116 research outputs found

    iTETRIS Platform Architecture for the Integration of Cooperative Traffic and Wireless Simulations

    Get PDF
    The use of cooperative wireless communications can support driving through dynamic exchange of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) messages. Traffic applications based on such systems will be able to generate a safer, faster, cheaper and cleaner way for people and goods to move. In this context, the iTERIS project aims at providing the framework to combine traffic mobility and wireless communication simulations for large scale testing of traffic management solutions based on cooperative systems. This paper addresses the description and explanation of the implementation choices taken to build a modular and interoperable architecture integrating heterogeneous traffic and wireless simulators, and application algorithms supporting traffic management strategies. The functions of an “in-between” control system for managing correct simulation executions over the platform are presented. The inter-block interaction procedures identified to ensure optimum data transfer for simulation efficiency are also introduced

    Improving the Accuracy of IVC Simulation using Crowd-sourced Geodata

    Get PDF
    Abstract-We discuss the use of crowd-sourced geodata in simulative evaluations of Inter-Vehicle Communication (IVC) protocol designs. Typically, network simulation tools, which have been improved over decades of network research, are used for evaluating communication systems. In the area of IVC, however, additional challenges have to be met. Most important, the mobility of vehicles in network simulation needs to be represented accurately, e.g., using road traffic microsimulation techniques. These can be integrated with network simulation tools in order to provide a holistic view on the overall system performance. Obviously, the quality of these approaches inherently depends on the quality of provided map data. The OpenStreetMap project provides a community-maintained repository under an open license model. The available crowd-sourced geodata not only consists of road topology data but also includes fine-grained details such as traffic lights, speed limits, and even information about buildings, which represent obstacles for wireless communication. Using our Veins simulation framework, we show that this data increases the accuracy of IVC simulation

    Coupling models of road tunnel traffic, ventilation and evacuation

    Get PDF
    As road tunnel accidents can result in numerous fatalities and injuries, attention must be paid to accident prevention and management. To address this issue, use of integrated tunnel model for system evaluation and training of road tunnel operators on computer simulator is presented. A unified tunnel model, including traffic, meteorological conditions, ventilation and evacuation that is presented. An overview of simulation models, simulator architecture and challenges during the development are discussed. The integrated tunnel model is used as a core of a simulation system that is capable of reproducing tunnel accidents in real time and it interfaces with Supervisory Control And Data Acquisition (SCADA) interfaces used in real tunnel control centres. It enables operators to acquire experience they could otherwise get only during major accidents or costly exercises. It also provides the possibility for evaluation of tunnel control algorithms and Human Machine Interfaces (HMIs) for efficient operation of all safety systems during upgrades and maintenance. Finally, application of the model for accident analysis and optimization of emergency ventilation control is presented where it was used to identify cause of emergency ventilation malfunction and design fault. First published online 20 February 202

    COLOMBO Deliverable 1.1: Scenario Specifications and Required Modifications to Simulation Tools

    Get PDF
    While targeting on supporting descriptions of scenarios and extensions to the simulation suite, the document additionally delivers a complete overview of the evaluation procedures to use in COLOMBO. Starting with an overview of the evaluation process, based on work done in the FESTA project, the document includes definitions of the performance indicators to use. These were originally produced by the iTETRIS project (by consortium partners of COLOMBO, mainly) and was extended within COLOMBO by performance indicators that describe the behaviour of inter-vehicle communication. To put the work on a scientific ground, a performed comparison of 40 scientific simulation studies is given, that shows that no standard scenarios and metrics exist. Additionally the document lists feature extensions which shall be implemented into the simulation tools within the COLOMBO project. Applicable software and data yielding to the scenarios were provided to the COLOMBO partners. As targeted, the document lists the scenarios made available within COLOMBO, distinguishing synthetic and real-world scenarios. Overall, seven scenarios based on real-world data were made available. Additionally, a tool that allows generating a large variety of synthetic scenarios is presented. The document ends with an extension (against the one given in D5.1) of requirements put on the simulations suite

    A Research Approach to Study Human Factors in Transportation Systems

    Get PDF
    This thesis proposes a new general-purpose methodology to conduct studies on Human Factors in Transportation Systems.A full-fledged setup and implementation of the methodology is provided for validation. This setup, which uses real data to perform the simulation, includes a traffic micro-simulator, a driving simulator, a traffic control centre and an Advanced Driver Assistance System, providing an experimentation laboratory, in which empirical research can be conducted. The communication between the simulation components is made interchangeably using both the European standard Datex II and the SUMO TraCI protocols.Several usage scenarios are implemented and indications on how to extend the methodology to accommodate different requirements are provided; as to prove its usability and feasibility. A simple Human Factors study was conducted using the implemented setup. This study uses naturalistc data and evaluates the network performance gain by using an Advanced Driver Assistance System that recommends new routes to drivers in congestion situations and provides a final validation of the methodology.In conclusion, the methodology has been proved usable to effectively conduct Human Factors research and also to develop Advanced Driver Assistance Systems applications in a controlled, yet realistic environment.This thesis proposes a new general-purpose methodology to conduct studies on Human Factors in Transportation Systems.A full-fledged setup and implementation of the methodology is provided for validation. This setup, which uses real data to perform the simulation, includes a traffic micro-simulator, a driving simulator, a traffic control centre and an Advanced Driver Assistance System, providing an experimentation laboratory, in which empirical research can be conducted. The communication between the simulation components is made interchangeably using both the European standard Datex II and the SUMO TraCI protocols.Several usage scenarios are implemented and indications on how to extend the methodology to accommodate different requirements are provided; as to prove its usability and feasibility. A simple Human Factors study was conducted using the implemented setup. This study uses naturalistc data and evaluates the network performance gain by using an Advanced Driver Assistance System that recommends new routes to drivers in congestion situations and provides a final validation of the methodology.In conclusion, the methodology has been proved usable to effectively conduct Human Factors research and also to develop Advanced Driver Assistance Systems applications in a controlled, yet realistic environment

    Cooperative download in urban vehicular networks

    Get PDF
    We target urban scenarios where vehicular users can download large files from road-side Access Points (APs), and define a framework to exploit opportunistic encounters between mobile nodes to increase their transfer rate. We first devise a technique for APs deployment, based on vehicular traffic flows analysis, which fosters cooperative download. Then, we propose and evaluate different algorithms for carriers selection and chunk scheduling in carry&forward data transfers. Results obtained under realistic road topology and vehicular mobility conditions show that coupling our APs deployment scheme with probabilistic carriers selection and redundant chunk scheduling yields a worstcase 2x gain in the average download rate with respect to direct download, as well as a lOx reduction in the rate of undelivered chunks with respect to a blind carry&forward.Peer ReviewedPostprint (published version

    A physiology-inspired framework for holistic city simulations

    Get PDF
    Life, services and activities within cities have commonly been studied by separate disciplines, each one independent from the others. One such approach is the computer simulation, which enables in-depth modelling and cost-effective evaluation of city phenomena. However, the adoption of integrated city simulations faces several barriers, such as managerial, social, and technical, despite its potential to support city planning and policymaking. This paper introduces the City Physiology: a new conceptual framework to facilitate the integration of city layers when designing holistic simulators. The physiology is introduced and applied through a process of three steps. Firstly, a literature review is offered in order to study the terminology and the progress already made towards integrated modelling of different urban systems. Secondly, interactions between urban systems are extracted from the approaches studied before. Finally, the pipeline to carry out the integration strategy is described. In addition to providing a conceptual tool for holistic simulations, the framework enables the discovery of new research lines generated by previously unseen connections between city layers. Being an open framework, available to all researchers to use and broaden, the authors of this paper envisage that it will be a valuable resource in establishing an exact science of cities.Peer ReviewedPostprint (published version

    Smart Energy and Intelligent Transportation Systems

    Get PDF
    With the Internet of Things and various information and communication technologies, a city can manage its assets in a smarter way, constituting the urban development vision of a smart city. This facilitates a more efficient use of physical infrastructure and encourages citizen participation. Smart energy and smart mobility are among the key aspects of the smart city, in which the electric vehicle (EV) is believed to take a key role. EVs are powered by various energy sources or the electricity grid. With proper scheduling, a large fleet of EVs can be charged from charging stations and parking infrastructures. Although the battery capacity of a single EV is small, an aggregation of EVs can perform as a significant power source or load, constituting a vehicle-to-grid (V2G) system. Besides acquiring energy from the grid, in V2G, EVs can also support the grid by providing various demand response and auxiliary services. Thanks to this, we can reduce our reliance on fossil fuels and utilize the renewable energy more effectively. This Special Issue “Smart Energy and Intelligent Transportation Systems” addresses existing knowledge gaps and advances smart energy and mobility. It consists of five peer-reviewed papers that cover a range of subjects and applications related to smart energy and transportation
    • …
    corecore