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NOISE SENSITIVITY OF BOOLEAN FUNCTIONS
AND APPLICATIONS TO PERCOLATION

by ITAI BENJAMINI, GIL KALAI, ODED SGHRAMM

ABSTRACT

It is shown that a large class of events in a product probability space are highly sensitive to noise, in
the sense that with high probability, the configuration with an arbitrary small percent of random errors gives
almost no prediction whether the event occurs. On the other hand, weighted majority functions are shown to
be noise-stable. Several necessary and sufficient conditions for noise sensitivity and stability are given.

Consider, for example, bond percolation on an n + 1 by n grid. A configuration is a function that
assigns to every edge the value 0 or 1. Let CO be a random configuration, selected according to the uniform
measure. A crossing is a path that joins the left and right sides of the rectangle, and consists entirely of edges
e with CO(<?)=1. By duality, the probability for having a crossing is 1/2. Fix an £ 6 (0, 1). For each edge e,
let CO (e) = CO(^) with probability 1 — £, and CO {e) = 1 — CO(^) with probability £, independently of the other edges.
Let p(x) be the probability for having a crossing in CO, conditioned on CO7 = T. Then for all n sufficiently large,
P{r : \pW - 1/2| > £ } < £ .
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1. Introduction

1.1. Noise sensitivity - three examples

Consider the Hamming cube ^= {0, 1}" endowed with the uniform probability
measure P. Let ̂  C Sin be some event. Given a random x=(x^...,Xn) € ̂ , suppose
that^=(^i,...,j^) is a random perturbation of x; that is, for every j'G {1, ...,7z},j^=^-
with probability 1 —£, independently for distinct j's. Here £ C (0, 1) is some small fixed
constant. This random perturbation of x will be denoted Ng(x). We may think of Ne(^)
as x with some noise.

Based on the knowledge of Ne(^), we would like to predict the event x € ̂ .
Since the joint distribution (^,Ng(^)) is the same as that of (Ng(^), x), an equivalent
problem is to predict Ne(^) G ̂  knowing x. The event ̂  is noise sensitive if for
all but a small set of x, knowing x does not significantly help in predicting the event
Ne(^) € ̂ . More formally, ̂  is noise sensitive, if for some small 8 > 0,

(1.1) 7(^M, 8):=P{x : P(Ng(x) G ̂  | x) - P(^)| > 8} < 8.

Set

<K^ e)= inf{8 > 0 : 7( ,̂ £, 8) < §},

which is the infimum of all 8 > 0 such that (1.1) holds. This will be called
the sensitivity gauge of ^. A sequence of events ^m C £2^ will be called
asymptotically noise sensitive if

lim(|)(^,,£)=0, V£G(O, 1/2).
m—>-oo

Remark 1.1. — As shown in Section 2, ^m are asymptotically noise sensitive if
and only if

(1.2) lim var[P(Ne(x) € Aj^)] = 0.
m—>-oo

A simple example of a sequence of events which are not noise sensitive is
dictatorship. The first bit dictator is the event ^=^(^1,...,^) C Q.n '' ^ i = = l } . To
verify that {^n} is not asymptotically noise sensitive, consider some event ̂  C Sin'
Then for k > n we may obviously consider ̂  as a subset of ^, by ignoring the
extra variables. Note that this does not change the value of (|)(^, £). Consequently,
(K^n^cK^i^+o for a11 n> L
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Let us examine now the example of majority. Pick some £ € (0, 1/2). Let
^ C Q.n denote the majority event, that is,

}
(^i,...,^) Ga, : ̂ x^n/2> .

J }

The probability that ^.xj — n/2 > ̂ /n is bounded from below as n —> oo. Given such
an x, the probability that Ng(^) € ̂ ^ is greater than P[^^J + §1 for some constant
5i > 0, depending on £. We conclude that majority is not asymptotically noise sensitive
as n —^ oo.

Majority and dictatorship are not only noise insensitive, they are actually "noise
stable", in a sense defined in Subsection 1.4 below.

It turns out that the noise insensitivity of majority and dictatorship is atypical,
and many natural and interesting events are asymptotically noise sensitive.

Our third example is bond percolation on an m+1 by m rectangle in the ordinary
square grid Z2. A configuration is an element in Q.={0, 1}̂  where E is the set of
edges in this rectangle. Let CO G ^2 be a random configuration, selected according to
the uniform measure. A crossing is a path that joins the left and right sides of the
rectangle, and consists entirely of edges e with co(^) = 1. Let W^ be the event that there
is some crossing of this rectangle. By duality, it is not hard to see that P[^w] = 1/2.

Theorem 1.2. — The crossing events Wm are asymptotically noise sensitive; that is,
^(^m, ^) —^ 0 as m —> oo.

This theorem will appear as a corollary of a general result. To introduce the
more general statement, we need the notion of influence.

1.2. Influences of variables

Set \n\ = {1, ...,/z}. Given x G £2 and j G [72], let ajx= (^, ...5^)5 where x'^=Xh
when k -^-j and ^ = 1 — xj. The influence of the A-th variable on a function^: Q. —> R
is defined by

(1.3) !,(/)= ||/(cv)-/^)||,.

In other words, I^( f ) is the expected absolute value of the change in f when the
A'th bit Xk is flipped. We shall often not distinguish between an event ̂  and its
indicator function ^ . . In particular, for events ̂ , I^(^)=I^(% A Note that IA;(^)
is the probability that precisely one of the two elements x, o^x is in ̂ .

This notion of influence was introduced by Ben-Or and Linial [4]. Kahn, Kalai
and Linial [23] (see also [10, 31]) showed that for every ̂  C Q.n with P[^] = 1/2
there is aj 'G [n] with I/(^) > c\ogn/n, for some constant c > 0, and that there always
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exists a set S C \n\ with |S| ^ c(e)n/\ogn whose cumulative influence is > 1 — £; that
is, the measure of the set of inputs for variables in \n\ — S which determine the value
ofyis less than £.

Put

V) -E^CA
k

H(/)=EW-
k

Theorem 1.3. — Let ^rn C Sin be a sequence of events and suppose that H(̂ )̂ —> 0
as m —> oo. Then {^&m} 1s asymptotically noise sensitive.

Equivalent there is some continuous function 0 satisfying <I>(0, £) =0 such that ^(^€, £) ^
0(H(̂ )̂  £) for every event ̂  m some Q.n.

On Q,n-> we use the usual lattice order: (xi,...,Xn) ^ {y\, ...,J^) iff ^ ^ Vj {or ^
j G [n\. A function f\ ̂  ̂  R is monotone ify(^) ^fiy) whenever x ^jy. An event
^ C ^^ is monotone if its indicator function X ^ ls monotone.

For monotone events, Theorem 1.3 has a converse:

Theorem 1.4. Let ^&rn ^- Sin be a sequence of monotone events with

infH(^) > 0.
m

Then {^m} is not asymptotically noise sensitive.

The assumption that the events ^m are monotone is necessary here.
(For example, take ^^ to be a uniform random subset of Q.^ or parity: ^rn'-'=-
{ ^ e a ^ : 11^111 is odd}.)

Suppose that ̂  is a monotone event where the influences of all the variables
are the same. The influence Ii(^) then measures the sensitivity of ̂  to flips of a
single variable. Note that, quite paradoxically, ̂  is least sensitive to noise when Ii(^)
is largest.

We now give a quantitative version of Theorem 1.3 under the assumption that
H(<^^) goes to zero fast enough.

Theorem 1.5. — Let ̂  C ̂  and suppose that H(̂ ) ^ n~\ where a C (0, 1/2].
Then there exist c\, c^ > Q, depending only on a so that

^,£)^1/2-^ V£ 0(0,1/4).

Consequently, if ^&m C Q.n is a sequence of events satisfying H(̂ )̂ < [nm)~a and £^ is a
sequence in (0, 1/4) such that £^log^ —> oo, then (|)(̂ ,̂ £^) —> 0.
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1.3. Weighted majority

It turns out that for monotone events noise insensitivity is also closely related to
correlation with majority functions.

Let K C [n] and define the majority function on K by

MK(^)=sign^(2^- 1);^
J^

that is,

f - l i fE,eK^<|K|/2;
(1.4) MK^)=^ 0 ifE,6K^=|K|/2;

I 1 ifE,eK^>|K|/2.
Forf-.Q,^ —> R set

A(/)=max{|E(/MK)|:Kc[K]}.

Theorem 1.6. — Letf: ̂  —>• [0, 1] be monotone. Then

H(/) < CA(ff(\ - logA(/)) logn,

where G zj jow^ universal constant.

Consequently, if^&rn C ̂ ^ ^ a sequence of monotone events with

(1.5) lim A^,)2^ - logA(^,)) log/z, =0.
m—>oo ' /

Then {^m} is asymptotically noise sensitive.

One cannot get rid of the log 7^ factor (see Remark 3.10), except by using
weighted majority functions. For positive weights w = (^i, w^ ..., Wn) consider a weighted
majority function, which is defined by

M^i, x^.... Xn) == sign (̂ (2 -̂ - 1) w]\.

Finally write

A(A) = max{|E(xAM^)[ : w C [0, 1]"}.

Theorem 1.7. — Let ^rn C f2^ be a sequence of monotone events. Then {^&rn} is

asymptotically noise sensitive if and only iflim^ A(A^) =0.

For a monotone event ̂  C Q.n, which is symmetric in the n variables, its
correlation with unweighted majority is enough to determine if it is noise sensitive.
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1.4. Stability

We now defme the notion of stability, which is the opposite of noise sensitivity.
Suppose ̂  C t^, and let x C Sin be random-uniform. For e > 0, let Ng^ denote
the event Ne(^) € ̂ . It is then clear that P[^ANe^] -^ 0 as £ -^ 0. (J^A^
denotes the symmetric difference, (^ - ̂ ) U (^ - ̂ ).) The faster P[^AN^]
tends to zero, the more noise-stable ̂  is. More precisely, let {^?} be a collection
of events, where ̂  C £2^. We say that {^} are uniformly stable if the limit
lim^o P[x G ̂  A Ne^] = 0 is uniform in i.

For w G R" and s € R, let ^w,^ be the (generalized) weighted majority event

f ' 1^,,:= ̂  e R': ^(2^- - \}wj > s > c a,.
I ^ = 1 J

Let 971 denote the collection of such events:

a7t:={^^:^=l,2,.. . ,wGR", sCR}.

In Section 3 we show that

Theorem 1.8. — VI is uniformly stable. Moreover, for every ^6 € 971

P[^ -N£^] ^C£1/4,

i£;A^r^ G is a universal constant independent of ^&.

Note that an infinite sequence {^} with P[^] bounded away from 0
and 1 cannot be asymptotically noise sensitive and uniformly stable. We also observe
(Lemma 3.8) that when {^}, (^ C S\), is asymptotically noise sensitive and {^},
(J^ C Q.n •)? is uniformly stable, then ̂  and ̂  are asymptotically uncorrelated. One
can say, somewhat imprecisely, that the noise sensitive events are asymptotically in the
orthocomplement of the uniformly stable events.

Stability and sensitivity are two extremes. However, there are events that are
neither sensitive nor stable. For example, if W is the event of a percolation crossing, as
described above, and ̂  is the majority event, then ^H^ is neither asymptotically
noise sensitive, nor uniformly stable.

1.5. Fourier-Walsh expansion

For a boolean function / on {0, 1}", consider the Fourier-Walsh expansion
/=Esc[.]7 (s)^, where, z/sCr)^-!)18011. Here and in the following, we identify
any vector x G ̂  with the subset {j G [n] : xj= 1}, of [n] = {1, 2,.... n}. Consequently,
|̂ | denotes the cardinality of that set; that is, \x\ == \\x\\\ for x € Q.n.
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Theorem 1.9. — Let ^&m C H^ be a sequence of events, and set grn =X ^ ' Then {^&m}

is asymptotically noise sensitive iff for every finite k

(1.6) lim^{iJS)2 : S C [n], 1 ^ |S| ^ k] =0.
m

{^m} 1s uniformly stable iff

(1.7) lim sup E{iJS)2 : S C [n], |S| ^ k] = 0.
/—i-00 W

It can be easily shown that for f= % /,

^^^/(S)2^.
SCM

(This follows from (2.5) below with p=2.) We will introduce another quantity

w= E /(^/isi.
0+SCM

Also set for ̂  C ̂ , TZ > 1,

a(^)=logl(^)/log7?,
P(^)= -logj(^)/log7z.

For events ^ we clearly have 0 ^ P(-^)? and P(^) ^ a(<^), provided that
P[^] = 1/2. When ̂  is monotone a(^) ^ 1/2.

Perhaps some words of explanation are needed. I(<-^) measures the sum of the
influences of the variables. For monotone events it is maximal for majority, where
I(^) ^ ^/n and thus a(^) —> 1/2. In the terminology used in percolation theory,
I(^) is the expected number of pivotal edges.

For the crossing events W of percolation (in arbitrary dimensions) it is conjectured
that I(^) behaves like a certain fractional power (a critical exponent) of n. It is conjectured
that in dimension 2, as n tends to infinity, a(W) tends to 3/8. Thus, this critical
exponent generalizes and has a Fourier-analysis interpretation for arbitrary Boolean
functions.

a(^) is large if there are substantial Fourier coefficients f(S) for large [S[. In
contrast, P(^) is large if there are no substantial Fourier coefficients f(S) for S of small
positive size. We conjecture that for the crossing events for percolation, as n tends to
infinity P(^) tends to a positive limit. We are curious to know whether this limit is
strictly smaller than the limit for a(^).

1.6. Some related and future work

There are interesting connections between noise sensitivity and isoperimetric
inequalities of the form described by Talagrand in [32]. These connections and
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applications for first passage percolation problems will be discussed in a subsequent
paper [6].

Our notion of noise sensitivity is related to the study of noises by Tsirelson
[34, 35]. "Noise95, in Tsirelson's sense, is a type of G-field filtration. Uniform stability
seems to correspond, in the limit, to the noise being white, while asymptotic sensitivity
seems to correspond to the noise being black.

1.7. The structure of this paper

Theorems 1.3 and 1.4 are proved in the next section. Our proofs combines
combinatorial reasonings with applying certain inequalities for the Fourier coefficients
ofBonami and Beckner which were used already in [23]. However, to get the results in
the sharpest forms we have to rely on a sophisticated "bootstrap55 method of [33] and
on the main results of that paper which rely on this method. Talagrand^ remarkable
paper [33] has thus much influence on the present work.

Weighted and unweighted majority functions are considered in Section 3. An
applications to percolation is described in Section 4 followed by some related open
problems in Section 5. In Section 6, we will work out two examples (due to Ben-Or
and Linial). In one of these a(^) —> 1 — log^ 3 and P(^) —> 1 — log^ 3. In Section 7
we consider relations with complexity theory. A simple description of noise-sensitivity
in terms of random walks is given in Section 8. In Section 9 we consider perturbations
with a different sort of noise, where the number of bits that are changed is fixed. The
conclusions are similar to those above, but there is an amusing and slightly unexpected
twist.

For simplicity we consider here the uniform measure on Sin- More generally, one
may consider the product measure Pp, where Pp{x : Xj=\}=p. Our results and proof
apply in this setting. (All that is needed is to replace the Fourier-Walsh transform by its
analog as given in Talagrand^ paper [31] and the proofs go through without change.)
However, the case when p itself depends on n is interesting, but will not be considered
here.

Since the first version of this paper was distributed, a few of the problems we
posed were settled by several people, not always in the direction anticipated by us.
These developments are mentioned briefly in a few "late remarks55 throughout the
paper.

Acknowledgments.
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2. Sensitivity to noise

We now put the noise operator Ng defined in the introduction into a somewhat
more general framework. That will allow us to deal, for example, with the situation
where the 1 bits are immune to noise but the 0 bits are noise prone.

Consider the following method for selecting a random point x € Q.n- Let q\, ...5 q^
be independent random variables in [0,1], with E^-=l/2, for j= 1, ...,n, and let
0) G [0, 1]" be random uniform. Set

p, i f l - c ^ < ^ ,
Y. — /

3 [0, otherwise.

Then x is distributed according to the uniform measure of S ;̂ it will be denoted by
N(O), q\

Let v be the measure on [0, I? such that v(X)=P[(^i, ...,^) € X]. We think of
x as being chosen in two stages. In the first stage, y=(^i,...,^) is selected according to
V. This q gives a product measure Pq on {0, 1}^ that satisfies P^{r C Q.n '- ^U) = 1} = %•
Then x is chosen according to the measure P^.

For example, suppose ^ € ̂ . Define q= q{^) 6 [0, 1]" by % = 1 — £ if ^ = 1 and
% = £ if ^ = 0. Then for every ^ € O.n, the perturbation Ne(^) has the same distribution
as N(o), y(^)). The v giving this distribution of q will be denoted Ve.

However, the construction N(co, q) is more general than that given by the noise
operator Ng. As hinted above, one can create a situation where 1 bits are robust, but
0 bits are prone to noise. More precisely, take %= 1, with probability 1/2 — £ and
^ = £/(1/2 + £) with probability 1 /2 + £.

Another interesting example is obtained by taking each qj to be 1, with probability
(1 - £)/2, 0, with probability (1 - £)/2, and 1/2 with probability £.

Let f: {0, 1}" —>• R be some function. In the following, f will be taken to be
the characteristic function ^ . of some event ̂  C {0, 1}", o r /=%. — P(^). What
information does the first stage in the selection of x = N(co, q), namely the selection of
^, give about the value of f(x)? If we know that q = ̂ , then our prediction for f(x)
would be

G{f^)=E{f{x)\q=^).

The expected value of G(f, q) is obviously E(/). Let

Z(^ v) = EW ?)2 = / G^ ̂  ̂ (4

This is just the second moment of G(y, q). If Z(^ v) — (E^)2 is small, then for "most"
values of q there is no prediction for f(x) that is significantly better than the a priori
knowledge of Ef. We often write G(^, •) and Z(^, •) in place of G(%. , •) and
z^ •)•
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Lemma 2.1. — The number Z(/ v) depends only on f and the variances ^ of the variables
qj. Its expression in terms of the Fourier coefficients is,

zuv)= F^rK-
S€Q, jeS

Proof. —

G(f,z)=~E{f(x)\q=z)

= E/Wrh-IK1-^)
TC[»] j€T ^T

=EE7(s)(-l)ITnsl^^-^(l-^
T S jeT j^T

^DWEf-'r'rh-nc-^-
S VT'CS jGT' ^T7 /

f E n^no-^ )
\T-CM-S JGT- ^T- ^

=E/(s)[^(( l-^-^) (ii((i-^+^)
s \jes / \^s=E7(S)^(1-2^
s jes

Therefore,

Z{f,v}=EG{f,q)2

= E E^)^^ II(1 - 2%) IIO - 2%-)
s s' \jes jes' ^

=EE/(S)/(S/) n E( l-2%•)2 n £(1-2%-).
s s' jesns' J'CSAS'

Since E^= 1/2, summands with S 4=8' vanish. The lemma follows. D
For every £ C [0, I], x G Kirn and/: ̂  —^ R set

Q^(^)=E/(N^))

(here the expectation is only with respect to the noise). Also let

var(/ £) = var(CV) = Z(/ Ve) - (E/)2.

Note that for singletons S={z} C [n], we have Q^s=(l - 2e)^s. If 81,82 C [n]
are disjoint and ^ € ^ is fixed, then Ng(^) D Si and Ng(^) n 83 are independent.
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Consequently, Q^s,^)=(Q^)(Q^). We may conclude that Q^s=(l - 2e)^s

for every S C [w], and linearity gives

(2.1) QJ= E./W-^-
SCM

One consequence of this, which can also be obtained from Lemma 2.1, is

(2.2) var(.y;e)= E f^-^-
0fSC[B]

Now we relate var(^, e) with the sensitivity gauge ̂ , e):

Proposition 2.2. — -?w ^^7 ̂  C^n

^var^, 8) < <|)(-A e) < var(^, e)173.
2

Proof. — Let 5 = <)>(^, e), and set

Y = [ y 6 ̂  : QgX^O') - p[ |̂ ̂  8}-

Then, by the definidon of <)), P[Y] > §- Consequently,

var(.A e) ^ S^m ^§3 ̂ (^ £)3-

For the other direction set

Y^LG"- QgX^^-P^] >§}-

Then P^ ^ 6. For^ € V, the trivial estimate Q^ -P[^]| < 1 holds- Thereforc'

var^.eXPlY'l+S^Z^^.e). 0

p^f,fl9. - The first part is immediate from Prop. 2.2 and (2.2). For

:; T ° Ae ̂ ^^^^ ̂  }
t^t ̂  - Q l̂h - 0 uniformly, which is the same as uniform stab^ty for

{^U- a
Rer^rk 23. - Another consequence of 2.2 and (2.2) is that for constant

e,. e7l/2): we have ̂  s) - 0 HT ̂ . eQ - 0. Consequent ̂ ove^
that ̂  is asymptotically noise sensitive, it is enough to prove var(̂ , e) - 0 with

any fixed e € (0, 1/2).
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By Theorem 1.9, to establish Theorem 1.3 we need to show that the L2 weight
of the Fourier coefficients with |S| small is negligible. For a function g= ^g{S)us let

^g=Q^g=Y.g{^us.

Observe that To(g)=E^ and T^g=g. Also note that

(2.3) ||Ti_2^||i=var^£)+i(0)2,

by (2.2).
The following hyper-contractive inequality ofBonami and Beckner [7, 3], which

was crucial in [23], will be useful.

Lemma 2.4 (Bonami, Beckner). — |[T^/|[2 ^ ||y||i+^2.

The following is a slightly weaker version of Theorem 1.3, which is sufficient
for the applications to percolation. It is presented here, since we can give an almost
self-contained proof of it.

Theorem 2.5. — Suppose that ^m C t2^ is a sequence of events and

(2.4) lin '̂y-^-co.
^oo log log Km

Then {^&rn\ is asymptotically noise sensitive.

Proof. — Abbreviate ^& for ^rn and n for n^ and set /:==% Let/:=%. —

P[̂ ]. Thus, 7(0) = 0 and 7(S) =f (S), when S 4= 0.
Recall that Ojx = %,..., ̂ ), where ^ = Xi if i ̂ j and xf. == 1 — xj. Let

j,{x)=f(x)-f{ajx), j= 1,2,...,«,

and note that

2<s)={°^ 'J^JA ' \2f{S), ifj-GS.

Since fj takes only the values —1, 0, 1, equation (1.3) gives for every p ^ 1,

(2.5) \\fj\\p=Wl/{>.

We set ri := 1 - 2e, where e G (0, 1/2) and

F (̂TI) :=var( ,̂ e) = ||T |̂|J = ̂ f {S)\^.
S+0
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By Remark 2.3 and Theorem 2.2, it is enough to prove that F^(l/2) —> 0 as m —> oo.
We have

F^(n)<E/;(s)21sl1^21s'=lEllT^^
g A ._

< 1 E llX^ (by Lemma 2.4)
(2.6) ^i

^I,^)2/^2) (by (2.5))

< ran2/(l+T12)H(^)l/(l+T12) (by the means inequality).

Take some r|i 6(0, 1/2), to be later specified, and set 'k:= logF^(r(i)/logr|i. I fr(>r | i ,
then

F^(n)^ E 7(S)VISI+nxE7(S)2

(2.7) i^|s|«x/2 s
<(TI/TI 1)^(11i)+T^ =2^.

Assume that H(^) € (0, c~2), and let a:= mm-f-logH(^)/logn, 1/2}. We may
choose f\\ := ^/a/2. Then Ii(^>) < w"", and therefore (2.6) and the definition of K give

0 Sf\ ^-> alosn
w ^31og(l7^-

The defmidon of a together with (2.4) and (2.8) show that X —> oo as m —> oo.
Hence (2.7) implies F^(l/2) —» 0 as m —> oo, which completes the proof. D

Proof of1.5. — The above calculations together with Prop. 2.2 show that

(K^, £) < var(^, e)1/3 =F^(1 - 2E)173 < 21/3(l - 2e)91^ ,

for e € (0, 1/4), when we assume H(^) ^ rT^ a € (0, 1/2]. The theorem follows
immediately. D

For the proof of Theorem 1.3, we will need the following.

Theorem 2.6. — For each k=\y 2,..., there is a constant Ck < oo with the following
property. Let ̂  C Sin be a monotone event andf-=- % .. Then

^/(^C^A^log^A))
|S|=A;

k-\
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This inequality was proved by Talagrand [33] for k =2. (Talagrand considers
an extension of this relation for two events, and our generalization applies for that
extension as well.)

Proof of 2.6. — To prove the theorem one can follow Talagrand's proof almost
word-by-word. We will only describe the changes needed to adapt the proof. One
modification required is that the inequality

(2.9) P Is': E as.s(SQ ^ t} ^ ̂ expf-^^^an"1^
[ |S|=A: J V /

must be used in place of the sub-Gaussian estimate that appears as Prop. 2.1 in [33].

Set q = ^ k / ( e ! ̂  a^\ . For q ^ 2 the inequality (2.9) is trivial, while for q > 2 it follows
by substituting q into

(2.10)
^Eas.s ^-^(EO - v^2,

\S\=k

which appears in [31] as (2.4) and is a consequence of the dual version of the Bonami-
Beckner inequality.

Set Ak := {x e ̂  : OkX f. ̂ }, and note that 2P[A^] = IA:(^). In the proof for the
case A: =2, Talagrand considers in Section 3 of [33] partitions IUJ= [72], and estimates
E{I/(^)2 : jG L(J)}, where L(J) is the set ofj'Ej such that

Ef /^ ^P[A;]2.
zei V^j /

To generalize Talagrand's argument for k > 2, one gives a similar estimate to
^{I^^)2 : jC L^_i(j)}, where L^_i(J) is the set ofj € j such that

( / \ 2 1
E ( t u^x)} : z C l , l^^-l^/P^]2.

VA, / J

We omit the details, since from this point on only straightforward changes are required
to adapt Talagrand's beautiful (but rather mysterious) argument. D

In the case of monotone events, Theorem 1.3 follows immediately from
Theorems 2.6 and 1.9. In order to get rid of the monotonicity assumption, we introduce
the shifting operator.
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Let j € {1,.... n}, and let/: Q.n —» R. For x E Q.n, set

( max{ f(x\f(ajx)}, if x = 1,
^ f(Y\'^ l -7 - -7

JJU" min{/(^),/(^)}, if^=0.

The operator Kj is called the ^-shift. The following lemma describes some useful
properties of shifts.

Lemma 2.7 (Shifting). — Letf: Q.n -> R, and ktj, i G {1,..., n}. Then

1. KiK2.. .K^/zj monotone.
2. I.(V) ^ I,(/).
3. var(K;/ £) ^ var(/ £) for each £ 6 [0, 1].

Proo/^ — Suppose for the moment that i 4^. For any a, b G {0, 1} and x G £2», let
^,z» be ^ with the z'th coordinate set to a and thej'th coordinate set to 6. Note that Kjf
is monotone nondecreasing in the variable x. Hence KiKjf(x\^) is the maximum of/
on {^o,o? xo, i? ^1,05 Xi, 1} and K^y(^o o) is the minimum. It follows that K^y= K^K^/'
This relation easily implies the first claim of the lemma.

For the second part, we may assume with no loss of generality that j =(= i, because
I,(K,/) = U/). A case by case analysis shows that

|/(^,o)-/(^i,o)|+|/(^,i)-/^,i)|

^ |K^o,o) - V(^l,o)| + IK^O, l) - V(^l, l)| ,

and the second part follows by summing over x e Q.n'
For the last part, set

^==E[/(N^))|^],
iO/)=E[V(Ne(^))|^].

Note that g { y ) +^0))=i(jQ +J(^-A but I ^(jO -^(<?J(^))1 ^ IK-^) - K^)!' T1118

implies ^(j^)2 +.§r(<^•(J;))2 ^J(j^)2 "'"^(^'J^)2- By summing overj/, we obtain E(^) ^ E(^2).
Since E^=Ej, the last claim of the lemma now follows. D

Proof of 1.3. — Let ̂  C Q.n' Set ^=KiK2 ...K^^. Then by Lemma 2.7, ^ is
monotone, H(^) ^ H(^) and for each £ > 0 we have var(^, £) ^ var(^, £). Moreover, g
takes only the values 0 and 1. By applying Theorem 2.6 for g, and using Theorem 2.2,
Theorem 1.3 immediately follows. D

Proof of l A. — Observe that for a monotone/: Q.n —> R

(2.11) I;(/)=2|/({j})|,
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and therefore

(2.12) H(/)=4^/({j})2.
j

Hence 1.4 follows from Theorem 1.9. D

Note that (2.12) implies the well-known inequality

(2.13) H(^) < 1

for monotone events ̂ .

Remark 2.8. — It is tempting to look for a simpler proof of Theorem 1.3, along
the following lines. Using (2.5) with j&=2, we find that

- / \2

(2.14) H(/) = E E W)2 = 16 E^)2/ (^n s/!-
J = l \SD{j} / S,S'

where/=%. for some event ^& C Q.n' This expression is more complicated than (2.12),
but is still valid when ^€ is not monotone. The fact that f is the indicator function of
an event is summarized by the equation f1 =f. In terms of the Fourier transform, this
translates to a convolution equation

(2.15) 7*7=7.
(By replacing/with 2f— 1, this transforms to the simpler looking/*/=^{0}.) One
may suspect that there should be a direct argument that uses only (2.15) and (2.14) to
prove that for every k= 1, 2, ...

E7(s)2-o
|S |=A

when H(/) —^ 0. Then Theorem 1.3 would follow from Theorem 1.9.

3. Correlation with majority

3.1. Uniform weights

Fix some n € N. Recall the definition (1.4) of the majority function MK, and set
M=M,=M^.

Theorem 3.1. — Letf: Q.n —^ [0, 1] be monotone. Then

!(/) ^ G^E(/M) (l + ^-logE(/M)) ,

where C is some universal constant.
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Proof. — Write f{k} for the average of/on the set [x: E^=4:

^)=(") 'E-w
W \x\=k

Then

(3.1) E(/M) = 2-" E (") (7W -/(" - k)) .
k>" v /
* 2

Recall that ^=^1,...,^) where j>j= 1 -^ andj',=.v; for i^j. Then

i(/)=2-"EEl/^)-/(^)l.
•( j

Since/is monotone, f{x) -f{sjX) ̂  0 when xj= 1 a.ndf{x)-f(sjx) < 0 when ^=0. Hence
the expression for !(/) simplifies,

I(/)=2-"E/^)(2M-n)
X

(32) -Z-Ef'Ws^-^)v / A W

= 2-'E ff) ̂ ) -/(^ - ̂ )) (2^ - ̂ ).„>. W /
k>^

For any ^ ^ 0 write k(K)={n-^-\^/n)/2. Since 0 ^7(^) ^ 1. by comparing (3.2) and (3.1),
we obtain the following estimate.

!(/) ^ (2 )̂ - n) E(/M) + 2-" E f") (f{k) -f(n - k)) [2k - n)
(3.3) k>^ v /

< ̂ E(/M) + 2-" E f") (2^ - ").
A>^) W

Because there are constants Ci, Ga > 0 such that

(3.4) 2-"(°)(2*-,),C,.xpf-(M-^
W \ ^2" /
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holds for every n and A;, by choosing X^Gs^—logE^M), where Cs is a sufficiendy
large constant, we get

2~'E f^(2^-^)^C4^E(/M),
k>fdK} W

^)(2/;-^^C4^E(/M),
A>^) W

and the theorem follows from (3.3). D

Given a set K C [)d, let MK denote the majority function on the set K; that is,

r- l ifE,eK^<|K|/2;
MK(^)=-J 0 ifE,eK^=|K|/2;

1 ifE,eK^>|K|/2.

Also set,

W)=EW)-
^K

Corollary 3.2. — Z^ K C [̂ ] and suppose thatf\ Q.n "^ [0.? 1] is monotone. Then

IK(/) ^ G^E(/MK) (l + ̂ /-logE(/MK)) ,

where C is some universal constant.

Proof. — Set m= |K|, and assume, that K= {1, ...,m}. Given ^ C £2^, set

/K(^)=2m-n E/fe^)-
y^n-m

Then ̂  is monotone and IC^)=IK(/). Gonsequendy, the corollary follows from
Theorem 3.1. D

Proofof^1.6. —Assume, with no loss of generality, that

(3.5) W/)<I,(/)

for aUj€ {!,...,%- 1}. Cor. 3.2 implies that

k / \
(3.6) EI,.(/) < CiA(/) (l + ^/-logA(/)) ̂

j=i v /
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for some constant Gi and every k e [n]. Subject to these constraints and (3.5), H(/)
is maximized if equality occurs in (3.6) for every k. Therefore,

H(/) < C?A(/)2 (l + /^iogA(7i) E f\A- V^37)2

A:= 1

^^AC/^l-logAC/-))^-1

=0(l)A(/)2(l-logA(/))logn.

This proves the first part of Theorem 1.6. The second part now follows from
Theorem 1.3. D

Theorem 1.6 tells us that if A(^m) ~^ 0 fa^t enough for monotone events ^€>m,
then they are asymptotically noise sensitive. Conversely if a sequence of (not necessarily
monotone) events satisfies inf^A(^^) > 0, then it is not asymptotically noise sensitive.
This can be proven directly; and also follows from Lemma 3.8 below.

It is interesting to note that

Theorem 3.3. — Majority maximizes I among monotone events ̂  C ̂ .

This follows from [15], although the explicit statement does not appear there. It
also follows from the classical Kruskal-Katona theorem. See also [18, Lem. 6.1].

3.2. General weights

We will investigate now some relations between noise-sensitivity and weighted
majority functions. Several of the properties we need for weighted majority functions
are easy to establish if the distribution of weights allows us to use a normal
approximation forf(x)= Y^jWjXj. But, as it turns out, working with arbitrary weights is
harder.

Our first goal is to show that weighted majority functions are uniformly noise
stable. This will imply the "only if" part of Theorem 1.7. For this, the following easy
(and quite standard) lemma will be needed.

Lemma 3.4. — Let w=(w\, ...̂  Wn) =(=0 andf(x) = Y^jWj(2xj — 1). Then

(3.7) P[|/| ̂  t\\wU ̂  3F4,

and

(3.8) P[|/|<0.3|[w||2]<0.92.

A much stronger estimate than (3.7) is known (see [28]).
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Proof. — Without loss of generality, we assume that | [w | | 2== l . Then ^[f4]^
3|H|^ - 2\\w\\\ ̂  3. Hence (3.7) follows:

P[|/l > t] =PL/4 ^ ̂  < ^E[/4] =3r4.
This implies

E[l^/2] = PL/-2 > t] + t P[/2 > s] ds ^ 3r2 + r3.
^^<

Hence

E[l^/2] =E[/2] - E[/2!^] > 1 - 3r2 - r3.

We choose ^=10, and obtain

10 - 9.9P[/2 < 1/10] = 10P[/2 > 1/10] + P[/2 ^ 1/10]/10
^[l^o^^/lO,

which gives (3.8). D

Lemma 3.5. — Let b > 0, let v\,...,Vd ^ 6, fl^rf ^ g= Zy=i ^z^ w/^r^ P[^•= 1] =
P[^ = — 1] = 1/2, flW ̂  ^ flr^ independent. Then for every t^ 1 aW ^^ry j C R,

(3.9) P[|^-^^]^^^/^

wA^"^ c zj some universal constant.

This lemma is a consequence of Theorem 2.14 in [28], for example. However,
since the proof of that theorem is arduous, we now present a simple combinatorial
proof.

Proof. — Let x be a random uniform element in ft</, and let n be a random
uniform permutation of {1, 2,...,fl?}. Let C be the collection of sets S that have the
form S= {j : n{j) < r} for some r G R. Then there is a unique y € C with \y\ = \x\.
Observe thatj^ is a random uniform element ofU/. Consequently, the distribution of g
is the same as the distribution of h(j) := ^jL i(l — 2yj)vj, where j/, is 1 or 0 whenj ̂ .y or
j S.y, respectively. Since C is totally ordered by inclusion, there is at most one S € C
such that \h(S) - s\ < b/2. So when n is fixed, the probability that |A(S) - s\ ^ b/3 is at
most max{P[H=r] : r € R}:̂ !)/̂ . This establishes (3.9) for t= 1/3. The result
for general t^\ follows by applying the result for t= 1/3 for an appropriate succession
of values of s. D

Proof of 1.8. — Let w=(w^...,Wn)^0 and SQ C R. Let/(^):= Ej=i^{2^- 1),
and consider the event ̂  := {x € Q : f(x) > so}. Take £ > 0, and let J C [n\ be
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a random subset, where each j G [n] is in J with probability e, independently. Set
Y(J):= E^j^(2^ - 1). Then 2Y(J) has the distribution of/- Ne/ Let S e (0, 1) and
set

(3.10) a:= mf{t > 0 : P[|Y(J)[ ^ t] ^ §}.

Our goal is to give an estimate from above to P[|/| < 2d\ in terms of e and 8,
which will tend to zero when S is positive and fixed and £ —> 0.

n

Set W(J) := ^ - j Wj. This is the variance of Y(J) conditioned on J. Note that

P[|Y(J)1 ^ a | J] =P[Y(J)2 > a2 | J] ^ E[Y(J)2 | J]/^2 =W(J)Az2.

Therefore,

8=P[|Y(J)|>^]= ^P[|Y(J)|>^|J=X]P[J=X]

(3.11)
XC[n]

< ^ min{l,a-2W(X)}P[J=X]=E[min{l,^-2W(J)}],
XC[n]

and we conclude that

(3.12) P[W( J) ^ 8^/2] ^ 8/2.

Now let ^i, ^25 -••?^ be independent variables that are uniform in [0, I], and are
independent from (;q, ...,^). Let w be the largest integer such that me < 1. Let Ii, ...,I^
be disjoint open intervals in [0, I], each of length e. Let Io:=[0, 1] — U^I^. Let
J^ (A:=0, 1, ...,m) be the set of i e [n] with ^ € IA:. Then each ]k with A: > 0 has the
same distribution as J above. Let ^/&k be the event that W(J^) ^ 8a2/2. Then from
(3.12) withj^ in place ofj we find that Pp^] ^ 8/2 for k= 1, 2,...,w.

We claim that for k =)= A7 the events ^^ and ;̂/ are negatively correlated. This
can be established by proving by induction on n that the events W( Jh) ^ Ji and
W(J//) ^ ^ are negatively correlated for each Ji, s^ C R (which is intuitively obvious,
since the intervals \k a^d 1̂  are disjoint). Let K be the number of k > 0 such that the
event ^&k occurs. Then

m

E[K]=^Pp^m8/2,
k=\

and

/ \2

EpC^-E^^^P^n^]-|^P[^]| <E[K],
A, A'
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because the events ^^, ^&ki are negatively correlated when k - ^ k . Therefore

P[K < m§/4] ^ P[(K - EK)2 > (m8/4)2]

(3.13) ^ 4(^8)-^ [(K - EK)2] = 4(m8)-2 (E[K2] - (EK)2)

^(m^EjK] ̂ m-^-2.

Let L be the set of k G [m] such that |Y(J^)| > a^/8/10. By (3.8), applied to Y(J^) in
place of^

P[/;GL|^] ^8/100.

Moreover, conditioned on all the J^ the events {k G L} are independent. Consequently,
a calculation similar to (3.13) gives

P[|L| < m8/100 | K ^ m8/4] ^ 0(1) w-^-2.

When we use this and (3.13) together, we get

(3.14) P[|L| < m§/100] ^ 0(1) m-^-2.

If we condition on L, on all Y(J^) for k ^ L and on all |Y(J^)| for k C L, then what
remains to determine f are only the signs ofY(J^) with A; G L. Moreover, these signs are
independent, and are + or — with probability 1/2. Hence we may apply Lemma 3.5
with b:=aV6/W, d:= |L|, S:=SQ - E^Y(J^ g= E^LY(M and take v={vk) to be
the sequence (|Y(J^)|:A:GL). The conclusion is that for t^ 1

FJI/-^! ^taVS/W |L|^m§/100] <0(l)^/^/m8.

Together with (3.14), (and choosing t=20/yS) this gives

(3.15) P[|/- so\ ^ 2a] < 0(1) (e8-2 + v/£§-1).

We now come to analyze the effect of noise. Because 2Y(J) has the same
distribution SLS f— Ng^ for every a > 0

P[^ A Ne^] ^ P[|/- so\ ^ 2a] + P[|Y(J)| ^ ^].

Choose S:=e1/4 and, as before, use (3.10) to define a. Then P[\f-so\ < 2a] ^ 0(l)e1/4

and P[|Y(J)| ^ a] < £1/4. Consequently,

(3.16) P[^ A Ne^^] < 0(1) £1/4,

and the theorem immediately follows. D
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Question 3.1. — What is the best exponent possible on the right hand side
of (3.16)?

Late Remark 3.6. — Yuval Peres and Eichanan Mossel found a simple proof
showing that, as expected, the correct exponent is 1/2.

Remark 3.7. — It follows from Theorems 1.8 and 1.3 that inf{H(^) :
^/& € 271} > 0. (A direct proof will follow.) We conjecture that H(^^) is minimized
among ^&w,Q C Q.n m SOT when all the weights are equal. It is a consequence of
Theorems 1.8 and 1.9 that

lim jpEx^s)2^.
/—>oo ^€ e9?t |S|>A:

We actually expect that among weighted majority events in Q,^ the one with equal
weights is the least stable, and for every k > 1 maximizes S|s|>/;X^(S)2.

For the proof of 1.7, the following will be needed.

Lemma 3.8. — Let ^rn-> ^m C î  be two sequences of events. Suppose that the sequence
{^m} ls noise-sensitive^ while the sequence {^m} is noise-stable. Then

limP[^ H J%] - P[^]P[^] = 0.
m

Proof. — This can be proven directly, but since P[^&m n^j =E[% % ^ ], the
^m '-^m

lemma is immediate from 1.9. D

Let the influence vector of an event ^ C Q.n be the vector 1̂  :=
(Ii(^),..,I^))eR\

Proof of 1.7. — The "only if55 direction follows from Theorem 1.8 and
Lemma 3.8.

For the other direction, we need to show that monotone, noise-insensitive events
^ C Q.n have a non-vanishing correlation with some weighted majority event ^^wi
w e [0, 1]". Talagrand's Theorem 1.1 [33] gives a lower bound on the correlation of
monotone events. This theorem asserts, in particular, that for two monotone events,
if the inner product of their influence vectors is bounded away from zero, then the
correlation between them is also bounded away from zero ^.

We know from Theorem 1.3 that for noise-insensitive events, Hl^l^ is bounded
away from zero. It remains to show that for every v € [0, 1]" with \\v\\<^ = 1, we can

{ ) For uniformly stable events, it seems that also the converse is true: if the correlation is bounded away from zero,
then so is the inner product of their influence vectors. For monotone uniformly stable events, this follows from the two-event
version of Theorem 2.6.
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find a weighted majority function ̂  =^^, w € [0, 1]̂  such that the inner product
(P^ , v) is bounded away from zero. We will prove that this holds when one chooses
W:= V.

Given any w e R", w 4 0, let P G R" denote the influence vector of ^^,
i;:=i,(^y.

Proposition 3.9. — 7%^ ^ <^ absolute constant c > 0 jz/cA ^/^ (^ P) ^ c ^/or ^y^
n = \, 2y ... aW ^ry w C R^ w^A nonnegative coordinates and \\w\\^ = 1.

Pwo/: — Set /(^)= Ej=i(2^ - 1)^ for x € a,. Then /({ j})=^ for j G [/z]

and/(S)=0 for S C [n], |S|^1. On the other hand, I/^)=R,({ j}), where
M^ = sign(y). Therefore,

(^r)=(7,M,}=</,M,)=E|/(^)| ,

which is bounded from below, by (3.8). This completes the proof of the proposition,
and the proof of Theorem 1.7. D

Remark 3.10. — We now show that one cannot remove the log in Theorem 1.6.
Fix some k, n G Z with n ^ k > 0. Let wj= l/^/jlogn for j= 1, ...,TZ, and let Uj= 1/y^
for j ^ k and ^=0 for j > A. Set/^)= Ej=i(2^ - 1)̂  and/,(x)= Ej=i(2^ - l)^,
where x € ^. Then the event ^ ^ 0 is noise stable, by 1.8. We show that
P [ ^ L ^ O | fu ^ 0] ~^1/2 as 72 -^ oo, no matter how k=k(n) is chosen. Indeed,
given any ^ C t2, let s(x):= ̂ /kfu{x)= Zy^(2^ — 1). If s(x) < 0, let x be obtained from
x by replacing —^) of the 0 entries in x by 1's, where the set of entries replaced is
chosen randomly and uniformly among all possibilities, and if s{x) ^ 0, set ~x = x. Then
^[fw(x) ^ 0 | fu{x) ^ 0] =P[f^(x) ^ 0]. Therefore, by Lemma 3.5 applied to w, it is
enough to show that^(x) —fw{x) —> 0 in probability as n —> oo. This follows from

k
E|/^) -fM = (2A)E[max{0, - s{x)}] ̂  w, = 0(l)/^/iog^.

4. An application to percolation

Let R be an (m + 1) x m rectangle in the square grid Z2, and let Q, be the
set of all functions from E, the set of edges of R, to {0, 1}. We identify ^2 with £^;
where 72=^== |E| =2m2 — 1. A point x € Q. is called a configuration, and can be
identified with the subgraph consisting of all vertices of R and all edges e with x(e) = 1.
A connected component of this graph is called a percolation cluster.
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Let ^ = ̂  C Q. be the event that there is a left-right crossing of R; that is, W
is the set of all configurations that contain a path joining the left and right boundaries
of R. An easy and well known application of duality shows that P[^] = 1/2.

Kesten [24] gives an estimate from above for the probability that an edge near
the middle of R is pivotal for ^. Similar estimates for edges near the boundary
can probably be extracted from Kesten's paper. These give an inequality of the form
I/(^w) ^ ^~l~c, c > 0, for each 7. Then Theorem 2.5 implies 1.2. However, we prefer
to present another proof, based on Theorem 1.6.

The only percolation background needed to understand the proof is that in our
situation the probability that a vertex in R is connected in the configuration to some
vertex at Euclidean distance r is at most Gr"17^ for some constants G, p > 0. This
follows from the celebrated Russo-Seymour-Welsh Theorem [29, 30] (see also [19]).

Proof of 1.2. — Let Ey be the set of edges in the right half of R, with edges
exactly centered included. Let K C E^. We now estimate E(%^MK).

Consider the following algorithmic method of randomly selecting a configuration.
Let o^ and cc^ be two independent elements of ^|K| and Q.n-\K\-> respectively. Let Vi
be the set of vertices on the left boundary of R, and set VISITED = 0. As long as
there is some edge [v, u] ^ VISITED joining a vertex v C Vi to a vertex u ^ Vi,
choose some such edge ^==[y,^] , and do the following. Append e to VISITED. If
e G K, let y (e) be the first bit in the sequence co1^ that has not been previously used
by the algorithm, while if e ^ K let y (e) be the first bit in the sequence oF that has
not been previously used by the algorithm. Ifj/(^)== 1, then adjoin to Vi the vertex u.

This procedure defines y for all e € VISITED. Let ^ 6 ^2 be random, uniform,
and independent ofj/, and let x^y on VISITED while x=^ on E —VISITED. This
defines a configuration x € Q..

The following is obvious:

Lemma 4.1. — The configuration x given by the above algorithm is uniformly distributed in
Q. The event x € ^ is equal to the event that at the end of the algorithm \\ intersects the right
boundary and is independent from ^ (can be determined by y). D

Let us estimate the probability that K D VISITED is large. An edge e € K is in
VISITED iff there is in x a path joining a vertex of e to the left boundary of R. Since
K C E^, it follows from the above stated consequence of the Russo-Seymour-Welsh
Theorem that the probability for the latter event is bounded by Gm"1^, for some
constants C, p > 0. Consequently,

E|Kn VISITED] ^ GlKim"17^

which implies

P[^] ^ G^-1/^,
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where ^€\ is the event

^ := {x e Q : |K n VISITED] ^ IKI^-2^}.

Let t^2 be the event that there is an integer j in the range 1 ̂ j < iK-lm"2^31^ such
that

^-E^ ^iKlm-^logm.

It is easy to see that the P[^^] decays super-polynomially in m; in particular,

P[.0 < 0(m-'/P).

As P[^i U^] ^ O^m-'Asp), we have

(4-1) E^u^^MK)^0(l)m-•A3P).

Now suppose that the algorithm produced ^ y such that ^&\ U ̂ 2 does not hold.
Then it follows that

| VISITED n K|
^ y ( e ) ^(l^lKlm-^logm.

^ VISITED n K

This implies that

E[MK% |j/] ^ 0(1) m-1/^ log m, 1y ̂ ^ U^.

Since ^ € ^ can be determined from j, we get

E((1 -X^ U^)^MK) < 0(l)^-l/^logm.

In view of (4.1) this implies

E^MK^CWm-^logm,

and Cor. 3.2 gives

(4.2) IK(^) ^ 0(l)^m-lA3P)(logm)3/2

for every K C E^, since W is monotone. By symmetry, this would also hold for
K C E—E^, and therefore for every K C E. Consequently, by the proof of Theorem 1.6

(4.3) H(^) ^ 0(1) ̂ -^(logm)4.

An appeal to Theorem 2.5 completes the proof. D
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Remark 4.2. — Since I(^)= Z^L(^) is also the expected number of pivotal
edges for ^, (4.2) shows that the expected number of pivotal edges is bounded by

0(1) m'-^dogmf2.

Although this is better than the general bound of 0(1) m that follows from Theorem 3.3,
a somewhat better bound can be extracted from Kesten's [24].

Corollary 4.3. — There is a constant c > 0 with the following property. Ife =c/logm, then

for large m, with probability at least 1/4_, {x, Ng(^)} D W =1 . That is, if each edge is switched
with probability c / log m, independently, then the crossing is likely to be created or destroyed.

The corollary follows from (4.3) and Theorem 1.5. The details are left to the
reader.

5. Some conjectures and problems concerning percolation

5.1» Other sensitivity conjectures

Consider the crossing event ^^ for an (m + 1) X m rectangle in the square grid
Z^. By Theorem 1.2 and Section 2, from knowing which edges are open for all but
a small random set of edges, we have almost no information whether crossing occurs.
This suggests that for some deterministic subsets of the rectangle R==R^ knowing
the configuration restricted to that configuration typically gives almost no information
whether crossing occurs. It follows from the Russo-Seymour-Welsh Theorem [29, 30]
that E^, the set of edges in the right half of the rectangle, is not such a subset. Yet we
believe that all the horizontal edges (or all the vertical edges) is such a subset. That
is, let x^y € Q. be two independent uniform-random configurations. Let ^e)=x(e) for
horizontal edges e, and ^{e)=y(e) for vertical edges. Let j&(co)=P[^ G ^|^=co].

Conjecture 5.1. — For any £ > 0, for all sufficiently large w,

P{coea: |j&(o))- 1/2| >e} <£.

Here is a variant of this conjecture for Voronoi percolation. Fix a square
in R2. Voronoi percolation is performed in two steps. First pick n points in the
square uniformly and independently. Second each cell in the Voronoi tessellation
determined by the chosen points is declared open with probability 1/2, and closed
otherwise, independently of the other cells, (see Benjamini and Schramm [5] for the
exact definitions and a study of Voronoi percolation). By duality, the probability of
open left-right open crossing is 1/2. In the spirit of Theorem 1.2, we conjecture that
typically, knowing the Voronoi tessellation (but not knowing which cells are open) gives
almost no information whether an open left-right crossing exits.
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5.2. Stronger sensitivity conjectures

As before, let ^ denote the crossing event for an (m + 1) x m rectangle in the
square grid Z2.

Conjecture 5.2. — There exists a P > 0 so that lim^_^ <|)(^m5 m~^) = 0.

It is known [25, 24], respectively, that for some reals 0 < b\ < b^ < 1,

m^ ^ I(^) ^ m\

and it is conjectured (see, e.g., [14], p. 91) that I(^w) behaves like m3/4.

Problem 5.3. — Is it true that lim^_^ <|)(^m, £m) = 0 when £^ = o(m~3/4)?

Recall that our proof of noise sensitivity for ^ used (indirectly) upper bounds
on I(^n). On the other hand, there is a simple heuristic argument that directly relates
noise sensitivity to the lower bounds on I(^) and the distribution of the number of
pivotal edges. Namely, we cannot expect the crossing event Wm to be stable under
noise which, with a very high probability, will flip pivotal edges. This argument tends
to support Conjecture 5.2.

5.3. Dynamical percolation

Dynamical percolation was introduced by Haggstrom, Peres and Steif [20].
Consider the following process. Let {Xg} be independent Poisson point processes in
R indexed by the edges e e ER of the (rn + 1) x m rectangle R=R^ in Z2. Let
XQ : ER —^ {0, 1} be random-uniform. For each t > 0 set Xf(e):=XQ(e) if the number of
points in (0, f\ D X<, is even, and Xf{e) := 1 — Xo(e) if the number is odd. This gives a
continuous time stationary Markov chain Xf in f2= {0, 1} .̂ Write P for the probability
measure governing this process. For each fixed t, the random variable Xf can be thought
of as ordinary (Bernoulli (1/2)) percolation in Z2.

An interesting problem raised by [20] is weather there are (exceptional, random)
times t in which there is an infinite percolation cluster in ^. The result described below
might be relevant.

As before, let ^ denote the set of configurations in Sl that have an open left-
right crossing of R^. For all t, P[Xf G ^] = 1/2. Let S^ be the set of switching times;
that is, Sm is the boundary of {t ^ 0 : ̂  € ^w}. As a corollary of Theorem 1.2, we
have,

Corollary 5.1. — S^ Fl [0^ 1] \ —> oo in probability.
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Proof. — Suppose s > t^ 0. Observe that the distribution of the pair (^, Xs) is
the same as the distribution of the pair (^o, Ng(xo)), where e is a function of s- t and
£ > 0 when s > t. (Actually, £/(j - f) -^ 1 as s - t —^ 0.)

Let k be some positive integer, and set £=e(l/A:). Let tj:=j/k. Let W be the set
of co € Q such that P[Ne(co) € ^] - 1/2| > 1/4. Then P[ |̂ -^ 0 as m -^ oo, by
Theorem 1.2. Let ^(a, K) be the event that S H [a, b] =0. Observe that for 0) ^ ̂
we have

P[^(^i)[^.=co] ^3/4,

because ^(^, ^+1) is disjoint from the event \{x^ x^} H ̂  = 1. Hence we can make
the following estimate,

P[^(O, ^i)] =P[^(O, .̂) n ^(^, ̂ )]
= ̂  p[^(o, .̂) n ̂ , ̂ i) | ̂ . = co]p{co}

(oe^

E
(oe n

= ̂  P[^(0, ^) [ ^.=io]p[^((,, ^i) | ^.=(|)]P{(O}
coeQ

(by the Markov property for Xf)

^P[^+ ^ P[^(0,^|^.=co]p[^,^0|^=^
coe^-^- L -'

^P[^]+(3/4) ^ P[^(0,^)[^.=co1P{co}
coeQ-^

< P[^] + (3/4) ̂  P [^(0, ^) | ̂ . = co] P{co}
coe^

=P[^]+(3/4)P[^(0,^.

Using this inequality and induction gives P[^(0, d ^ 4P[<^] +(3/4y. By stationarity,
for every t ^ 0, the same estimate for the probability of ^(t, t + j / k ) holds. Since k
may be chosen arbitrarily large, and P[ |̂ -» 0 as m -> oo, the corollary easily
follows. D

5.4. Limits and conformal invariance

The motivating questions behind this work were the conjecture regarding the
existence of the limit and the conformal invariance conjecture for two-dimensional
percolation.

These conjectures say, roughly, that the crossing probabilities inside a domain
between two boundary arcs have a limit as the mesh of the grid goes to zero, and the
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limit is invariant under conformal transformations of the domain and the boundary
arcs. For more details, see Langlands, Pouliot and Saint-Aubin [26].

Consider a triple ^ = (G, A, B), where G= (V, E) is a finite planar graph with
m edges, and A, B C V. Let p^ be the probability that there is an open crossing from
A to B in a uniform-random configuration x € 0.= {0, \}E.

Let ^S = (H, A', B') be a triple obtained from G by the following operation:
for every edge e of G delete e with probability (1 — t ) / 2 contract e with probability
(1 — t ) / 2 and leave e unchanged with probability t, independently of the other edges.
3^ is a random variable which takes values in planar graphs with two distinguished
vertex sets.

Of course, E(^^)==j^, and noise sensitivity, when it applies, asserts that the
value of p^ is concentrated around the mean. Noise sensitivity enables one to relate
the crossing probabilities of percolation on different graphs and we had hoped that
it will be relevant to conjecture regarding the existence of the limit conjecture. At
present, however, such applications are beyond our reach as we do not have a
good understanding of planar graphs which are obtained by random deletions and
contractions of the form described above when ^ is a rectangle in the square grid.

To be more specific, suppose that we take G to be the m 'x. cm rectangle in
Z2 (c > 0 some fixed constant) and let A and B be its left and right boundaries. It
follows from Theorem 1.5 and (4.3) that p^ — p^ —> 0 in probability, provided that
t ' logm —> oo. (Conjecture 5.2 would give it even when t • nft —> oo for some P > 0.)
It is conjectured that the crossing probability tends to a limit as m tends to infinity
and an approach to this conjecture would be to relate the distribution of such random
planar graphs starting from similar rectangles of different sizes. (The values of t should
depend on the size but be large enough that noise sensitivity applies).

In a different direction, the random planar graphs 3^ obtained when you start
with the (m+ 1) x m grid and apply certain random contractions and deletions may be
related to models of random planar graphs in mathematical physics [1].

5.5. Fourier-Walsh coefficients of percolation

It is a natural question to try to understand the Fourier-Walsh coefficients of
boolean functions given by percolation problems. Consider (again) the event W -=. Wm
of a left-right crossing of an (m + 1) X m rectangle R=R^ of the square grid, Z2. Let
fm'-^K^ The Fourier coefficients offm are indexed by subsets of ER, the edges in R^.

—2
The values/ can be regarded as a measure on the space of subgraphs of R^.

Problem 5.4. — Describe this measure!

It follows from Theorem 1.5 and our estimates for H(^), that all but a negligible
part of the L2 weight of the Fourier coefficients / (S), where S is non-empty, is for
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|S| > clogm. Conjecture 5.2 is equivalent to the assertion that, in fact, this is true for
|S| > m^ for some P > 0. Conjecture 5.1 is equivalent to the statement that for all but
a negligible part of these Fourier coefficients, the number of vertical edges in S tends
to infinity with m.

5.6. Other models of statistical mechanics

It would be of interest to extend the results of this paper as well as earlier results
on influence ([23, 18]) to other models of statistical mechanics, such as the Ising
and Potts models. Many of the results on influence and on noise sensitivity should
be extendible to measures on ^ for which the coordinate variables are positively
associated, namely, measures for which every two monotone real functions are
positively correlated.

6. Some further examples

We will discuss now four examples, the first two were considered by Ben-Or and
Linial [4].

6.1. Tribes

Consider n boolean variables divided into t tribes Ti,T2...,T^ of size s each,
and let / be the boolean function which take the value 1 if for some j, 1 ^ j ^ t, all

variables of T} equal l . I f j = log n - log log n + log log 2, then P[f= 1] w ]-. Also note

that I^(/) ~ logn/n for every k. It is easy to show directly that/will be immune to
£-noise when £=o(l/log7z) and will be devastated by e-noise if clog 72 — oo.

Thus,J(/) ^\ogn/n.

6.2. Recursive majority on the ternary tree

Consider n = y boolean variables which form the leaves of a rooted ternary tree
of height t. A boolean function / is defined as follows: Given values for the variable
on the leaves compute for each other vertex its value as the majority of the values of
its sons and set the value of/ to be the value of the root.

Ben-Or and Linial showed that I^(/) ~ n~log 2/log 3 for every k and thus
^f) -^ 1 - ̂ 2/1(^3 as t -^ oo. It is easy to see that also P(/) -^ 1 - log 2/log 3.
This follows at once from the following observation: for ^=1 , if we switch the value
of each leaf with probability p independently, then for small p the probability that the
outcome will be switched is (3/2)j& + o(p).
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Conjecture 6.1. — There is an absolute constant Po < 1/2 (find it!) such that for
every monotone Boolean function^ ?(/) ^ Po.

Late Remark 6.1. — It was pointed out by Mossel and Peres by considering certain
recursive majorities on larger trees that this conjecture is false.

6.3. Number of runs

We considered mainly monotone events. Here is an interesting noise stable non-
monotone event. Given a string of n bits x\, x^...,Xn, let R(;q, ̂  •••^) be the number
of runs. Thus, R is one plus the number of pairs of consecutive variables with different
values.

The event that R^i,^? "-^n) is larger than its median is noise stable. Indeed,
writer =Xi<S Xi+t, i= 1,..., n — 1, and note that them's are independent, and R is just
the majority event on the y\s. (Here © is addition mod 2; that is, xor.)

6.4. Majority of triangles

We considered only the case where p is a constant. When p tends to zero with n,
new phenomena occur. Consider, for example, random graphs on n vertices with edge
probability p = n~a^ a > 0 and the event that the number of triangles in the graph is
larger than its median. This is a noise stable event but its correlation with majority
(or any weighted majority) tends to 0 as n tends to infinity.

7. Relations with complexity theory

There is an interesting connection between the complexity of boolean functions
and the notions studied in this paper.

7.1. A CO and influences

An important complexity class AGO of Boolean functions are those which can
be expressed by Boolean circuits of polynomial size (in the number of variables) and
bounded depth. Boppana [9] proved that if/ is expressed by a depths circuit of size
N then

(7.1) IC/^Gilog^N.

Earlier, Linial, Mansour and Nisan [27] proved that the Fourier coefficients
of functions which can be expressed by Boolean circuits of polynomial (or quasi-
polynomial) size and bounded depth in AGO decays exponentially above poly-
logarithmic "frequencies55. Both these results rely on the fundamental Hastad Switching
Lemma, see [21, 2].
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Recall that a monotone circuit is one where all the gates are monotone
increasing in the inputs; i.e, there are no "not55 gates. The Hastad lemma for monotone
boolean circuits is easier and was proved already by Boppana [8].

We conjecture that a reverse relation to 7.1 also holds.

Conjecture 7.1 (Reverse Hastad). — For every £ > 0 there is a K=K(e) > 0
satisfying the following. For every monotone ̂  C Q.n, there is a ^3 C ^ such
that P[^A J8'\ < £ and J8 can be expressed as a Boolean circuit such that

(log NT 1 <KI(^),

where c and N are the depth and size of the circuit, respectively

Monotone Boolean functions with bounded influence were characterized by
Friedgut [16, 17]. The results of [11] are also relevant to this conjecture.

Ha Van Vu raised the question if there is a spectral way to distinguish between
bounded depth circuits of polynomial size and bounded depth circuits of quasi-
polynomial size. In particular, he was looking for a way to show that the graph
property "having a clique of size log/z55 for graphs with n vertices, cannot be expressed
by a bounded depth circuit of polynomial size. (Here the set of variables correspond
to the Q) possible edges.)

Conjecture 7.2. — Let £ > 0 be a fixed real number. Let ̂  be a monotone
property expressed by a depth-2 circuit of size M and letf=^ Then there is a set
y of polynomial size in M (where the polynomial depends on c and e) so that

W(S):s^y} ^£.

This conjecture may also apply to TOO, see below. It would be of great interest to
characterize Boolean functions for which most of the weight of the Fourier coefficients
is concentrated on a set of polynomial size in n.

7.2. TCO and noise sensitivity

Noise sensitivity seems related to another class of boolean functions - threshold
circuits of bounded depths see [36, 22]. In a threshold circuit each gate is a weighted
majority function. For the study of spectral properties of signs of low degree polynomials
see Bruck [12] and Bruck and Smolensky [13].

Conjecture 7.3. — Let / be a boolean function given by a monotone threshold
circuit of depth c and size M. Then

(7.2) J(/)=0(l)(logMT1.
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Thus, for 1/£ < O^^logM)^ we expect that var(^e) is bounded away from
zero. Also here it is a tempting conjecture that a reverse relation holds.

We conjecture further that all functions f that can be expressed by a depths
monotone threshold circuit where all the threshold gates are balanced are uniformly
stable. (And in particular, ]{f) = 0(1).) Possibly, functions in this class of functions
approximate arbitrary well arbitrary uniform stable monotone Boolean functions.

Conjecture 7.3 implies theorems of Yau [36] and Hastad and Goldmann [22].
They proved that the and/or tree (or equivalently the example of ternary tree of
Section 6) does not belong to monotone TGO; i.e., it cannot be expressed as a
monotone bounded depth circuit of polynomial size.

The results of Yau and Hastad are still open for the non-monotone case. This
would follow if relation 7.2 holds even for every monotone boolean function/given
by a (general) threshold circuit of depth c and size M.

8. Random walks

For nonempty ̂  C £^, consider a random walk defined as follows: start with
a point chosen at random uniformly from ̂ , and at each step, stay where you are
with probability 1/2, and with probability l/(2/z) move to any one of the neighboring
vertices. Let P^ be the measure on ̂  given by the location of the walk after t steps,
and set

W(^, £) := mf{t: ||P^ - P|| < £}.

Here ||P^ — P|| is the measure (L1) norm of the difference between P^ and the
uniform measure.

Theorem 8.1. — Suppose that ^&m C O.n ls a sequence of events satisfying
inf,P[̂ V >0.

1. {^rn} ̂  asymptotically noise sensitive l̂im^W^^ £)/^ =0 for every fixed e > 0.

2. If^m) -^ P. then W(̂ , £) ^ n^-°^\

Proof. — Setft(x)•.=2nmP^[{x}]. Note that

^==(l/2)/+(2^)-l^o,•/.
^ = i

Consequently,

f^s)= f27^)^^^]-1 [2nm^} f^(s).
2^ / \ 2^
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This gives for every ^=1,2 , . . .

( \ 2t

||P^ . _ p||2 < || f l ||2 _ pr _? -i-l Y^ 2^ — pU ^ 2
ll̂ ^ ^|| ^ 1 1 ^ - n\2-y\^m\ ^ ——————— % (sY

0+^ 272, /

^P^^f2^) + E^(.)2
\ 2^ / ow ^m

^P[^rlexp(-^)+ E ̂  (s)2.
0<\s\<k m

The theorem follows. D

9. Changing a fixed size set of bits

The noise operator Ng changes every input variable independently of the others,
and the expected number of bits changed is en, where n is the number of variables.
Understanding the effect of different types of noise may be of interest. We consider
a variant where a fixed number of bits are changed. In other words, for x G Q.n and
q G [72], let Nq{x)=x<Ss, where s is chosen randomly uniformly among s G Q.n with
cardinality q, independent from x. Here © is addition mod 2; that is, xor.

The analysis of the noise N^ is similar to that of Ng, but a little care is needed.
Consider the following example. Let ̂  C ̂  consist of those x G Q.n such that \x\ is
odd. This event ^ is called parity. Observe that for each fixed q, the conditioned
probability P[Nq(x) C ^\x=y\ is either zero or 1. In other words, knowing x allows a
perfect prediction for N^) € ̂ . Note that ^(S) is nonzero only when S G {0, [n]}.
This means that the^vanishing of the weight of the lower Fourier coefficients does not
imply sensitivity to N^, as in Theorem 1.9.

For/: ̂  -> R and q C [n] set

var(/ ^)=var^(E[/(N^)) | x=y\) =E^E(/(N^)) | ̂ =j;)2 - (E/)2.

We say that a sequence of events ̂ ^ C Q^ is asymptotically noise sensitive with
respect to N if for every £ € (0, 1) and every sequence {^} with £T^ ^ ̂  < (1 -e)^,
we have

limvar(^,^)=0.
m

Note that this is equivalent to the straightforward analog of the definition for
asymptotic noise sensitivity to our current setting.
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Theorem 9.1. — Let ^rn C O.n^ be a sequence of events, and set gm=% ^m-

1. This sequence is asymptotically noise sensitive with respect to N iff for every finite k

^E^J8)2: s c ̂  1 ^ Is! ̂  k or Is! ̂  n - k} =0-
772

2. A sufficient condition/or asymptotic noise sensitivity is H(̂ )̂ —> 0.

Proof — For/: ̂  -^ R set

TJ^)=E/(N^)).

We now compute the Fourier coefficients of Tqf. Take r E Sl^.

E(T,/.^=2-"^TJ-(x)(-1)1^-1
x

=2-"f") EE^®^-1)1^'
W x 1 ^ 1 = 1 ?

^^

^ |^|=^

-1

=2-"f") EE^x-1)1^1^1)'^1
W y |,|=,^oxx--?

Gonsequendy,

(9.1) T,/= ̂  ̂ , ̂  |r|)/(r)^
r^r,

where

.»,„„(;)£(-<)(:-_;).
j V/ \ -z ^ /

Since ^(^z, ^ 0) == 1, this gives^

(9.2) var^^^IlT,/!!^-^)^ ^ ^ ^ ISl)2^)2.
0+SCM

Consequendy for 9.1.1 it is enough to understand the behavior of the coefficients
c{n, q, k). For this, consider the sequence
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The sequence has a unique maximum, which occurs when j is an integer j' close
to qk/n. Consequently, c(n, q, k) ^ 2^. Now let n, k, q -> oo, and assume that
en ̂  q < (1 - e) n and n - k —^ oo, where £ > 0 is fixed. Then

lim^, q^ k)=0.

This gives one direction in 9.1.1.
Also note that when q < n/{3k), \c(n, q, k)\ is approximately OQ. This gives

liminf[^, q, k)\ > 0 when k is fixed, n —^ oo and q is about n/3k. Since c(n, q, k)=
± c(n, q,n— k), we get the other direction of 1.

Now assume that H(^^) —> 0. From Theorem 1.9 we know that

^ E ^ J ^ ^ C M ^ ^ I S I ^ ^ ^ O
m )

for every fixed k. Equation (2.14) gives,

HW ^ ̂  Efc^^JS')2 : S, S' C [n], |S|, [S'l > 3«,/4}

^ ( E iJS)2] .
\|S|>3^/4 /

Consequendy,

I™ E )̂2 : S C [K], |S| > n - k} = 0
w

and the proof is complete. D
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