10,628 research outputs found

    Approximating the Noise Sensitivity of a Monotone Boolean Function

    Get PDF
    The noise sensitivity of a Boolean function f: {0,1}^n - > {0,1} is one of its fundamental properties. For noise parameter delta, the noise sensitivity is denoted as NS_{delta}[f]. This quantity is defined as follows: First, pick x = (x_1,...,x_n) uniformly at random from {0,1}^n, then pick z by flipping each x_i independently with probability delta. NS_{delta}[f] is defined to equal Pr [f(x) != f(z)]. Much of the existing literature on noise sensitivity explores the following two directions: (1) Showing that functions with low noise-sensitivity are structured in certain ways. (2) Mathematically showing that certain classes of functions have low noise sensitivity. Combined, these two research directions show that certain classes of functions have low noise sensitivity and therefore have useful structure. The fundamental importance of noise sensitivity, together with this wealth of structural results, motivates the algorithmic question of approximating NS_{delta}[f] given an oracle access to the function f. We show that the standard sampling approach is essentially optimal for general Boolean functions. Therefore, we focus on estimating the noise sensitivity of monotone functions, which form an important subclass of Boolean functions, since many functions of interest are either monotone or can be simply transformed into a monotone function (for example the class of unate functions consists of all the functions that can be made monotone by reorienting some of their coordinates [O\u27Donnell, 2014]). Specifically, we study the algorithmic problem of approximating NS_{delta}[f] for monotone f, given the promise that NS_{delta}[f] >= 1/n^{C} for constant C, and for delta in the range 1/n <= delta <= 1/2. For such f and delta, we give a randomized algorithm performing O((min(1,sqrt{n} delta log^{1.5} n))/(NS_{delta}[f]) poly (1/epsilon)) queries and approximating NS_{delta}[f] to within a multiplicative factor of (1 +/- epsilon). Given the same constraints on f and delta, we also prove a lower bound of Omega((min(1,sqrt{n} delta))/(NS_{delta}[f] * n^{xi})) on the query complexity of any algorithm that approximates NS_{delta}[f] to within any constant factor, where xi can be any positive constant. Thus, our algorithm\u27s query complexity is close to optimal in terms of its dependence on n. We introduce a novel descending-ascending view of noise sensitivity, and use it as a central tool for the analysis of our algorithm. To prove lower bounds on query complexity, we develop a technique that reduces computational questions about query complexity to combinatorial questions about the existence of "thin" functions with certain properties. The existence of such "thin" functions is proved using the probabilistic method. These techniques also yield new lower bounds on the query complexity of approximating other fundamental properties of Boolean functions: the total influence and the bias

    Noise Sensitivity of Boolean Functions and Applications to Percolation

    Get PDF
    It is shown that a large class of events in a product probability space are highly sensitive to noise, in the sense that with high probability, the configuration with an arbitrary small percent of random errors gives almost no prediction whether the event occurs. On the other hand, weighted majority functions are shown to be noise-stable. Several necessary and sufficient conditions for noise sensitivity and stability are given. Consider, for example, bond percolation on an n+1n+1 by nn grid. A configuration is a function that assigns to every edge the value 0 or 1. Let ω\omega be a random configuration, selected according to the uniform measure. A crossing is a path that joins the left and right sides of the rectangle, and consists entirely of edges ee with ω(e)=1\omega(e)=1. By duality, the probability for having a crossing is 1/2. Fix an ϵ∈(0,1)\epsilon\in(0,1). For each edge ee, let ω′(e)=ω(e)\omega'(e)=\omega(e) with probability 1−ϵ1-\epsilon, and ω′(e)=1−ω(e)\omega'(e)=1-\omega(e) with probability ϵ\epsilon, independently of the other edges. Let p(τ)p(\tau) be the probability for having a crossing in ω\omega, conditioned on ω′=τ\omega'=\tau. Then for all nn sufficiently large, P{τ:∣p(τ)−1/2∣>ϵ}<ϵP\{\tau : |p(\tau)-1/2|>\epsilon\}<\epsilon.Comment: To appear in Inst. Hautes Etudes Sci. Publ. Mat

    Strong noise sensitivity and random graphs

    Get PDF
    The noise sensitivity of a Boolean function describes its likelihood to flip under small perturbations of its input. Introduced in the seminal work of Benjamini, Kalai and Schramm [Inst. Hautes \'{E}tudes Sci. Publ. Math. 90 (1999) 5-43], it was there shown to be governed by the first level of Fourier coefficients in the central case of monotone functions at a constant critical probability pcp_c. Here we study noise sensitivity and a natural stronger version of it, addressing the effect of noise given a specific witness in the original input. Our main context is the Erd\H{o}s-R\'{e}nyi random graph, where already the property of containing a given graph is sufficiently rich to separate these notions. In particular, our analysis implies (strong) noise sensitivity in settings where the BKS criterion involving the first Fourier level does not apply, for example, when pc→0p_c\to0 polynomially fast in the number of variables.Comment: Published at http://dx.doi.org/10.1214/14-AOP959 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Differential Privacy of Aggregated DC Optimal Power Flow Data

    Get PDF
    We consider the problem of privately releasing aggregated network statistics obtained from solving a DC optimal power flow (OPF) problem. It is shown that the mechanism that determines the noise distribution parameters are linked to the topology of the power system and the monotonicity of the network. We derive a measure of "almost" monotonicity and show how it can be used in conjunction with a linear program in order to release aggregated OPF data using the differential privacy framework.Comment: Accepted by 2019 American Control Conference (ACC

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure
    • …
    corecore