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Motivated by the prospect of attaining Majorana modes at the ends of nanowires, we analyze interacting
Majorana systems on general networks and lattices in an arbitrary number of dimensions, and derive universal
spin duals. We prove that these interacting Majorana systems, quantum Ising gauge theories, and transverse-field
Ising models with annealed bimodal disorder are all dual to one another on general planar graphs. This leads
to an interesting connection between heavily disordered annealed Ising systems and uniform Ising theories
with nearest-neighbor interactions. As any Dirac fermion (including electronic) operator can be expressed as a
linear combination of two Majorana fermion operators, our results further lead to dualities between interacting
Dirac fermionic systems on rather general lattices and graphs and corresponding spin systems. Such general
complex Majorana architectures (other than those of simple square or other crystalline arrangements) might be
of empirical relevance. As these systems display low-dimensional symmetries, they are candidates for realizing
topological quantum order. The spin duals allow us to predict the feasibility of various standard transitions as well
as spin-glass-type behavior in interacting Majorana fermion or electronic systems. Several systems that can be
simulated by arrays of Majorana wires are further introduced and investigated: (1) the XXZ honeycomb compass
model (intermediate between the classical Ising model on the honeycomb lattice and Kitaev’s honeycomb model),
(2) a checkerboard lattice realization of the model of Xu and Moore for superconducting (p + ip) arrays, and
a (3) compass-type two-flavor Hubbard model with both pairing and hopping terms. By the use of our dualities
(tantamount to high-dimensional fermionization), we show that all of these systems lie in the three-dimensional
Ising universality class. We further discuss how the existence of topological orders and bounds on autocorrelation
times can be inferred by the use of symmetries and also propose to engineer quantum simulators via such
Majorana wire networks.
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I. INTRODUCTION

Majorana (contrary to Dirac) fermions are particles that
constitute their own antiparticles.1 Early quests for Majorana
fermions centered on neutrinos and fundamental issues in
particle physics that have yet to be fully settled. If neutrinos
were Majorana fermions, then neutrinoless double-β decay
would be possible and thus experimentally observed. More
recently, there has been a flurry of activity in the study of Majo-
rana fermions in candidate condensed matter realizations,2–17

including lattice18–20 and other8,9 systems inspired by the
prospect of topological quantum computing.21,22 In the con-
densed matter arena, Majorana fermions are, of course, not fun-
damental particles, but rather emerge as collective excitations
of the basic electronic constituents. The systems discussed in
this work form a generalization of a model20 that largely builds
and expands on ideas considered by Kitaev8,18,21 including,
notably, the feasibility of creating Majorana fermions at the
endpoints of nanowires.23 A quadratic fermionic Hamiltonian
for electronic hopping along a wire in the presence of
superconducting pairing terms (induced by a proximity effect
to bulk superconducting grains on which the wire is placed) can
be expressed as a Majorana fermion bilinear that may admit
free unpaired Majorana fermion modes at the wire endpoints.23

Kitaev’s proposal entailed p-wave superconductors.8

More recent and detailed studies suggest simpler and
more concrete ways in which zero-energy Majorana modes
might explicitly appear at the endpoints of nanowires placed
close to (conventional s-wave) superconductors. Some of the
best-known proposals7,9,11 entail semiconductor nanowires

[e.g., InAs or InSb (Ref. 24)] with strong depolarizing Rashba
spin-orbit coupling that are immersed in a magnetic field
that leads to a competing Zeeman effect. These wires are
to be placed close to superconductors in order to trigger
superconducting pairing terms in the wire. By employing the
Bogoliubov–de Gennes equation to study the band structure, it
was readily seen how Majorana modes appear when the band
gap vanishes.7,9,11 Along another route, it was predicted that
zero-energy Majorana fermions might appear at an interface
between a superconductor and a ferromagnet.6,19 Majorana
modes may also appear in time-reversal-invariant s-wave
topological superconductors.16

If zero-energy Majorana fermions may indeed be harvested
in these or other ways,7 then it will be natural to consider
what transpires in general networks made of such nanowires.
The possible rich architecture of structures constructed out of
Majorana wires and/or particular junctions may allow for inter-
esting collective phenomena as well as long sought topological
quantum computing applications.21,22 Interestingly, as is well
appreciated, the braiding of (degenerate) Majorana fermions
realizes a non-Abelian unitary transformation that may prove
useful in quantum computing, providing further impetus to this
problem. In this work, we consider general questions related
to Majorana fermion systems that may be constructed from
nanowire architectures. In order to understand many of these
and other systems, it is necessary to study interacting Majorana
fermion systems. To facilitate this goal, we will introduce
and employ dualities between interacting Majorana fermion
theories and earlier heavily studied spin systems.
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A. Summary of results

A principal aim of this article is to derive dualities
between interacting Majorana fermion systems and Pauli
(S = 1/2) spin models and to explore consequences of these
dualities. As many S = 1/2 spin models have been heavily
investigated throughout the years, the dualities that we will
report on will allow a valuable tool for, nearly immediately,
obtaining numerous hitherto unknown results for a multitude
of interacting Majorana fermion systems. Toward this end, we
will invoke a general framework for dualities that does not
require the incorporation of known explicit representations
of a spin in terms of Majorana fermions nor Jordan-Wigner
transformations that have been invoked in earlier works.19,20,25

The bond-algebraic approach26–32 that we employ to study
general exact dualities and fermionization30,31 allows for the
derivation of earlier known dualities as well as a plethora of
many new others for rather general networks (or planar graphs)
in arbitrary dimensions and boundary conditions. (In the fol-
lowing general or arbitrary networks refer to planar graphs.) It
is important to note, as we will return to explicitly later, that as
Dirac fermions can be expressed as a linear combination of two
Majorana fermions, our mappings lead to dualities between
standard (non-Majorana) fermionic systems and spin systems
on arbitrary graphs in general dimensions. These afford non-
trivial examples of fermionization in more than one dimension.

Among several exact dualities that we introduce here, we
note, in particular, the following:

(i) A duality, in arbitrary dimension, between the Majorana
fermion system corresponding to an arbitrary network of
nanowires on superconducting grains and quantum Ising gauge
(QIG) theories.

(ii) Gauge-reducing emergent dualities,31 in arbitrary num-
ber of dimensions, between granular Majorana fermion sys-
tems on an arbitrary network and transverse-field Ising models
with annealed exchange couplings. In two dimensions, this
duality, along with the first one listed above, indicates that
an annealed average over a random exchange may leave the
system identical to a uniform transverse-field Ising model.

(iii) A further duality between a particular Majorana fermion
architecture and a nearest-neighbor quantum spin S = 1/2
model which, in some sense, is intermediate between an Ising
model on a honeycomb lattice and the Kitaev honeycomb
model.18 We term this system the “XXZ honeycomb compass
model.” This will allow us to illustrate that the classical version
of this quantum XXZ honeycomb spin system is the classical
three-dimensional (3D) Ising model in disguise. Similar results
hold for a model of (p + ip) superconducting grains on the
checkerboard lattice.

Among the potential applications of the bond-algebraic
formalism, we mention the following:

(i) The prospect of engineering topological quantum mat-
ter out of properly assembled Majorana networks. This is
relevant for the potential realization of a topological quantum
computer. We will outline a general procedure for the design
of various architectures of nanowires on superconducting
grains that support topological quantum order (TQO).33 Our
considerations will not be limited to the use of perturbation
theory, e.g.,20 but will rather rely on the use of symmetries and
exact generalized dualities associated with these granular and
other systems defined on general networks.

(ii) Viable assembly of quantum simulators out of Majorana
networks to study, for instance, dynamics of quantum phase
transitions. We show how to simulate the transverse-field Ising
model chain and Hubbard-type models on the square lattice
(which are shown to belong to the 3D Ising universality class).

As one of the key issues that we wish to address concerns
viable TQO, boundary conditions may be of paramount
importance. Boundary conditions are inherently related to
the character (and, on highly connected systems, to the
number) of independent d-dimensional gaugelike symmetries.
Imposing periodic or other boundary conditions on a system
can lead to vexing problems in traditional approaches to
dualities and fermionization. By using bond algebras, we can
circumvent these obstacles and construct exact dualities for
both infinite systems and for finite systems endowed with
arbitrary boundary conditions. Other formidable barricades,
such as the use of nonlocal string transformations, can be
overcome as well within the bond-algebraic approach to
dualities.31 The validity of any duality mapping can, of course,
be checked numerically by establishing that the spectra of
the two purported dual finite systems indeed coincide. The
matching of the spectra serves as a definitive test since dualities
are (up to global redundancies) unitary transformations31 that
preserve the spectrum of the system.

B. Outline

The remainder of this paper is organized as follows. In
Sec. II, we briefly review recent work concerning Majorana
nanowires on the square lattice. This discussion affords an
introduction and motivation for the general architectures that
we will discuss in this work. All sections that follow report on
our original results. In Sec. III, we introduce a generalization
of the square lattice architecture and consider an arbitrary
network of superconducting grains and Majorana nanowires.
This will lead us to consider a general high-dimensional
interacting Majorana theory. In Sec. IV, we analyze the
symmetries of our theory and discuss their implications for
general observables, TQO, and autocorrelation times. In the
few sections that follow, we will focus on our dualities (or high-
dimensional fermionization). In Sec. V, we discuss dualities
on general networks. We illustrate how our general interacting
Majorana theories are dual to both QIG theories (Sec. V A)
and to annealed quantum random transverse-field Ising models
(Sec. V B). We discuss general physical implications of these
dualities (including a duality between Ising gauge and quantum
random transverse-field Ising models as well as the phase
diagrams of the interacting Majorana theories) in Sec. V C. In
Sec. VI, we derive several dualities for square lattice Majorana
systems. We show that these are related to spin models on
the honeycomb (Sec. VI A) and checkerboard (Sec. VI B)
lattices. These dualities (especially perhaps our duality and
consequent analysis for the honeycomb lattice quantum spin
model) are somewhat unexpected and afford a counterpart to
systems such as Kitaev’s honeycomb model,18 which exhibits
lattice-direction-dependent spin interactions. In Sec. VII, we
illustrate that, on the square lattice, the standard Hubbard
interaction term in electronic systems is identical to the
Majorana interactions in the theory that we analyze. By use
of our dualities, this will allow us to prove that Hubbard-type
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theories on the square lattice exhibit 3D Ising behavior. We
further discuss how it may be possible to simulate the standard
Hubbard model on the square lattice by a Majorana nanowire
array. In Sec. VIII, we summarize our novel results. Certain
technical details have been relegated to the Appendixes.

II. A REVIEW OF THE SQUARE LATTICE
MAJORANA WIRE SYSTEM

In this section, following Ref. 20 we review a square lattice
array of Josephson-coupled nanowires on superconducting
grains. All of the results that we will report in all later sections
of this article which follow this brief review are novel. A
schematic of the array studied in Ref. 20 is presented in Fig. 1.
As we will elaborate on in Sec. III, our general-dimensional
extension of this Hamiltonian is given by Eqs. (5), (6), and
(8) with cli (i = 1,2) denoting Majorana operators [satisfying
the standard Majorana algebra of Eq. (4)] associated with
nanowire endpoints. Within the generalized scheme, these
nanowires are placed on superconducting islands that occupy
the vertices r of a general (even-coordinated) network, with
links l connecting the islands. The ends of the nanowires are
placed so that each link l connects two Majorana fermions
cl1,cl2 from different wires. Each link carries an arbitrary but
fixed orientation, just for the purpose of labeling the Majoranas
on it: As one traverses a link in the specified direction, cl1

comes before cl2 (see Fig. 1).
For example, in Fig. 1, two parallel nanowires are placed

on each superconducting grain. These grains are placed on
the sites r of a square lattice matrix. The two nanowires
on each grain yield four Majorana fermionic degrees of
freedom, placed on the edges of the oriented links of the

e1

e2
cl42

cl61 cl62

P

r

cl52

cl51

cl22

cl21

cl11 cl12
cl32

FIG. 1. (Color online) A decorated square lattice (with unit
vectors e1 and e2) in which each site is replaced by a tilted square
(representing a superconducting grain at site r). Two nanowires (solid
blue diagonal lines) are placed on each grain. The grains are coupled
to each other via Josephson couplings. A local (gauge) symmetry op-
erator of the model is GP = (icl11cl12)(icl51cl52)(icl61cl62)(icl21cl22),
where P defines the minimal closed loop. See text.

lattice. The Majorana fermions on different superconducting
grains, sharing a link, are coupled to each other by Josephson
junctions. Prior to introducing the Josephson couplings, each
grain is shunted to maintain a fixed superconducting phase
and is capacitively coupled to a ground plate. Consequently,
there are large fluctuations in the electron-number operator.
However, the electron-number parity is conserved. The sum
of the two dominant effects is as follows: (i) intergrain
Josephson couplings and (ii) intragrain constraints on the
electron-number parity, complemented by exponentially small
capacitive energies, leads to a simple effective Hamiltonian.
The intragrain constraint on electron-number (even/odd) parity
is more dominant than intergrain effects. The parity operator is
Pr = (−1)nr with nr the total number of electrons on grain r .
This electron-number parity can be of paramount importance
in interacting Majorana systems.17,19 In grains having two
nanowires each, the electronic parity operator is quartic in
the Majorana fermions; it is just the ordered product of the
four Majorana fermions at the endpoints of the nanowires on
top of the grain at site r:

Pr = cl11cl21cl32cl42, r ∈ l1,l2,l3,l4 (1)

(we write r ∈ l to indicate that r is one of the two endpoints
of l). This gives rise to a term in the effective Hamiltonian of
the form20

H0 = −h
∑

r

Pr , (2)

with the sum taken over all grains, the total number of which
is Nr . This term is augmented by Josephson couplings across
intergrain links l , leading to a Majorana Fermi bilinear term
involving the coupled pair of Majoranas {(cl1,cl2)},

H1 = −J
∑

l

icl1cl2. (3)

Fermionic parity effects are more dominant than Josephson-
coupling (h � J ) effects. By invoking perturbation theory, for
small (J/h), it was found20 that, to lowest nontrivial order, the
resultant effective Hamiltonian was identical to that of Kitaev’s
toric code model,21 thus establishing that such a system may
support TQO. Unfortunately, for (J/h) � 1, the spectral
gap is small and the system is more susceptible to thermal
fluctuations and noise. A Jordan-Wigner transformation was
invoked20 to illustrate that these results survive for finite (J/h).

III. GENERAL NETWORKS OF SUPERCONDUCTING
GRAINS AND NANOWIRES

In Sec. II, we succinctly reviewed the effective Hamil-
tonian for the square lattice array,20 depicted in Fig. 1, of
Josephson-coupled granular superconductors carrying each
two nanowires. This architecture serves as a useful case of
study. There is more to life, however, than square lattice
arrays (although we will return to these later on in this
work). We consider next rather general architectures in which
each node r (superconducting grain) has an even number of
nearest neighbors to which it is linked by Josepshon coupling
(see Fig. 2). These general networks include, of course, any
two-dimensional (2D) lattice of even coordination, e.g, those
of Figs. 1 and 3, as special cases.
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FIG. 2. (Color online) A general network of superconducting
grains with an even coordination number of each vertex. The local
coordination number qr of any superconducting grain centered about
site r is equal to the number of endpoints of all nanowires that are
placed on that superconducting grain. The dominant Josephson tun-
neling paths between intergrain nanowire endpoints are highlighted
by solid lines. Shown here is a two-dimensional projection of the
network.

The architectures that we consider are realized by placing
at each vertex r of a graph-theoretical network a finite-size
superconducting grain. On each of these grains there are zr

nanowires. These nanowires provide 2zr Majorana fermions,
one for each wire’s endpoint. Intergrain Josephson tunneling
is represented by a link involving Majoranas coming from
different wires on different islands. We place the nanowires
on every grain in the network so that each endpoint of a
nanowire is near the endpoint of another nanowire on a
neighboring grain, to maximize Josephson tunneling. Thus,
the coordination number qr of grain r in these graphs is
qr = 2zr .34 The general situation is depicted in Fig. 2.

The basic inter-island and intra-island interactions have
different origins. For ease of reference, we reiterate these
below for arbitrary networks:

(i) there is a Josephson coupling Jl associated with
each intergrain link l of the network connecting different
superconducting grains, and

FIG. 3. (Color online) A triangular network of superconducting
grains (hexagons) on each of which we place three nanowires.

(ii) an intragrain charging energy hr associated to each
island at site r .

In a general, spatially nonuniform, network the spatial
distribution of couplings Jl and charging energies hr need
not be constant.

The algebra of Majorana fermions is defined by the
following relations:

{cli ,cl ′i ′ } = 2δl,l ′δi,i ′ , c
†
li = cli . (4)

With all of the above preliminaries in tow,35 we are now ready
to present the effective Hamiltonian for the systems under
consideration,

HM = −i
∑

l

Jlcl1cl2 −
∑

r

hrPr , (5)

where

Pr ≡ izr2 cl1i1cl2i2 . . . clqr iqr
, r ∈ l1, . . . ,lqr (6)

is the product of all Majorana fermion operators associated
with the superconducting grain at site r , ordered in some
definite but arbitrary fashion (differing orderings produce the
same operator up to a sign).36

The index im can be either im = 1 or 2, depending on the
particular orientation that has been assigned to the links in
the network. More precisely, im = 1 if lm points away from r ,
and im = 2 if lm points into r . The factor izr2 is introduced to
render Pr self-adjoint. Since

(cl1i1 . . . clqr iqr
)† = (−1)qr (qr−1)/2cl1i1 . . . clqr iqr

(7)

and qr = 2zr , we set the integer zr2 to be the number of
nanowires counted modulo 2:

zr2 =
{

0 if zr is even,

1 if zr is odd.
(8)

As we remarked earlier, the operators Pr are related to the
operators nr counting the total number of electrons on the
grain r as

Pr = (−1)nr , (9)

thus measuring the parity of the number of electrons at
site r . Hamiltonian (5) constitutes an arbitrary dimensional
generalization of the sum of the two terms in Eqs. (2) and (3).
In the following, we call the operators {icl1cl2} and {Pr} the
bonds of the Hamiltonian HM.30,31

IV. TOPOLOGICAL QUANTUM ORDER
IN MAJORANA NETWORKS

A notable question regarding systems of Majorana fermions
is concerned with viable TQOs. We briefly summarize ele-
ments of TQO needed for this paper. Disparate (yet inter-
related) definitions of TQO appear in the literature. One of the
most striking (and experimentally important) aspects of TQO
is its robustness against local perturbations or, equivalently,
its inaccessibility to local probes at both zero and finite
temperatures.33 Some of the best-studied TQO systems are
quantum Hall fluids.22 Several lattice models are also well
known to exhibit TQO, including the spin S = 1/2 models in-
troduced by Kitaev.18,21 As in our earlier works, we will use the
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robustness or insensitivity to local probes33 as our working def-
inition of TQO. In the context of the Majorana lattice systems
(and general networks) that we investigate here, one currently
used approach for assessing the presence of TQO (Ref. 20) is
observing whether a fortuitous match occurs, in perturbation
theory, between (a) the studied nanowire systems with (b)
Hamiltonians of lattice systems known to exhibit TQO. While
such an analysis is highly insightful, it may be hampered by the
limited number of lattice systems (and more general networks)
that have already been established to exhibit TQO.

In this work, we suggest a different method for constructing
Majorana system architectures displaying TQO. This approach
does not require us to work towards an already examined
lattice system that is known to exhibit TQO. Instead, our
recipe invokes direct consequences of quantum invariances.
Symmetries can mandate and protect the appearance of TQO
(Ref. 33) via a generalization of Elitzur’s theorem.26,37 Specif-
ically, whenever d-dimensional gaugelike symmetries33 are
present (most importantly, discrete d = 1 or continuous d =
1,2 symmetries), finite-temperature TQO may be mandated.
Zero-temperature TQO states protected by symmetry-based
selection rules can be further constructed. A symmetry is
termed a d-dimensional gaugelike symmetry if it involves
operators/fields that reside in a d-dimensional volume.26,33,37

The use of symmetries offers a direct route for establishing
TQO that does not rely on particular known models as a crutch
for establishing its presence.

For the particular case of the square lattice (D = 2), the
interacting Majorana Hamiltonian HM with periodic (toroidal)
boundary conditions was found to exhibit 0-dimensional local,
d = 1-dimensional gaugelike, and two-dimensional global
symmetries.20 These symmetries, inherently tied to TQO
(Ref. 33) and dimensional reduction,26,33,37 also appear in the
more general network renditions of the granular system just
described in the previous section. They are also manifest for
the interacting Majorana systems embedded in any spatial
dimension D � 2 when different boundary conditions are
imposed.38

Global symmetry. The Hamiltonian HM of Eq. (5) displays
a global symmetry Q, given by the product of all the Majorana
fermion operators in the system. We can write Q in terms of
bonds as

Q =
∏

r

Pr , (10)

since each Majorana is contributed by some island. The order
of the bonds in Q is not an issue since

[Pr ,Pr ′ ] = 0 (11)

for any pair of sites r,r ′. The conserved charge Q represents
a Z2 symmetry of the system,

Q2 = 1. (12)

Beyond this global symmetry, the system of Eq. (5)
exhibits independent symmetries that operate on finer, lower-
dimensional regions of the network. Of particular importance
to TQO are d = 1- and d = 0-dimensional symmetries, and
so we turn to these next.

d = 1 symmetries. The d = 1-dimensional symmetry op-
erators of the Majorana system are given by

Q� =
∏
l∈�

(icl1cl2), (Q�)2 = 1, (13)

where � is a continuous contour, finite or infinite and open or
closed depending on boundary conditions, entirely composed
of links. That these nonlocal operators are symmetries is
readily seen once it is noted that (a) each of the terms (or bonds)
in the summand of Eq. (5) defining HM involves products of
an even number of Majorana fermions and (b) by the second
of Eqs. (4), effecting an even number of permutations of
Majorana fermion operators in a product incurs no sign change.
For example, for a network of linear dimension L along a
Cartesian axis, the contour � spans O(L1) sites and is thus a
d = 1-dimensional object. This is the origin of the name d = 1
symmetries. Some of these d = 1 symmetries may be related
to (appear as products of) the local symmetries discussed next,
depending on the topology enforced by boundary conditions.
Some others are fundamental and can not be expressed in terms
of those local symmetries.

d = 0 symmetries. For the models under consideration,
local, also called gauge, d = 0 symmetries are associated
with the elementary loops (or plaquettes) P of the wires
(see Fig. 1 for an example). That is, when considering the
superconductors as point nodes, the links l form a network
with minimal closed loops P . The associated local symmetries
are given by

GP =
∏
l∈P

(icl1cl2), G2
P = 1. (14)

Repeating the considerations of (a) and (b) above, we see
that, for any elementary plaquette P , the product of Majorana
fermion operators in Eq. (14) commutes with HM since it
shares an even number (possibly zero) of Majorana fermions
with any bond in the Hamiltonian. By multiplying operators
GP for a collection of plaquettes P that, together, tile a region
bounded by the loop �, it is readily seen that this product is also
a symmetry, as in standard theories with gauge symmetries.

The symmetries above lead to nontrivial physical conse-
quences: (a) By virtue of Elitzur’s theorem39 and its d > 0
generalizations,26,33,37 all nonvanishing correlators 〈∏α∈S cα〉
with S a set of indices α must be invariant under all of the
symmetries of Eqs. (13) and (14). That is, d = 0,1 gaugelike
symmetries can not be spontaneously broken. As we alluded
to earlier, one consequence of the nonlocal symmetries such as
the d = 1 symmetries of Eq. (13) is the existence of TQO.33,38

(b) Bounds on autocorrelation times. As a consequence of
the d = 1 symmetries of Eq. (13), and the aforementioned
generalization of Elitzur’s theorem as it pertains to temporal
correlators,26 the Majorana fermion system will exhibit finite
autocorrelation times regardless of the system size. Of course,
for various realizations of dynamics and geometry of the
disorder, different explicit forms of the autocorrelation times
τ can be found. For instance, by use of bond algebras, Kitaev’s
toric code model is identical to that of a classical square
plaquette model as in Ref. 40. Similarly, Kitaev’s toric code
model21 can be mapped onto two uncoupled one-dimensional
Ising chains.27,28,33 Different realizations of the dynamics can
lead to different explicit forms of τ in both cases, however,
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finite autocorrelation times are found in all cases (as they must
be). Similarly, more general than the exact bond-algebraic
mapping and dimensional reductions that we find here, by
virtue of d = 1 symmetries of Eq. (13), autocorrelation
functions involving Majorana fermions on a line � must
be bounded by corresponding ones in a d = 1-dimensional
system.26

V. ARBITRARY-DIMENSIONAL MAJORANA
ARCHITECTURES

In this section, we provide two spin duals to the interacting
Majorana system described by the effective Hamiltonian
HM of Eq. (5) on arbitrary lattices/networks. This applies
to finite or infinite systems and for arbitrary boundary
conditions. These two dual systems are (1) QIG theories
for D = 2 systems, and more general spin gauge theories
in higher dimensions, and (2) a family of transverse-field
Ising models with annealed disorder in the exchange couplings
(each model representing a single gauge sector of HM). The
dualities will be established in the framework of the theory
of bond algebras of interactions,30,31 as it applies to the study
of general dualities between many-body Hamiltonians. The
general bond-algebraic method relies on a comparison of the
algebras, in the respective two dual model, that are generated
by the corresponding local interaction terms (or bonds) in these
theories.26–32 For the problem at hand, the Hamiltonian HM is
built as the sum of two sets of Hermitian bonds

icl1cl2, Pr , (15)

where l and r are links and sites of the network supporting HM

[Pr was defined in Eq. (6)]. In this paper, we will only consider
the bond algebra AM generated by these bonds. We can then
obtain dual representations of HM by looking for alternative
local representations of AM. But, first we have to characterize
AM in terms of relations.

The problem of characterizing a bond algebra of interac-
tions is simplified by several features brought about by physical
considerations of locality. The first consequence of locality is
that interactions are sparse, meaning that each bond in any
local Hamiltonian commutes with most other bonds and is
involved in only a small number of relations (or constraints)
that link individual bonds to one another. Hence, the number of
nontrivial relations per bond is small. The second consequence
is that relations in a bond algebra can be classified into
intensive and extensive, and most relations are intensive. We
call a relation intensive if the number of bonds it involves
is independent of the size of the system, and extensive if the
numbers of bonds it involves scales with the size of the system.
Since extensive relations could potentially lead to unphysical
nonlocal behavior, they are typically few in number and may
reflect the topology of the system regulated by the boundary
conditions, as we will illustrate repeatedly in this paper. As
there are (2zr ) Majorana modes (or, equivalently, zr fermionic
modes) per grain, the Majorana theory of Eq. (5) and the
algebraic relations listed above are defined on a Hilbert space
of dimension dimHM = 2zr Nr

Next, we characterize the bond algebra AM as the first
step toward the construction of its spin duals. The intensive

relations are as follows:
(1) for any r and l

(icl1cl2)2 = 1 = (Pr )2, (16)

(2) for r,r ′ ∈ l ,

{Pr ,icl1cl2} = 0 = {Pr ′ ,icl1cl2}, (17)

(3) for r ∈ l i , i = 1,2, . . . ,qr ,

{Pr ,icl i1cl i2} = 0. (18)

Thus, in the bulk, or everywhere for periodic boundary
conditions, each island anticommutes with qr (the coordination
of r) links, and each link anticommutes with two islands.
The presence or absence of extensive relations depends on the
boundary conditions. For periodic (toroidal) or other closed
boundary conditions (e.g., spherical), we have one extensive
relation ∏

r

Pr = α
∏

l

(icl1cl2), α = ±1 (19)

since each Majorana fermion operator appears exactly once
both on the left- and right-hand sides of this equation, but
not necessarily in the same order. The constant α adjusts for
the potentially different orderings, and the overall powers of
i on each side of the equation. Notice that

∏
r Pr = Q is the

globalZ2 symmetry operator. In contrast, for open or semiopen
(e.g., cylindrical) boundary conditions, the islands on the free
boundary have Majorana fermions that are not matched by
links (that is, that do not interact with Majoranas on other
islands). Hence, the product(∏

r

Pr

)(∏
l

(icl1cl2)

)
= B (20)

reduces to the product B of these Majoranas on the free
boundary. The operator B may or may not commute with
the Hamiltonian, depending on the details of the architecture
at the boundary (see Fig. 4), but either way Eq. (20) does not
represent an extensive relation in the bond algebra (rather it

FIG. 4. (Color online) Two architectures with open boundary
conditions. In either case, the operator B of Eq. (20) is the product
of all the uncoupled Majoranas on the boundary indicated by open
circles, but [HM,B] = 0 only for the system shown in the panel on
the left.
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just states how to write a particular operator as a product of
bonds). If [HM,B] = 0, B represents a Z2 boundary symmetry
independent of the local symmetries.

A. Duality to quantum Ising gauge theories

In this section, we describe a duality relating the Hamilto-
nian HM to a system of S = 1/2 spins. The spin degrees of
freedom are placed on the (center of the) links of a network
identical to the one associated to HM, and are described by
Pauli matrices σx

l ,σ
y

l ,σ z
l . The goal is to introduce interactions

among these spins that satisfy the same algebraic relations as
the bonds of HM. Let us introduce the Hermitian spin bond (a
plaquette operator)

P̃r =
∏

{l|r∈l}
σ z

l . (21)

For example, for the special case of the square lattice discussed
in the Introduction,

P̃r = σ z
l1
σ z

l2
σ z

l3
σ z

l4
, r ∈ l1,l2,l3,l4. (22)

On general planar graphs, the set of spin bonds

σx
l , P̃r , (23)

satisfy the following intensive relations:
(1) for any r and l ,(

σx
l

)2 = 1 = (P̃r )2, (24)

(2) for r,r ′ ∈ l ,{
P̃r ,σ

x
l

} = 0 = {
P̃r ′ ,σ x

l

}
, (25)

(3) for r ∈ l i , i = 1,2, . . . ,qr ,{
P̃r ,σ

x
l i

} = 0, (26)

everywhere for closed boundary conditions, and everywhere
in the bulk for open or semiopen boundary conditions. These
relations are identical to the intensive relations for the bonds of
HM.41 In the Ising gauge theory, the bond-algebraic relations
listed above are defined on a space of size 2zrNr . (That this is
so can be easily seen by noting that there are Nl = zrNr links
each endowed with a spin S = 1/2 degree of freedom σ z

l .)
As it so happens, this Hilbert space dimension is identical to
that of the Majorana system of HM. Putting all of the pieces
together, we see that the spin Hamiltonian

HQIG = −
∑

l

Jlσ
x
l −

∑
r

hrP̃r (27)

is unitarily equivalent to HM, provided the extensive relations
are matched as well. For open or semiopen boundary condi-
tions, the same follows provided that the intensive relations
on the boundary also properly match. In the following, we
focus on periodic boundary conditions (of theoretical interest
in connection to TQO), and leave the discussion of open
boundary conditions (of interest for potential experimental
realizations of these systems) to Appendix A. We remark
that more standard Majorana fermion representations of spins,
similar to those discussed in Appendix B, do not lead to the
simple dualities that we now derive.

As just explained, the mapping of bonds

icl1cl2 	→ σx
l , Pr 	→ P̃r (28)

preserves the intensive algebraic relations. In particular, it
maps the local symmetries of Eq. (14) to local symmetries
of HQIG,

GP ≡
∏
l∈P

(icl1cl2) 	→
∏
l∈P

σ x
l ≡ GS,P . (29)

To assess the effect it has on the extensive relation of Eq. (19)
(and the global symmetry), notice that (for periodic boundary
conditions) ∏

l

(icl1cl2) 	→
∏

l

σx
l ≡ QS (30)

with [QS,HQIG] a global symmetry of HQIG, and∏
r

Pr 	→
∏

r

P̃r = 1. (31)

It follows that, as it stands, the mapping of bonds of Eq. (28)
is a correspondence, but not an isomorphism of bond algebras.
The simplest way to convert it into an isomorphism is to modify
one and only one of the bonds P̃r of the spin model at some
arbitrary site r0, so that

P̃r0 ≡ αQS

∏
{l|r0∈l}

σ z
l (32)

[α was defined in Eq. (19)], while for any other site r �= r0, P̃r

remains unchanged. The introduction of this modified bond
does not change the intensive relations since QS commutes
with every bond (original or modified). Moreover,∏

r

Pr 	→ P̃r0

∏
r �=r0

P̃r = αQS (33)

and the extensive relation of Eq. (19) is now, with the modified
definition of P̃r0 , preserved since (α2 = 1)∏

l

σx
l = αP̃r0

∏
r �=r0

P̃r . (34)

Hence, there is a unitary transformation Ud such that

UdHMU†
d = HQIG, (35)

with HQIG containing the single modified bond P̃r0 .
In the duality between the systems of Eqs. (5) and (27), the

dimensions of the their Hilbert spaces are identical. Since we
count two Majorana modes (or, equivalently, one fermionic
mode) per link, the Hamiltonian HM is defined on a Hilbert
space of dimension dimHM = 2Nl , with Nl denoting the total
number of links in the network. On the other hand, the spin
system has one spin S = 1/2 degree of freedom per link, hence
the dimension of the Hilbert space on which HQIG is defined
is also 2Nl . Notice that the need to introduce the modified
bond P̃r0 in the dual-spin theory is irrelevant from the point
of exploiting the duality to study the ground-state properties
of HM (or vice versa, to study the ground-state properties
of HQIG) since for finite systems the ground state |	〉 must
satisfy QS |	〉 = |	〉. The ease with which we established
the duality between Majorana systems and QIG systems for
general lattices and networks illustrates how efficient the bond-
algebraic construct is.

The duality just described is extremely general, valid in
particular for any number of space dimensions D. In the
following, we describe explicitly one particularly important
special instance, that of D = 2. On a square lattice, the
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FIG. 5. (Color online) Duality to a D = 2 Z2 QIG theory,
where spins are represented as crosses. Hamiltonian HM of Eq. (36)
represents a particular fermionization of HQIG.

Hamiltonian HM simplifies to

HM = −
∑

l

Jl (icl1cl2) −
∑

r

hrcl11cl21cl32cl42, (36)

where l1,l2,l3,l4 are shown in Fig. 1. This generalizes the
Hamiltonian considered in Ref. 20 only in that inhomogeneous
couplings are allowed. The dual-spin (finite-size) system is
(r0 ∈ l0,1,l0,2l0,3l0,4)

HQIG = −hr0αQSσ
z
l0,1

σ z
l0,2

σ z
l0,3

σ z
l0,4

−
∑
r �=r0

hrσ
z
l1
σ z

l2
σ z

l3
σ z

l4

−
∑

l

Jlσ
x
l (37)

that we recognize as the standard, D = 2, Z2 QIG theory,42 up
to the modified bond at r0 [QS = ∏

l σx
l and α is determined

according to Eq. (19)] (see Fig. 5).
Hence, we may regard the Hamiltonian of Eq. (36) as

an exact fermionization of the Z2 QIG theory with periodic
boundary conditions (and one modified bond). It is interesting
to compare this fermionization with a slightly different one25

that exploits the Jordan-Wigner transformation in the limit of
infinite size. This approach yields the Majorana Hamiltonian25

(in our notation)

HFSS = −
∑

l

Jl (icl1cl2) −
∑

r

hrcl12cl51cl62cl21, (38)

where l1,l2,l5,l6 are shown in Fig. 1. The two-body interaction
cl12cl51cl62cl21 is different than the two-body interaction in HM

since it involves three different islands (see Fig. 6). Hence,
disregarding boundary conditions, we see that the Z2 QIG
theory admits rather different but equivalent fermionizations.
As expected, the bonds in HFSS satisfy intensive relations
identical to those already discussed for HM and HQIG.
However, contrary to what is claimed in Ref. [20] Hamiltonian
HFSS is not the same as the Hamiltonian of Eq. (5) which is
the one relevant for Majorana architectures.43

FIG. 6. (Color online) Jordan-Wigner fermionization of the Z2

QIG theory realizes a theory of Majorana fermions HFSS, with
two-body interactions between Majoranas (shown as trapezoids) on
three different islands. Notice that, unlike the intra-island two-body
interactions of HM, two neighboring two-body interactions HFSS share
a Majorana operator.

Thus far, we focused on periodic boundary conditions. We
now remark on other boundary conditions. When antiperiodic
boundary conditions are imposed in a network with an an
outer perimeter that includes twice an odd number of links,
the right-hand side of Eq. (31) is replaced by −1. The
union of both cases (periodic and antiperiodic) for a system
having a twice-odd perimeter spans all possible values of the
product

∏
r P̃r . Thus, for these systems in the case of periodic

boundary conditions, the spectrum of the Majorana system can
be mapped to the union of levels found for the QIG systems
for both periodic or antiperiodic boundary conditions. In terms
of the corresponding partition functions, we have that

ZM, periodic = ZQIG, periodic + ZQIG, antiperiodic. (39)

B. Duality to annealed transverse-field Ising models

We next derive, in a similar spirit, a duality between
the general architecture Majorana system HM and annealed
transverse-field Ising models. The number of annealed dis-
order variables in these systems (along with the number of
sites Nr ) determines the size of the Hilbert space on which
the Ising models are defined. With an eye towards things to
come, we note (as we will reiterate later on) that the duality
that we will derive in this section will furnish an example
in which the Hilbert space dimensions of two dual systems
need not be identical to one another. Generally, dualities are
unitary transformations between two theories up to trivial
gauge redundancies that do not preserve the Hilbert space
dimension.31 That is, dualities are isometries.

To define the annealed transverse-field Ising systems, we
place an S = 1/2 spin on each site r , σx

r ,σ
y
r ,σ z

r of the network
associated to HM, and a classical annealed disorder variable
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ηl = ±1 on each link l . Then, we can introduce the set of
Hermitian spin bonds

σx
r , ηlσ

z
r σ z

r ′ , r,r ′ ∈ l. (40)

If we specialize to periodic boundary conditions, these bonds
satisfy a set of intensive relations identical to those discussed
in the two previous sections, together with one relation absent
before and listed last below:

(1) for any r and l(
σx

r

)2 = 1 = (ηlσ
z
r σ z

r ′)2, (41)

(2) for r,r ′ ∈ l{
σx

r ,ηlσ
z
r σ z

r ′
} = 0 = {

σx
r ′ ,ηlσ

z
r σ z

r ′
}
, (42)

(3) for r ∈ l i , i = 1,2, . . . ,qr ,{
σx

r ,ηl i
σ z

r σ z
r ′
i

} = 0, r �= r ′
i ∈ l i , (43)

(4) for any elementary loop P in the network,∏
l∈P

(
ηlσ

z
r σ z

r ′
) = 1

∏
l∈P

ηl . (44)

The constraint of Eq. (44) holds true for any closed loop.
For this reason, and others related to TQO, it is important to
clarify the meaning of elementary loop.

Loops in the network that share some links can be joined
along those links to obtain another loop or sum of disjoint
loops. This means that the set of all loops has a minimal
set of generators from which we can obtain any loop or
systems of loops by the joining operation just described. We
call the loops in an arbitrary but fixed minimal generating set
elementary loops. In this way, we obtain a minimal description
of the constraints embodied in Eq. (44). It is not obvious
a priori whether one should classify these constraints (that
is, relations) as intensive or extensive. This depends on the
topology of the system. If the system is simply connected,
every loop is contractible to some trivial minimal (that is,
of minimal length) loop, and hence we can choose minimal
loops as elementary loops. These loops afford an intensive
characterization of the constraints embodied in Eq. (44). If,
on the other hand, the system is not simply connected, as for
periodic boundary conditions, the generating set of elementary
loops will include noncontractible loops, and the length of
some of these noncontractible loops may scale with the size of
the system. Consider, for example, the spin bonds of Eq. (40)
on a planar network on the torus and on a punctured infinite
plane. Both networks fail to be simply connected, but only
the torus forces some of the constraint of Eq. (44) to be
extensive because its two noncontractible loops must scale
with the size of the system.

For periodic boundary conditions, there is one extensive
relation satisfied by the bonds of Eq. (40):∏

l

(
ηlσ

z
r σ z

r ′
) = η1, (45)

with

η ≡
∏

l

ηl , η = ±1, (46)

which may or may not be independent of the relations of
Eq. (44), depending on the details of the network. In the

ηl

ηl′

σx
r , σz

r

r′r

r′′

FIG. 7. (Color online) Duality to an annealed transverse-field
Ising model, in the particular D = 2 case. Spins S = 1/2 are located
at the vertices r of the square lattice and classical Z2 fields ηl at the
links l (indicated by a dash).

following, we will treat it as an independent relation since
it does not affect our results if it turns out to be dependent.

It follows that the mapping of bond algebras

icl1cl2 	→ ηlσ
z
r σ z

r ′ , Pr 	→ σx
r (47)

preserves every local anticommutation relation. Hence, the
Hamiltonian theory

HAI{ηl} = −
∑

l

Jl
(
ηlσ

z
r σ z

r ′
) −

∑
r

hrσ
x
r , (48)

obtained from applying this mapping to HM, will be shown
to be dual to HM (see Fig. 7). The Hilbert space on which
the theory of Eq. (48) is defined is of size dimHAI = 2Nr+Nη

where Nr is the number of superconducting grains and Nη the
total number of ηl fields.

The proposed duality raises an immediate question: What
are the features of HM that determine or at least constrain the
classical fields ηl ? As we will see, the answer lies in the local
and gaugelike symmetries that HM possesses and HAI lacks.
To understand this better, we need to study the effect this
mapping has on relations beyond local anticommutation. Let
us consider first its effect on the extensive relation of Eq. (19).
We have that

Q =
∏

r

Pr 	→
∏

r

σx
r = QS, (49)

α
∏

l

(icl1cl2) 	→ α
∏

l

(
ηlσ

z
r σ z

r ′
) = αη1. (50)

As for periodic boundary conditions, the left-hand sides of
Eqs. (49) and (50) represent the same operator, but the
right-hand sides are different operators, and the mapping as
it stands does not preserve the relation of Eq. (19). We know
of a solution to this shortcoming from the previous section. If
we modify one and only one bond placed on some fixed but
arbitrary link l0 to read as

αηηl0σ
z
r σ z

r ′QS, (51)
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then

α
∏

l

(icl1cl2) 	→ α2
(
ηηl0σ

z
r0

σ z
r0

′
)
QS

∏
l �=l0

(
ηlσ

z
r σ z

r ′
) = QS,

(52)

as required by Eq. (19).
The presence of the modified bond at l0 introduces a new

feature into the discussion leading to Eq. (44). Now we have
that, for any elementary loop P ,∏

l∈P

(
ηlσ

z
r σ z

r ′
) =

{
1

∏
l∈P ηl if l0 �∈ P,

αηQS

∏
l∈P ηl if l0 ∈ P.

(53)

If we consider the role of the elementary loops P in the
Majorana system HM, and consider the mapping of Eq. (40),
we see that the local symmetries (see Sec. IV)

GP ≡
∏
l∈P

(icl1cl2) (54)

of HM are mapped to one of the two possibilities listed in
Eq. (53), showing that, as it stands, the mapping of Eq. (40) is
still not an isomorphism of bond algebras. The problem is that
a large number of distinct symmetries are being mapped either
to a trivial symmetry (a multiple of the identity operator), or
a multiple of the global Z2 symmetry QS of the annealed
Ising model. We can fix this problem by decomposing the
Hamiltonians HM and HAI into their symmetry sectors, where
the obstruction to the duality mapping disappears. Thus, we
are able to establish emergent dualities,30,31 that is, dualities
that emerge between sectors of the two theories.

The sector decomposition is simple for HAI, which has only
one symmetry QS , with eigenvalues qS = ±1. Then, we can
decompose the Hilbert space HAI as

HAI =
⊕

qS=±1

HqS
, (55)

so that if �qS
is the orthogonal projector onto HqS

, then

QS�qS
= ±�qS

. (56)

For HM, since its symmetries form a commuting set, one can
simultaneously diagonalize them and break the Hilbert space
HM into sectors labeled by the symmetries’ simultaneous
eigenvalues, q = ±1 for the global symmetry and �P = ±1
for the loop symmetries:

HM =
⊕

q,{�P }
Hq,{�P }. (57)

The Hamiltonian HM is block diagonal relative to this
decomposition, and, if �q,{�P } is the orthogonal projector onto
the subspace Hq,{�P }, we have that

Q�q,{�P } = q�q,{�P }, (58)

GP �q,{�P } = �P �q,{�P } (59)

for any elementary loop P .
The problem now is to decide which choice of sectors

will make the projected Hamiltonians HM�q,{�P } and HAI�qS

dual to each other. From Eqs. (49) and (53), we obtain the

relations

q = qS, (60)

�P =
{∏

l∈P ηl if l0 �∈ P,

αηqs

∏
l∈P ηl if l0 ∈ P,

(61)

which allow us to connect the two theories

UdHM�q,{�P }U
†
d = HAI{ηl}�qS

, (62)

where the unitary transformation Ud implements an emergent
duality that holds only on the indicated sectors of the two
theories.

The dual-spin representation of HM projected onto the
gauge-invariant sector q = 1,{�P = 1} is given by the inho-
mogeneous Ising model (ηl = 1 on every link)

HAI{1} = −
∑

l

Jlσ
z
r σ z

r ′ −
∑

r

hrσ
x
r , (63)

and is known as a gauge-reducing duality.31 For the special
case of the square lattice and homogeneous couplings, one
would expect that this sector contains the ground state of HM.

C. Physical consequences

We have by now seen, on general networks in an arbitrary
number of dimensions, that ordinary QIG theories (and their
generalizations) and annealed transverse-field Ising models
arise from the very same Majorana system when it is dualized
in different ways. Therefore, by transitivity,

HQIG
dual←→ HAI. (64)

This correspondence leads to several consequences. In its
simplest incarnation, that for D = 2 Majorana networks, this
duality connects, via an imaginary-time transfer matrix (or
τ -continuum limit) approach,31,44 disordered D = 3 classical
Ising models to D = 3 classical Ising gauge theories. In its
truly most elementary rendition among these planar networks,
that of the square lattice, the duality of Eq. (64) implies that the
effect of the bimodal annealed disordering fields ηl = ±1 is
immaterial in determining the universality class of the system.
This is so as the standard random transverse-field Ising model
on the square lattice

HRTFIM = −
∑

l

Jlσ
z
r σ z

r ′ −
∑

r

hrσ
x
r (65)

[i.e., Eq. (48) in the absence of annealed bimodal disorder]
similarly maps, via a transfer-matrix approach, onto a corre-
sponding classical Ising model on a cubic lattice. The uniform
transverse-field Ising model (that with uniform Jl and hr )
maps onto the uniform D = 3 Ising model. Thus, in this latter
case, the extremely disordered system with annealed random
exchange constants exhibits the standard D = 3 Ising-type
behavior of uniform systems.

By the dualities of Secs. V A and V B, general multiparticle,
or multispin, spatiotemporal correlation functions in different
systems can be related to one another. In particular, by Eq. (28)
relating the Majorana system with the QIG theory, the two
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correlators〈∏
r,l

Pr (t)(icl1cl2)(t ′)

〉
=

〈∏
r,l

P̃r (t)σx
l (t ′)

〉
(66)

are equal. Thus, if certain correlators (e.g., standard static
two-point correlation functions, autocorrelation functions, or
four-point correlators such as those prevalent in the study
of glassy systems)45 appear in the spin systems, then dual
correlators appear in the interacting Majorana system with
identical behavior. An exact duality preserves the equations of
motion, and so the dynamics of dual operators are the same.31

Similarly, by the duality of Eq. (35), the phase diagrams
describing the Majorana networks are identical to those of
QIG systems. In instances in which the QIG theories have been
investigated, the phase boundaries in the Majorana system may
thus be mapped out without further ado.

Lattice gauge theories with homogeneous couplings, i.e.,
uniform lattices, have been investigated extensively.42,46 As
we alluded to above, it is well appreciated that the QIG theory
on a square lattice can be related, via a Feynman mapping, to
an Ising gauge theory on the cubic lattice with the classical
action

SIG = −K
∑
P

PP . (67)

The latter has a transition47 at K = Kc = 0.761 423, a value
dual46 to the critical coupling (or inverse critical temperature
when the exchange constant is set to unity) of the D = 3
classical Ising model with nearest-neighbor coupling K̃c =
0.221 659 5. Similar transitions between a confined (small K)
to a deconfined (large K) phase appear in general uniform
coupling lattice gauge theories with other geometries. Phase
transitions mark singularities of the free energy, which are
always identical in any two dual models.31 In our case of
interest here, by the correspondence of Eq. (35), identical
transition points must thus appear in the dual Majorana theo-
ries. In particular, the transition points in the Majorana system
are immediately determined by their dual-spin counterpart.
More precisely, the Majorana uniform network depicted in
Fig. 1 displays a quantum critical point of the D = 3 Ising
universality class at (J/h)c = −2K̃c/ ln tanh K̃c = 0.29112.

In theories with sufficient disorder (e.g., quenched ex-
change couplings, fields, or spatially varying coordination
number), rich behavior such as that exemplified by spin-glass
transitions or Griffiths singularities48 may appear. According
to Eq. (35), in architectures with nonequidistant superconduct-
ing grains of random sizes, the effective couplings {Jl} and
{hr} are not uniform and may lead to spin glass, Griffiths, or
other behavior whenever the corresponding dual gauge theory
exhibits these as well. We note that the random transverse-field
Ising model of Eq. (65) is well known to exhibit a (quantum)
spin-glass behavior.49,50 If and when it occurs, glassy (or
spin-glass) dynamics in the annealed or gauge spin systems
will, by our mapping, imply corresponding glassy (or spin-
glass) dynamics in the Majorana system as well as interacting
electronic systems (leading to electron-glass behavior). The
disordered quantum Ising model was employed in the study of
the insulator to superconducting phase transition in granular

superconductors.51 Numerous electronic systems are indeed
nonuniform52 and/or disordered.53

VI. SPIN DUALS TO SQUARE LATTICE
MAJORANA SYSTEMS

Thus far, we provided a systematic analysis of symmetries
and dualities for Majorana systems supported on networks in
any number of spatial dimensions. It is instructive to consider
particularly simple architectures as these highlight salient
features and, on their own merit, provide new connections
among well-studied theories. In what follows, we will focus
on the square lattice superconducting grain array of Fig. 1, and
some honeycomb and checkerboard lattice spin-dual models.

A. X X Z honeycomb compass model

The Majorana system HM of Eq. (5) in a square lattice is
dual to a very interesting spin Hamiltonian on the honeycomb
lattice (see Fig. 8). The dual-spin model may be viewed
as an intermediate between the classical Ising model on
the honeycomb lattice [involving products of a single spin
component (σ z) between nearest neighbors] and Kitaev’s
honeycomb model,18 for which the bonds along the three
different directions in the lattice are, respectively, pairwise
products of the three different spin components. This particular
spin Hamiltonian, which we dub XXZ honeycomb compass
model, is described by

HXXZh = −
∑

nonvertical links

Jl σx
r σx

r+êl
−

∑
vertical links

hr σ z
r σ z

r+êz
,

(68)

where each S = 1/2 is located on the vertices r of a
honeycomb lattice, and σx,z

r are the corresponding Pauli
matrices. The qualifier “nonvertical links” alludes to the two
diagonally oriented directions of the honeycomb lattice, while
“vertical links” are, as their name suggests, the links parallel
to the vertical direction in Fig. 8. The unit vector êl points
along the diagonal link l and may be oriented along any of
the two diagonal directions. The XXZ honeycomb compass
model exhibits local symmetries associated with every lattice

z z z z

z z z z

z z z z z

z z z

z z z

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

σj

FIG. 8. (Color online) The brick-wall planar orbital compass
model (Ref. 31) (shown on the left) can be seen as a simpler relative of
the XXZ honeycomb compass model, by placing it on a honeycomb
lattice as shown on the right.
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site r ,

GXXZh
r = σx

r σx
r+êz

. (69)

Similarly, the XXZ system exhibits d = 1 symmetries of the
form

QXXZh
� =

∏
r∈�

σ z
r (70)

associated with every nonvertical contour � (i.e., that composed
of the diagonal nonvertical links) that circumscribes one of the
toric cycles.

We provide, in the left-hand panel of Fig. 8, a simple
schematic of the topology of the honeycomb lattice: that of
a “brick-wall lattice.”29,54 The brick-wall lattice also captures
the connections in the honeycomb lattice. It is formed by the
union of the highlighted vertical (red) and horizontal (green)
links in the left-hand side Fig. 8. The brick-wall lattice can
be obtained by “squashing” the honeycomb lattice to flatten
its diagonal links while leaving its topology unchanged in
the process. In the brick-wall lattice, êl simply becomes a
unit vector along the horizontal direction. As can be seen
by examining either of the panels of Fig. 8, the centers of
the vertical links of the honeycomb (or brick-wall) lattice
form, up to innocuous dilation factors, a square lattice. As
is further evident on inspecting Fig. 8, between any pair of
centers of neighboring vertical (red) links, there lies a center
of a nondiagonal (green) link. This topological connection
underlies the duality between the Majorana model on the
square lattice and the XXZ honeycomb compass spin model.
We explicitly classify the bonds in the Hamiltonian of Eq. (68)
related to the two types of geometric objects:

(1) Bonds of type (i) are associated with the products
{σx

r σx
r+êl

} on diagonal links of the lattice. They each anti-
commute with two.

(2) Bonds of type (ii), affiliated with products {σ z
r σ z

r+êz
} on

the vertical links. Each one of these bonds anticommute with
four bonds of type (i).

We merely note that replacing the bonds of the Majorana
model on a square lattice, as they appear in the bond-algebraic
relations (1–3) of Sec. V, by those above leads to three
equivalent relations that completely specify the bond algebra
of the system of Eq. (68). As we have earlier seen also the
QIG theory of Eq. (27) and the annealed transverse-field Ising
model of Eq. (48) have bonds that share the same three basic
bond algebraic relations. Thus, we conclude that the XXZ

honeycomb compass model is exactly dual to the QIG theory
of Eq. (27) on the square lattice. In its uniform rendition
(with all couplings Jl and fields hr being spatially uniform),
the XXZ honeycomb compass system lies in the 3D Ising
universality class. Similarly, many other properties of the
XXZ honeycomb compass model can be inferred from the
heavily investigated QIG theory.

The duality between the XXZ honeycomb compass model
and its Majorana system equal on the square lattice affords
an example of a duality in which the Hilbert space size is
preserved as we now elaborate. The XXZ theory of Eq. (68)
is defined on a Hilbert space of size dimHXXZh = 2Nhl , where
Nhl is the number of sites on the honeycomb lattice while
that of the Majorana model of Eq. (5) was on a Hilbert space
of dimension dimHM = 4Nr . Now, for a given number Nr

of vertical links on the honeycomb lattice, we have the same
number of bonds of types (i) and (ii) as we had in the Majorana
system while having Nhl = 2Nr lattice sites.

B. Checkerboard model of ( p + i p) superconducting grains

In Ref. 55, Xu and Moore, motivated by an earlier work of
Moore and Lee,56 proposed the following spin Hamiltonian,

HXM = −
∑

r

(
hXM

r σx
r + J XM

� �σ z
r

)
, (71)

to describe the time-reversal symmetry-breaking characteris-
tics in a matrix of unconventional p-wave granular supercon-
ductors on a square lattice. In writing Eq. (71), we employ a
shorthand

�σ z
r ≡ σ z

r σ z
r+e1

σ z
r+e1+e2

σ z
r+e2

(72)

to denote the square lattice plaquette product, where e1 and
e2 denote unit vectors along the principal lattice directions.
For the benefit of the astute reader, we remark that this open
square notation for the product should not be confused with
our general notation for the elementary plaquette loops P that
we use throughout this work. It is important to emphasize that
the spins σx,z

r in Eqs. (71) and (72) are situated at the vertices
r of the square lattice [not on the links (or link centers) as in
gauge theories]. The eigenvalues σ z

r = ±1 describe whether
the superconducting grain located at the vertex of the square
lattice r has a (p + ip) or a (p − ip) order parameter.

We show next that a D = 2 checkerboard rendition of the
XM model which we denote by CXM (see Fig. 9) is dual to
the Majorana system on the square lattice (which is, as we
showed, dual to the XXZ honeycomb compass model and all
of the other models that we discussed earlier in this work).
This system is defined by the following Hamiltonian:

HCXM = −
∑

r

hrσ
x
r −

∑
x1+x2=odd

J XM
� �σ z

r . (73)

P

e2

e1

r

FIG. 9. (Color online) The checkerboard Xu-Moore (CXM)
model of Eq. (73). The symmetry plaquettes P constitute half of
all the plaquettes of the lattice, while the interaction plaquettes �σ z

r

represent the other half.
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In this system, the plaquette operators �σ z
r (with r =

x1e1 + x2e2) appear in every other plaquette (hence the name
“checkerboard”). These plaquettes are present only if x1 + x2

is an odd integer as emphasized in Eq. (73). The model has the
following local symmetries:

GP =
∏
r∈P

σ x
r , (74)

where P are those plaquettes appearing whenever x1 + x2 is
an even integer.

The proof of our assertion above concerning the duality
of this system to the Majorana system of Eq. (5) when
implemented on the square lattice is straightforward and will
mirror, once again, all of our earlier steps. We may view the
Hamiltonian of Eq. (73) as comprised of two basic types of
bonds:

(1) Bonds of type (i) are onsite operators {σx
r } associated

with local transverse fields.
(2) Bonds of type (ii) are the plaquette product operators

{�σ z
r } of Eq. (72), for plaquettes, the bottom left-hand corner

r of which is an “odd” site.
The basic network structure underlying these bonds is

simple and, apart from an interchange of names, identical to
that of the Majorana system on the square lattice of Fig. 1
as well as that of the XXZ honeycomb compass model of
Fig. 8. To see this, we note that in the checkerboard of Fig. 9,
the fourfold-coordinated interaction plaquettes generate, on
their own, a square lattice grid. Between any two neighboring
interaction plaquettes on this square lattice array, there is a
lattice site r (see Fig. 10). As in our earlier proof of the
duality, we simply remark that replacing the bonds of the
Majorana model on a square lattice, as they appear in
the bond-algebraic relations (1–3) of Sec. V, by those above
leads to three equivalent relations that completely specify the
bond algebra of the CXM system. The Majorana and CXM
models are thus dual to one another (HM ↔ HCXM) when their
couplings are related via the correspondence

Jl ↔ hXM
r ,

(75)
hr ↔ J XM

� .

Thus, the CXM model joins the fellowship of all other
dual theories (with the same network connectivity) that we

FIG. 10. (Color online) The D = 2 checkerboard Xu-Moore
(CXM) model is dual to the Majorana system in a square lattice as
shown on the left. On the right, we rotate and redefine the lattice
in a manner which highlights its connection to the QIG theory
of Eq. (27).

discussed in this work (i.e., the Majorana, QIG, and annealed
transverse-field Ising models on the square lattice as well as
the XXZ compass model on the honeycomb (or equivalent
brick-wall) lattice).

On the right-hand half of Fig. 10, we pictorially illustrate
the connection between the CXM model and the QIG theory.
The individual sites of the checkerboard lattice of Fig. 9 (the
sites at which the local transverse fields are present) map
onto links of the gauge theory (Sec. V A). Similarly, the
interaction plaquettes of the CXM model map into plaquettes
of the QIG theory. Note, on the right, that as is geometrically
well appreciated, the four center points of the individual links
on the square (gauge theory) lattice can either circumscribe
interaction plaquettes of the gauge theory or may correspond
to four links that share a common endpoint that do form a
“star” configuration.31 In particular, by its duality to the QIG
theory, the CXM rigorously lies in the 3D Ising universality
class when the couplings J XM

� and hXM
r are spatially uniform.

For a given equal number of bonds in both the Majorana
system and the CXM theory, it is readily seen that the
Hilbert space dimensions of both theories are the same,
dimHM = dimHCXM.

VII. QUANTUM SIMULATIONS
WITH MAJORANA NETWORKS

The Dirac, fermionic, annihilation and creation operators
{dr} and {d†

r }, respectively, can be expressed as a linear
combination of two Majorana fermion operators. For example,
if we are interested in two-flavor Dirac operators, a possible
realization is (see Fig. 1)

dr↑ = 1√
2

(cl11 + icl32), d
†
r↑ = 1√

2
(cl11 − icl32),

(76)

dr↓ = 1√
2

(cl21 + icl42), d
†
r↓ = 1√

2
(cl21 − icl42),

where r ∈ l1,l2,l3,l4.
A system of interacting Dirac fermions (e.g., electrons) on a

general graph can be mapped onto that of twice the number of
Majorana fermions on the same graph, and each Dirac fermion
is to be replaced by two Majorana fermions following the
substitution of Eq. (76). Thus, any granular system of the form
of Eq. (5) in which each grain r has qr = 2zr neighbors can
be mapped onto a Dirac fermionic system on the same graph
in which on each grain there are zr Dirac fermions. There
are many possible ways to pair up the Majorana fermions
in the system of Eq. (5) to yield a corresponding system of
Dirac fermions. Equation (76) represents just one possibility.
Another possible way to generate (spinless) Dirac fermions is

dl = 1√
2

(cl1 + icl2), d
†
l = 1√

2
(cl1 − icl2). (77)

All of the spin duals that we derived for Majorana fermion
systems hold, mutatis mutandis, for these systems of Dirac
fermions on arbitrary graphs. In this sense, our dualities
afford an alternative, flexible approach to fermionization that
does not rely on the Jordan-Wigner transformation.31 Most
importantly, one can use these mappings to simulate models
of strongly interacting Dirac fermions, such as Hubbard-type
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models, on the experimentally realized Majorana networks. In
other words, one can engineer quantum simulators out of these
Josephson junction arrays.

As a concrete example, we consider the square lattice array
of Fig. 1 and transform, on this lattice, the Majorana system
of Eq. (5) into a two-flavor Hubbard model with compass-
type pairing and hopping. Based on our analysis thus far, we
will illustrate that this variant of the 2D Hubbard model is
exactly dual to the 2D QIG theory and thus lies in the 3D Ising
universality class. Consider the mapping of Eq. (76). With
nrσ = d

†
rσ drσ (σ =↑ , ↓), a Hubbard-type term with onsite

repulsion Ur becomes

Ur (nr↑ − 1)(nr↓ − 1) = Ur (Pr − 1), (78)

akin to the second term of Eq. (5) with hr ↔ Ur (up to
an irrelevant constant). In what follows, we assume that the
network array of Fig. 1 has unit lattice constant.

The Majorana bilinear that couples, for instance, the
bottom-most corner of the grain that is directly above r (i.e.,
site r + e2) to the top-most site of grain r (with thus a link l
that is vertical) becomes

−iJlcl21cl22 = Jl

2
(d†

r↓ + dr↓)(d†
r+e2↓ − dr+e2↓). (79)

Similarly, for horizontal links l , the bilinear in the first term
of Eq. (5) realizes pairing hopping terms involving only the
↑ flavor of the fermions. Thus, the Hamiltonian of Eq. (5)
becomes a Hubbard-type Hamiltonian with bilinear terms
containing hopping and pairing terms between electrons of
the up or down flavor for links l that are vertical or horizontal,
respectively. Such a dependence of the interactions between
the internal spin flavor on the relative orientation of the two
interacting electrons in real space bears a resemblance to
“compass-type” systems.57 Putting all our results together, the
Dirac fermion Hamiltonian on the square lattice with pair terms
of the form of Eq. (79) augmented by the onsite Hubbard-type
interaction term of Eq. (78) is dual to all of the other models
that we considered thus far in this work. In particular, as such
this interacting Dirac fermion (or electronic) system is not of
the canonical noninteracting Fermi liquid form. Rather, this
system lies in the 3D Ising universality class.

The standard Hubbard model with SU(2) spin symmetry,
which up to chemical potential terms is given by (α = 1,2)

HHub = −t
∑
r,α,σ

(d†
rσ dr+eασ + H.c.)

+U
∑

r

(nr↑ − 1)(nr↓ − 1), (80)

can be written as a sum of terms of the form of Eq. (78)
augmenting many Majorana fermion bilinear coupling sites on
nearest-neighbor grains (i.e., r and r ± eα). As we illustrate in
Fig. 11, we label the four Majorana modes on each grain r as
{cra}4

a=1. In terms of these, the Hubbard Hamiltonian becomes

HHub = −t
∑

r,α,a=1,2

i(cracr+eαa+2 + cr+eαacra+2)

+U
∑

r

(Pr − 1). (81)

e1

e2
cr2

cr+e21

r

cr+e22

cr+e24

cr4

cr1

cr+e13cr3

FIG. 11. (Color online) A labeling of the Majorana wire end-
points on the square lattice which we use here to explicitly represent
the standard electronic Hubbard model in terms of Majorana
operators. This is a different labeling than the one in Fig. 1.

Thus, the Hubbard Hamiltonian may be simulated via Ma-
jorana wires with multiple Josephson junctions. Appendix A
describes the possible simulation of the transverse-field Ising
chain via Majorana networks.

VIII. CONCLUSIONS

We conclude with a brief synopsis of our findings. This
work focused on the interacting Majorana systems of Eq. (5)
on general lattices and networks. Aside from fundamen-
tal questions in particle physics and viable realizations as
emergent excitations in condensed matter physics, as we
have further discussed in this paper, Majorana systems may
hold promise for simulations and quantum information. By
employing the standard representation of Dirac fermions as a
linear combination of Majorana fermions, our results similarly
hold for a general class of interacting Dirac fermion systems
on general graphs. Towards this end, we heavily invoked
two principal tools: (i) The use of d-dimensional gaugelike
symmetries that mandate dimensional reduction and TQO via
correlation function bounds.26,33,37 These symmetries lead to
bounds on the autocorrelation times.26 (ii) The bond-algebraic
theory of dualities26–32 as it, in particular, pertains to very
general dualities and fermionization30,31 to obtain multiple
exact spin duals to these systems, in arbitrary dimensions
and boundary conditions, and for finite or infinite systems.
Using these approaches, we arrived at general dimensional
fermionization and demonstrated the following:

(i) The Majorana systems of Eq. (5), standard QIG theories
Eq. (27), and transverse-field Ising models with annealed
bimodal disorder Eq. (48) are all dual to one another on general
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lattices and networks. The duality afforded an interesting
connection between heavily disordered annealed Ising systems
and uniform Ising theories. The spin duals further enable us to
suggest and predict various transitions as well as spin-glass-
type behavior in general interacting Majorana fermion (and
Dirac fermion) systems. The representation of Dirac fermions
via Majorana fermions enlarges the scope of our results. In
particular, as Eq. (78) makes evident, the standard onsite
Hubbard term in electronic systems is exactly of the same form
as that of the intragrain coupling in the interacting Majorana
systems that we investigated. We similarly represented the
bilinear in the Majorana model of Eq. (5) as a Dirac fermion
form Eq. (79). Following our dualities, on the square lattice, the
interacting Dirac fermion (or electronic) Hamiltonian formed
by the sum of all terms of the form of Eqs. (78) and (79) is dual
to the QIG theory and thus lies in the 3D Ising universality
class, notably different from standard noninteracting Fermi
liquids; this nontrivial electronic system features Hubbard
onsite repulsion augmented by “compass”-type hopping and
pairing terms. We further showed how to quantum simulate
bona fide Hubbard-type electronic Hamiltonians via Majorana
wire networks.

(ii) Several systems were further introduced and investi-
gated via the use of bond algebras: (1) the “XXZ honeycomb
compass” model of Eq. (68) (a model intermediate between the
classical Ising model on the honeycomb lattice and Kitaev’s
honeycomb model) and (2) a checkerboard version of the Xu-
Moore model for superconducting (p + ip) arrays Eq. (73). By
the use of dualities, we illustrated that both of these systems
lie in the 3D Ising universality class.

As evident in our work, the “computations” necessary to
attain these results were, to say the least, very simple by
comparison to other approaches to duality (and specifically
those relating to attempts to arrive at a useful high-dimensional
fermionization) that generally require far more involved
calculations. In the Appendixes, we discuss other connections
between Majorana and spin systems including Majorana
simulators.
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APPENDIX A: DUALITIES IN FINITE SYSTEMS
WITH OPEN BOUNDARY CONDITIONS

We have, so far, studied exact dualities for the Majorana
system with the Hamiltonian HM of Eq. (5) when subject
to periodic boundary conditions. We focused on periodic
boundary conditions that are pertinent to the theoretical study
of TQO. In this appendix, we will consider exact dualities in
the presence of open boundary conditions. In doing so, we
will further study finite, even quite small, square lattices. It is
useful to provide a precise description of these finite dual-spin
systems as there is a definite possibility that this Majorana
architecture may become realizable in the next few years.
These dualities also allow us to illustrate the flexibility of
the bond-algebraic approach to dualities in handling a variety
of boundary conditions exactly. As in the rest of this paper, the

1

2

3

4

5

6

7

8

3

24

1

FIG. 12. (Color online) The spin dual of two superconducting
islands. Each island maps to a plaquette interaction of the QIG
theory, but such a mapping would not be compatible with matching
dimensions of Hilbert spaces. Hence, one of the lower plaquettes is
chopped to include only one spin.

dualities we obtain are exact unitary equivalences. Thus, these
dualities may be tested numerically by checking if the energy
spectra of the two dual systems are indeed identical.

As illustrated in Sec. V A, the effective Hamiltonian HM

on the square lattice and in the bulk is dual to the Z2 QIG
theory. In this appendix, our task is to find the boundary terms
that make the duality exact in the presence of open boundary
conditions. Here, we only consider dualities that preserve the
dimension of the Hilbert space of the two theories. We thus
follow two guiding principles: (1) in the bulk, the dual-spin
theory remains the Z2 QIG theory, and (2) on the boundary,
we introduce terms that preserve both the bond algebra and the
dimension of the Hilbert space. Let us start with the simplest
interacting case, that of two islands (grains) linked by one
Josephson coupling (see Fig. 12). In this case, the Hamiltonian
of Eq. (5) reads as

HM = −hc1c2c3c4 − h′c5c6c7c8 − J ic3c5. (A1)

This Hamiltonian acts on a Hilbert space of dimension
dimHM = 28/2 = 24. Thus, the dual theory must contain four

FIG. 13. (Color online) The spin dual for a configuration of four
islands. The incomplete plaquettes represent two-spin interactions in
the Hamiltonian.
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FIG. 14. (Color online) The spin dual for nine islands. Incomplete
plaquettes represent three-spin interactions in the spin Hamiltonian,
the product of the three spins σ z closer to an incomplete green
diamond.

spins and some recognizable gauge interactions. The result is

HQIG = −hσ z
1 − h′σ z

1 σ z
2 σ z

3 σ z
4 − Jσx

1 , (A2)

where the single spin σ z
1 in the Hamiltonian stands for an

incomplete plaquette. One can check that the bond algebra is
preserved and the two spectra are identical.

The next interesting case contains four superconducting
islands (see Fig. 13). In this case, dimHM = 216/2 = 28, and
so the dual-spin Hamiltonian, described diagrammatically
in Fig. 13, contains eight spins, two complete and two
incomplete gauge plaquettes. The situation becomes more
regular if we further increase the number of islands. For 9
islands (dimHM = 236/2 = 218), the Majorana system maps to
18 spins, 3 complete, and 6 incomplete plaquettes on the first
and last rows of the spin model. One can generalize this picture
to L2 islands. Then, the dualZ2 QIG theory will be represented
by a scaled version of the right panel of Fig. 14, with 2L2 spins,
and 2L incomplete plaquettes (the product of only three spins
σ z). The latter incomplete plaquettes are equally split between
the top and bottom rows, i.e., L incomplete plaquettes are
placed on the top row and L are situated on the bottom row.

Notice that there is no natural guiding principle to find the
dual theory by a Jordan-Wigner mapping. The bond-algebraic
method is the natural approach and can be tested numerically
on finite lattices.

APPENDIX B: FERMIONIZATION OF S = 1/2 SPIN
MODELS IN ARBITRARY DIMENSIONS

Although not pertinent to our direct models of study [those
of Eq. (5) and their exact duals], we briefly review and
discuss, for the sake of completeness and general perspective,
dualities of related quantum spin S = 1/2 systems. General
bilinear spin Hamiltonians can be expressed as a quartic form
in Majorana fermion operators. The general nature of this
mapping is well known and has been applied to other spin
systems with several twists. Simply put, we can write each
spin operator as a quadratic form in Majorana fermions. In the
case of general two-component spin systems that we discuss
now, the relevant Pauli algebra is given by the following onsite
(r) constraints:(

σx
r

)2 = (
σ z

r

)2 = 1,
{
σx

r ,σ z
r

} = 0, (B1)

and trivial off-site (r �= r ′) relations[
σx

r ,σ z
r ′
] = 0. (B2)

A dual Majorana form may be easily derived as follows. We
consider a dual Majorana system in which at each lattice site r
there is a grain with three relevant Majorana modes. We label
the three relevant Majorana modes (out of any larger number
of modes on each grain) by {cr,a}3

a=1. As can be readily seen
by invoking Eq. (4), a representation that trivially preserves
the algebraic relations of Eqs. (B1) and (B2) is given by

σx
r ↔ icr1cr2, σ z

r ↔ icr1cr3. (B3)

Equation (B3) is a variant of a well-known mapping applicable
to three component spins (as well as, trivially, spins with
any smaller number of components).12,58 Equation (B3) may
also be viewed as a two-component version of the mapping
employed by Kitaev.18 The Hilbert space spanned by an
S = 1/2 spin system on a lattice/network having N sites is
dimHspin = 2N . By contrast, the Hilbert space of a general
Majorana system with {mr} Majorana modes (mr � 3) at sites
{r} is given by dimHM = 2

∑
r mr/2. Thus, in this duality, the

Hilbert space is not preserved: each individual energy level
of the spin system becomes (2(

∑
r mr/2)−N )-fold degenerate.

Similarly, one-component systems (e.g., those involving only
{σx

r }) can be mapped onto a granular system with two
Majorana modes per site. If there are two Majorana modes
at each site r , then such a mapping will preserve the Hilbert
space size.

For completeness, we now turn to specific spin systems
related to those that we discussed in the main part of our
article. In Sec. VI B, we illustrated that the Majorana system
of Eq. (5) (and all of its duals that we earlier discussed in
the text) can be mapped onto the Xu-Moore model55 on
the checkerboard lattice. Following our general discussion
above, it is straightforward to provide a Majorana dual to
the Xu-Moore model on the square lattice, Eq. (71). On the
square lattice, the orbital compass model (OCM) and the
Xu-Moore model of Eq. (71) are dual to one another.30,31,59

We will assume the square lattice to define the xz plane. The
anisotropic square lattice OCM (Refs. 57 and 59) is given by

σz
i−1σ

z
i σx

i

σz
i σ

z
i+1

ici,2ci+1,1ici−1,2ci,1

FIG. 15. (Color online) The transverse-field Ising model can
be simulated by an architecture of nanowires with one wire per
superconducting island.
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the Hamiltonian

HOCM = −
∑

r

(
Jx;rσ

x
r σx

r+e1
+ Jz;rσ

z
r σ z

r+e2

)
. (B4)

In Eq. (B4), we generalized the usual compass model
Hamiltonian by allowing the couplings {Jx,z} to vary locally
with the location of the horizontal and vertical links of the
square lattice [given by (r,r + e1,2) respectively]. By plugging
Eqs. (B3) into (B4), we can rewrite this (as well as other
general two-component spin bilinears) as a quartic form in the
Majorana fermions.

APPENDIX C: QUANTUM SIMULATION
OF THE TRANSVERSE-FIELD ISING CHAIN

It may generally be feasible to use our formalism to
simulate quantum-spin models in terms of Majorana networks.
Consider, for example, the simulation of a transverse-field

Ising chain

HI = −
N−1∑
i=1

Jiσ
z
i σ z

i+1 −
N∑

i=1

hiσ
x
i (C1)

with N spins and open boundary conditions. In this case, it may
be possible to use linear arrays with one nanowire per island
to simulate this model and study, for instance, the dynamics of
its quantum phase transition. The Hamiltonian HI maps to the
Majorana network

HM = −i

N−1∑
i=1

Jici,2ci+1,1 − i

N∑
i=1

hici,1ci,2, (C2)

after the following duality mapping:

σ z
i σ z

i+1 	→ ici,2ci+1,1, σ x
i 	→ ici,1ci,2 (C3)

(see Fig. 15).
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