4,360 research outputs found

    Holographic Symmetries and Generalized Order Parameters for Topological Matter

    Get PDF
    We introduce a universally applicable method, based on the bond-algebraic theory of dualities, to search for generalized order parameters in disparate systems including non-Landau systems with topological order. A key notion that we advance is that of {\em holographic symmetry}. It reflects situations wherein global symmetries become, under a duality mapping, symmetries that act solely on the system's boundary. Holographic symmetries are naturally related to edge modes and localization. The utility of our approach is illustrated by systematically deriving generalized order parameters for pure and matter-coupled Abelian gauge theories, and for some models of topological matter.Comment: v2, 10 pages, 3 figures. Accepted for publication in Physical Review B Rapid Communication

    Arbitrary Dimensional Majorana Dualities and Network Architectures for Topological Matter

    Get PDF
    Motivated by the prospect of attaining Majorana modes at the ends of nanowires, we analyze interacting Majorana systems on general networks and lattices in an arbitrary number of dimensions, and derive various universal spin duals. Such general complex Majorana architectures (other than those of simple square or other crystalline arrangements) might be of empirical relevance. As these systems display low-dimensional symmetries, they are candidates for realizing topological quantum order. We prove that (a) these Majorana systems, (b) quantum Ising gauge theories, and (c) transverse-field Ising models with annealed bimodal disorder are all dual to one another on general graphs. As any Dirac fermion (including electronic) operator can be expressed as a linear combination of two Majorana fermion operators, our results further lead to dualities between interacting Dirac fermionic systems. The spin duals allow us to predict the feasibility of various standard transitions as well as spin-glass type behavior in {\it interacting} Majorana fermion or electronic systems. Several new systems that can be simulated by arrays of Majorana wires are further introduced and investigated: (1) the {\it XXZ honeycomb compass} model (intermediate between the classical Ising model on the honeycomb lattice and Kitaev's honeycomb model), (2) a checkerboard lattice realization of the model of Xu and Moore for superconducting (p+ip)(p+ip) arrays, and a (3) compass type two-flavor Hubbard model with both pairing and hopping terms. By the use of dualities, we show that all of these systems lie in the 3D Ising universality class. We discuss how the existence of topological orders and bounds on autocorrelation times can be inferred by the use of symmetries and also propose to engineer {\it quantum simulators} out of these Majorana networks.Comment: v3,19 pages, 18 figures, submitted to Physical Review B. 11 new figures, new section on simulating the Hubbard model with nanowire systems, and two new appendice

    Topological Order and Quantum Criticality

    Full text link
    In this chapter we discuss aspects of the quantum critical behavior that occurs at a quantum phase transition separating a topological phase from a conventionally ordered one. We concentrate on a family of quantum lattice models, namely certain deformations of the toric code model, that exhibit continuous quantum phase transitions. One such deformation leads to a Lorentz-invariant transition in the 3D Ising universality class. An alternative deformation gives rise to a so-called conformal quantum critical point where equal-time correlations become conformally invariant and can be related to those of the 2D Ising model. We study the behavior of several physical observables, such as non-local operators and entanglement entropies, that can be used to characterize these quantum phase transitions. Finally, we briefly consider the role of thermal fluctuations and related phase transitions, before closing with a short overview of field theoretical descriptions of these quantum critical points.Comment: 24 pages, 7 figures, chapter of the book "Understanding Quantum Phase Transitions", edited by Lincoln D. Carr (CRC Press / Taylor and Francis, 2010); v2: updated reference

    A quantum topological phase transition at the microscopic level

    Get PDF
    We study a quantum phase transition between a phase which is topologically ordered and one which is not. We focus on a spin model, an extension of the toric code, for which we obtain the exact ground state for all values of the coupling constant that takes the system across the phase transition. We compute the entanglement and the topological entropy of the system as a function of this coupling constant, and show that the topological entropy remains constant all the way up to the critical point, and jumps to zero beyond it. Despite the jump in the topological entropy, the transition is second order as detected via any local observable.Comment: (13 pages, 4 figures) v2: updated references and acknowledgments; v3: final update (references) after publicatio

    Dual Geometric Worm Algorithm for Two-Dimensional Discrete Classical Lattice Models

    Full text link
    We present a dual geometrical worm algorithm for two-dimensional Ising models. The existence of such dual algorithms was first pointed out by Prokof'ev and Svistunov \cite{ProkofevClassical}. The algorithm is defined on the dual lattice and is formulated in terms of bond-variables and can therefore be generalized to other two-dimensional models that can be formulated in terms of bond-variables. We also discuss two related algorithms formulated on the direct lattice, applicable in any dimension. These latter algorithms turn out to be less efficient but of considerable intrinsic interest. We show how such algorithms quite generally can be "directed" by minimizing the probability for the worms to erase themselves. Explicit proofs of detailed balance are given for all the algorithms. In terms of computational efficiency the dual geometrical worm algorithm is comparable to well known cluster algorithms such as the Swendsen-Wang and Wolff algorithms, however, it is quite different in structure and allows for a very simple and efficient implementation. The dual algorithm also allows for a very elegant way of calculating the domain wall free energy.Comment: 12 pages, 6 figures, Revtex

    Consistency Conditions for an AdS/MERA Correspondence

    Get PDF
    The Multi-scale Entanglement Renormalization Ansatz (MERA) is a tensor network that provides an efficient way of variationally estimating the ground state of a critical quantum system. The network geometry resembles a discretization of spatial slices of an AdS spacetime and "geodesics" in the MERA reproduce the Ryu-Takayanagi formula for the entanglement entropy of a boundary region in terms of bulk properties. It has therefore been suggested that there could be an AdS/MERA correspondence, relating states in the Hilbert space of the boundary quantum system to ones defined on the bulk lattice. Here we investigate this proposal and derive necessary conditions for it to apply, using geometric features and entropy inequalities that we expect to hold in the bulk. We show that, perhaps unsurprisingly, the MERA lattice can only describe physics on length scales larger than the AdS radius. Further, using the covariant entropy bound in the bulk, we show that there are no conventional MERA parameters that completely reproduce bulk physics even on super-AdS scales. We suggest modifications or generalizations of this kind of tensor network that may be able to provide a more robust correspondence.Comment: 38 pages, 9 figure

    Topological phases and topological entropy of two-dimensional systems with finite correlation length

    Full text link
    We elucidate the topological features of the entanglement entropy of a region in two dimensional quantum systems in a topological phase with a finite correlation length ξ\xi. Firstly, we suggest that simpler reduced quantities, related to the von Neumann entropy, could be defined to compute the topological entropy. We use our methods to compute the entanglement entropy for the ground state wave function of a quantum eight-vertex model in its topological phase, and show that a finite correlation length adds corrections of the same order as the topological entropy which come from sharp features of the boundary of the region under study. We also calculate the topological entropy for the ground state of the quantum dimer model on a triangular lattice by using a mapping to a loop model. The topological entropy of the state is determined by loop configurations with a non-trivial winding number around the region under study. Finally, we consider extensions of the Kitaev wave function, which incorporate the effects of electric and magnetic charge fluctuations, and use it to investigate the stability of the topological phase by calculating the topological entropy.Comment: 17 pages, 4 figures, published versio
    corecore