS Biol, 2(3):E42,
2004.

[37] P. Sen and A. Deshpande. Representing and querying correlated tuples in probabilistic
databases. In Proc. ICDE, 2007.

[38] R. Shaker, P. Mork, M. Barclay, and P. Tarczy-Hornoch. A rule driven bi-directional translation
system remapping queries and result sets between a mediated schema and heterogeneous data
sources. Jour Amer Med Inform Assoc, Fall Symposium Suppl, 2002.

24

[39] R. Shaker, P. Mork, J. Brockenbrough, L. Donelson, and P. Tarczy-Hornoch. The BioMediator
system as a tool for integrating databases on the web. In Proc. IIWeb, 2004.

[40] A. Tversky and D. Kahneman. Judgment under uncertainty: heuristics and biases. Science,
185:1124–31, 1974.

[41] A. Valencia. Automatic annotation of protein function. Current Opinion in Structural Biology,
15:267–274, 2005.

[42] L. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput., 8:410–
421, 1979.

[43] M. van Keulen, A. de Keijzer, and W. Alink. A probabilistic XML approach to data integration.
In Proc. ICDE, 2005.

[44] J. Weston, A. Elisseeff, D. Zhou, C. S. Leslie, and W. S. Noble. Protein ranking: from local to
global structure in the protein similarity network. PNAS, 101(17):6559–6563, Apr. 27 2004.

[45] J. Widom. Trio: A system for integrated management of data, accuracy, and lineage. In Proc.
CIDR, 2005.

[46] C. Wu, H. Huang, A. Nikolskaya, Z. Hu, and W. Barker. The iproclass integrated database
for protein functional analysis. Computational Biology and Chemistry, 28:87–96, 2004.

[47] J. Ye, S. McGinnis, and T. Madden. BLAST: improvements for better sequence analysis.
Nucleic Acids Research, 34(Web Server issue):W6–W9, 2006.

A Number of Monte Carlo iterations

Proof of Theorem 3.1

Proof. We introduce a random variable Xi to model the outcome of the i-th trial according to the
following rule: Xi becomes “1” if node 1 was false and node 2 true, “-1” if node 1 was true and
node 2 was false and “0” if either both were true or false (probability 1− r2(1− r1)− r1(1− r2)).
Hence, Xi has the probability mass function

pXi(xi) =

r2(1− r1) ifXi = 1
1 + 2r1r2 − r1 − r2 ifXi = 0
r1(1− r2) ifXi = −1 .

We now consider the random variable X = S/n with S =
∑n

i=1Xi. The expected value E (X)
of X can easily be verified to be r2 − r1 = −ε. This means that X is a fair or unbiased estimator
of −ε. The probability P [r̂1 ≤ r̂2] and, therefore, the probability that we do not necessarily rank
the nodes in the correct order is equal to the probability that X ≥ 0. Hence, we want to bound
the probability P [X ≥ 0] ≤ δ. We can get rather tight bounds by using both the first and second
moment in a formula by Bennet [7] in the form stated by Hoeffding [20][Inequality (2.9)].

Formula 1 (Bennet). Let Y1, Y2, . . . , Yn be independent random variables with Y = 1
n

∑n
i=1 Yi,

E (Y) = 0, σ2 = nVar (Y), Yi ≤ b, and i ∈ {1, . . . , n}. Then, for 0 < c < b,

P [Y ≥ c] ≤ e−
nc
b

“
1+σ2

bc
ln 1+bc

σ2 −1
”
. (1)

25

We can transform our original random variable to suit the new formula by using Yi = Xi + ε.
Then Yi ≤ 1 + ε = b and c = ε. We can now use the above inequality to write

P [Y ≥ ε] ≤
(
e−

ε
1+ε

γ
)n

, (2)

with

γ =
(

1 +
1
λ

)
ln(1 + λ)− 1 , (γ > 0) ,

and
λ =

bc

σ2
=
ε(1 + ε)
σ2

, (λ > 0) .

We can now bound γ by

γ >
λ

2
− λ2

6
=
ε(1 + ε)

2σ2

(
1− ε(1 + ε)

3σ2

)
≥ ε(1 + ε)

2σ2
max

(
1− ε(1 + ε)

3σ2
max

)
.

Calculating σ2 as
σ2 = r2(1− r1) + r1(1− r2)− (r2 − r1)2 ,

then using r1 = r2 + ε and determining σ2
max by setting dσ2

dp1
= 0, we get that σ2

max for p1 = 1+ε
2 ,

which approaches 0.5 for decreasing ε. Plugging back into σ2, we get

σ2
max =

1
2

(1 + ε)2 ,

and for γ > ε(3+ε)
3(1+ε)2

. Hence, we know that

P [Y ≥ ε] ≤
(
e−

ε
1+ε

γ
)n

<

(
e
− ε

2(3+ε)

3(1+ε)3

)n
.

Requiring now P [Y ≥ ε] ≤ δ, we get as bounds,

nsimulations =

⌈
(1 + ε)3

ε2
(
1 + ε

3

) ln
(

1
δ

)⌉
. (3)

B Reducable Schemas

Proof of Theorem 3.2

Proof. Part A: In this case the data graph is a tree with s the root node and t one of the leaf nodes.
The reduction rules will first eliminate all branches other than s→ t, then collapse the path s→ t
to a single edge.

Part B: Consider every node x ∈ P . There is exactly one incoming edge (from Q) and exactly
one outgoing edge (from Q′). Compose the two edges (the serial-path reduction), and remove the
node x, and repeat for all x′. This will remove all nodes x, and the newly introduced edges are all
independent. Moreover the new (smaller) graph is an instance of schema S′, hence we can apply
induction: since the smaller graph is reducible, so is the original graph.

26

	1 Introduction
	2 A Model for Integrating Uncertain Data
	3 Methods for Ranking Integrated Data
	3.1 Reliability
	3.2 Propagation
	3.3 Diffusion
	3.4 Incoming Edges
	3.5 Counting Paths

	4 Experiments
	5 Discussion
	6 Related Work
	7 Conclusions
	8 Acknowledgment
	A Number of Monte Carlo iterations
	B Reducable Schemas

