85,740 research outputs found

    Non-extremal black holes from the generalised r-map

    Full text link
    We review the timelike dimensional reduction of a class of five-dimensional theories that generalises 5D, N = 2 supergravity coupled to vector multiplets. As an application we construct instanton solutions to the four-dimensional Euclidean theory, and investigate the criteria for solutions to lift to static non-extremal black holes in five dimensions. We focus specifically on two classes of models: STU-like models, and models with a block diagonal target space metric. For STU-like models the second order equations of motion of the four-dimensional theory can be solved explicitly, and we obtain the general solution. For block diagonal models we find a restricted class of solutions, where the number of independent scalar fields depends on the number of blocks. When lifting these solutions to five dimensions we show, by explicit calculation, that one obtains static non-extremal black holes with scalar fields that take finite values on the horizon only if the number of integration constants reduces by exactly half.Comment: 22 pages. Based on talk by OV at "Black Objects in Supergravity School" (BOSS2011), INFN, Frascati, Italy, 9-13 May, 201

    Mixed superposition rules and the Riccati hierarchy

    Get PDF
    Mixed superposition rules, i.e., functions describing the general solution of a system of first-order differential equations in terms of a generic family of particular solutions of first-order systems and some constants, are studied. The main achievement is a generalization of the celebrated Lie-Scheffers Theorem, characterizing systems admitting a mixed superposition rule. This somehow unexpected result says that such systems are exactly Lie systems, i.e., they admit a standard superposition rule. This provides a new and powerful tool for finding Lie systems, which is applied here to studying the Riccati hierarchy and to retrieving some known results in a more efficient and simpler way.Comment: 20 page

    Marginal States in Mean Field Glasses

    Full text link
    We study mean field systems whose free energy landscape is dominated by marginally stable states. We review and develop various techniques to describe such states, elucidating their physical meaning and the interrelation between them. In particular, we give a physical interpretation of the two-group replica symmetry breaking scheme and confirm it by establishing the relation to the cavity method and to the counting of solutions of the Thouless-Anderson-Palmer equations. We show how these methods all incorporate the presence of a soft mode in the free energy landscape and interpret the occurring order parameter functions in terms of correlations between the soft mode and the local magnetizations. The general formalism is applied to the prototypical case of the Sherrington-Kirkpatrick-model where we re-examine the physical properties of marginal states under a new perspective.Comment: 27 pages, 8 figure

    Non-extremal and non-BPS extremal five-dimensional black strings from generalized special real geometry

    Get PDF
    We construct non-extremal as well as extremal black string solutions in minimal five-dimensional supergravity coupled to vector multiplets using dimensional reduction to three Euclidean dimensions. Our method does not assume that the scalar manifold is a symmetric space, and applies as well to a class of non-supersymmetric theories governed by a generalization of special real geometry. We find that five-dimensional black string solutions correspond to geodesics in a specific totally geodesic para-K\"ahler submanifold of the scalar manifold of the dimensionally reduced theory, and identify the subset of geodesics that corresponds to regular black string solutions in five dimensions. BPS and non-BPS extremal solutions are distinguished by whether the corresponding geodesics are along the eigendirections of the para-complex structure or not, a characterization which carries over to non-supersymmetric theories. For non-extremal black strings the values of the scalars at the outer and inner horizon are not independent integration constants but determined by certain functions of the charges and moduli. By lifting solutions from three to four dimensions we obtain non-extremal versions of small black holes, and find that while the outer horizon takes finite size, the inner horizon is still degenerate.Comment: 46 page
    • …
    corecore