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We study a quantum phase transition between a phase which is topologically ordered and one which is not.
We focus on a spin model, an extension of the toric code, for which we obtain the exact ground state for all
values of the coupling constant that takes the system across the phase transition. We compute the entanglement
and the topological entropy of the system as a function of this coupling constant and show that the topological
entropy remains constant all the way up to the critical point and jumps to zero beyond it. Despite the jump in
the topological entropy, the transition is second order as detected via local observables.
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I. INTRODUCTION

Some strongly correlated quantum many-body systems
display a type of order which cannot be characterized by any
local order parameter. Instead, such order is topological in
nature,1 with the fractional quantum Hall systems being the
primary example so far: they are liquid states that exhibit
exotic properties such as a ground-state �GS� degeneracy that
cannot be lifted by any local perturbations2,3 and fractional-
ized degrees of freedom.4 Topologically ordered states are
also interesting in that their robustness against local pertur-
bations might be of use for decoherence-free quantum
computation.5

An example of an exactly solvable lattice spin model that
is topologically ordered was presented by Kitaev in Ref. 5,
and the system was argued to be robust against small pertur-
bations that tend to order the system à la Landau-Ginzburg
and take it away from its topological phase. The departure
from the topologically ordered phase should occur through a
quantum phase transition. Such a quantum phase transition,
however, cannot be entirely captured by ordinary methods
based on local Landau-Ginzburg order parameters, and new
methods need to be devised in order to investigate the fate of
topological order across the phase transition. These methods
must be based on the fundamental properties of topologically
ordered phases, such as the GS degeneracy in the presence of
a gap and the presence of a nonvanishing topological en-
tropy.

Recent efforts to understand quantum phase transitions in
topologically ordered states include a mean-field approach
for these exotic states6 and analytical and numerical
studies7–9 of the Kitaev model in the presence of a field. The
numerical analysis presented in Refs. 8 and 9 leads to the
conclusion that topological order survives unchanged up to
the second-order phase transition at �c=0.328 47�6� �in the
notation of Eq. �18��, while the system is no longer topologi-
cally ordered for ���c. �Here � stands for the coupling
constant that drives the T=0 quantum phase transition—the
notation will become apparent shortly and is chosen because
of a close relation to a classical model.�

In this paper, we investigate analytically a quantum phase
transition out of a topological phase. We show that the re-
cently defined topological entropy10,11 works well as an “or-

der parameter” across the transition. We study the transition
using a model—see Eq. �5�—that is shown to behave much
like the Kitaev model in a magnetic field for small values of
the field. The advantage of this model is that the ground state
can be obtained exactly, from which we can then compute
the topological entropy explicitly and show that it remains
constant in the topologically ordered phase ����c

�0.440 686 8�, dropping abruptly to zero in the non-
topologically-ordered phase ����c�, despite the continuous
�second order� character of the transition.

We find that in this model, even though one cannot iden-
tify a local order parameter that vanishes in one phase and
not in the other, one can show that the �continuous� local
magnetization has a singularity at the critical point. In the
model, we show that the magnetization equals the energy
EIsing��� of a two-dimensional �2D� classical Ising model
with N spins evaluated at an inverse �classical� temperature
equal to the value of the coupling constant � that drives the
system through the T=0 phase transition:

m��� =
1

N
�

i

��̂i
z� =

1

N
EIsing��� . �1�

From this relation, it becomes evident that the magnetization
m���, although continuous and nonvanishing across the tran-
sition at �c �much as the energy of the classical Ising model
across the classical transition�, has a singularity in its first
derivative, since

�m

��
=

1

N

�EIsing

��
= − �2 1

N
CIsing��� , �2�

and the Ising model heat capacity CIsing diverges logarithmi-
cally at �c. Hence, although there is no local order parameter
that can detect either the topological or the nontopological
phase in this system, one can expose the topological quan-
tum phase transition through the singularity in the derivative
of a local quantity.

This is contrasted, for example, with the case discussed in
Sec. III B, where a similar topological transition is accompa-
nied by a simultaneous Z2 symmetry-breaking phase transi-
tion. In that case, the same transition is captured both by the
nonlocal topological entropy and by a local �Landau-
Ginzburg� order parameter.
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II. MODEL

The model that we consider is a deformation of the Kitaev
model,5 and it is defined on a square lattice with spin-1 /2
degrees of freedom residing on the bonds, as shown in Fig.
1. The pure Kitaev model is written in terms of star and
plaquette operators �see Fig. 1�. Star operators are defined as

As = 	
i�star�s�

�̂i
x 
 	

i�s

�̂i
x, �3�

where i labels the four spins on the bonds departing from
some vertex s of the square lattice. Plaquette operators are
defined as

Bp = 	
i�plaquette�p�

�̂i
z 
 	

i�p

�̂i
z, �4�

where i labels the four spins on the bonds around some
plaquette p of the square lattice.

The Hamiltonian we consider in this paper is

H = − �0�
p

Bp − �1�
s

As + �1�
s

exp�− ��
i�s

�̂i
z�

= HKitaev + �1�
s

exp�− ��
i�s

�̂i
z� , �5�

where �0,1�0 and � is a parameter that we use to tune the
system across a topological quantum phase transition. Notice
that for �=0 the Hamiltonian �5� is simply the Kitaev Hamil-
tonian HKitaev in Ref. 5, up to a trivial overall constant shift
of the energy.

The exact ground-state wave function of this Hamiltonian
can be obtained by deconstructing H into two pieces, H
=�0H0+�1H1, as follows.

Take G to be the �Abelian� group of all spin-flip opera-
tions obtained as products of star type operators. Notice that
g2=1 for any element g of the group G. By acting with
elements of G on a given reference configuration � i�i

z� one
generates a manifold of states, which, however, does not en-
compass the whole basis. For example, the action of a star
operator As cannot change the sign of the product of �z’s
around any square plaquette in the lattice5,12 �see Fig. 1�.

Therefore, there is a nontrivial �and nonunique� minimal set
����� of reference configurations that generates the full �z

basis under the action of the group G. �In particular, one of
the elements in this set is the reference configuration 0� that
is fully magnetized in the z direction—say, �i

z=1, ∀ i.�
Consider then the family of Hamiltonians

H1��� = �
s
�exp�− ��

i�s

�̂i
z� − 	

i�s

�̂i
x� �6�

for some real-valued parameter �. The ground state of any
such Hamiltonian can be obtained exactly, and it can be writ-
ten in the form

GS1� = �
�

	� �
g�G

exp���
i
�i

z�g,��/2�
�Z�

g��� , �7�

Z� = �
g�G

exp���
i

�i
z�g,��� , �8�

where � labels the different block-diagonal sectors corre-
sponding to the states in the minimal set �����, �i

z�g ,�� is
the z component of the spin at site i in state g���, and the
coefficients 	� can be chosen at will, subject to the normal-
ization condition ��	�2=1. Although the choice of minimal
set is nonunique, one can show that Eq. �8� is independent of
such choice, modulo an irrelevant permutation of the � indi-
ces. Within each block-diagonal sector, the GS of Eq. �6� is
unique. Instead of proving directly that Eq. �8� is the GS of
Eq. �6�, it is more convenient to notice that the family of
Hamiltonians in Eq. �6� is a particular choice of stochastic
matrix form decompositions of quantum Hamiltonians that
exhibit precisely Eq. �8� as their GS.13 One can verify this by
showing that each of the operators

Qs = exp�− ��
i�s

�̂i
z� − 	

i�s

�̂i
x �9�

between square brackets in Eq. �6� annihilates the inner sum
in GS1�, independently of the index �. That the GS energy is
zero follows because

Qs
2 = 2 cosh���

i�s

�̂i
z�Qs �10�

and

�Qs,cosh���
i�s

�̂i
z�� = 0, �11�

from which it can be shown that the expectation value of Qs
with respect to any state is always greater than or equal to
zero.

Let us consider now the remaining part of the Hamil-
tonian,

H0 = − �
p

	
i�plaquette�p�

�̂i
z 
 − �

p
	
i�p

�̂i
z. �12�

Recall that any star operator As, and therefore any element of
the group G, preserves the product 	i�p�̂i

z on every plaquette
of the lattice. The GS wave function of Hamiltonian �12� can
then be written as

s

p

FIG. 1. �Color online� Examples of star and plaquette operators,
centered at a lattice site s �blue open circle� and at a dual lattice site
p �red open square�, respectively. The solid black dots represent the
spin-1 /2 degrees of freedom residing on the bonds of the lattice,
and the dashed lines connect the spins involved in the definition of
each of the above operators.
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GS0� = �
�

� �
g�G


g,�g��� , �13�

for any choice of the coefficients 
g,� �����g�G
g,�2=1�.
Here the primed sum over � is restricted to the �four� block-
diagonal sectors that satisfy 	i�p�̂i

z= +1 for all plaquettes p
in the lattice, and it must be carried out separately because no
operation in G allows to change sector.5

As a result, any linear combination with positive weights
�0 and �1,

H = �0H0 + �1H1 = HKitaev + �1�
s

exp�− ��
i�s

�̂i
z� , �14�

and therefore our Hamiltonian in Eq. �5� has the GS given by

GS� = �
�

�	� �
g�G

exp���
i
�i

z�g,��/2�
�Z�

g��� . �15�

Notice that one of the topological sectors that satisfy
	i�p�̂i

z= +1, ∀ p is the one containing the fully magnetized
configuration in the z direction �0��.

In particular for ��1

exp�− ��
i�s

�̂i
z� � 1 − ��

i�s

�̂i
z, �16�

�1�
s

exp�− ��
i�s

�̂i
z� � const − 2��1�

i

�̂i
z. �17�

Therefore, in the limit of small � �in absolute value� the
Hamiltonian in Eqs. �5� and �14� is equivalent to the Kitaev
model in the presence of a magnetic field proportional to
��1,

H = − �0�
p

	
i�p

�̂i
z − �1�

s
	
i�s

�̂i
x − 2��1�

i

�̂i
z. �18�

For larger values of �, the many-body terms in Eq. �19� are
no longer negligible and the equivalence is lost, although the
form of the GS �15� suggests that the system gets deeper and
deeper into the magnetized phase—as one would expect
upon increasing the strength of the magnetic field in the Ki-
taev model. As we discuss in Sec. III A, our model under-
goes a second-order phase transition at �c= �1 /2�ln��2+1�
�0.440 686 8, where it displays a dimensionality reduction
that places the transition in a different universality class than
the one studied in Refs. 7–9.

One can use the decomposition

exp�− ��
i�s

�̂i
z� = 	

i�s

�cosh��� − �̂i
z sinh����

= cosh4��� − cosh3���sinh����
i�s

�̂i
z

+ cosh2���sinh2��� �
i�j�s

�̂i
z�̂ j

z

− cosh���sinh3��� �
i�j�k�s

�̂i
z�̂ j

z�̂k
z

+ sinh4���	
i�s

�̂i
z, �19�

to estimate the limit of validity of Eq. �18� to be given by the
condition

� cosh3���sinh���
cosh2���sinh2���

� = � cosh���
sinh���

� � 2. �20�

This corresponds to a ratio between the coupling to the mag-
netic field and the coupling to the cooperative transverse
field ��s	i�s�̂i

x�:

�2�1 cosh3���sinh���
�1

� 
16

9
� 1.78. �21�

The detailed numerical analysis presented in Refs. 8 and 9
leads the authors to conclude that topological order survives
up to the second-order phase transition at finite �c �in the
notation of Eq. �18��, while the system is no longer topologi-
cally ordered for ���c. In the following, we investigate this
phase and the relative phase transition using the exact ground
state of our model �5� to compute the topological entropy10,11

across the transition. Using an exact derivation from the mi-
croscopic degrees of freedom, we show that the topological
entropy is able to detect a transition from a topologically
ordered phase ����c� to a non-topologically-ordered phase
����c�. Indeed, it remains constant at its known �→0
value up to the transition and drops abruptly to zero after-
wards, despite the continuous character of the transition.

III. TOPOLOGICAL ENTROPY OF FACTORIZABLE
(LOCAL) WAVE FUNCTIONS

Using the definition in Refs. 10 and 11, the topological
entropy can be obtained as a linear combination of Von Neu-
mann entanglement entropies SVN of different bipartitions of
the system into subsystems A and B:

SVN
A 
 − Tr��A log2 �A� = SVN

B , �22�

where �A=TrB��� is the reduced density matrix obtained
from the full density matrix � by tracing out the degrees of
freedom of subsystem B and the last equality holds whenever
the full density matrix � is a pure-state density matrix. The
different bipartitions are aimed at removing all the extensive
�boundary� contributions to uncover the sole topological con-
tribution. A particular choice of the four bipartitions10 is il-
lustrated in Fig. 2, and the topological entropy is then de-
fined as

Stopo = lim
r,R→�

�− SVN
�1A� + SVN

�2A� + SVN
�3A� − SVN

�4A�� . �23�

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

(4)(2) (3)(1)

r
R

boundary 1 boundary 1

boundary 2boundary 2

FIG. 2. Illustration of the four bipartitions used to compute the
topological entropy in Ref. 10.
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In order to compute the topological entropy as a function
of the parameter �, let us first notice that the Hamiltonian
�14� constructed above, with the GS given by Eq. �15�, be-
longs to a class of Hamiltonians whose GS wave functions
��= Z−1/2�g�Ge−�Eg/2g0� have non-negative, factorizable
amplitudes—i.e., Eg=EgA

A +EgB

B , with g=gA � gB for all bipar-
titions �A ,B�. For this type of Hamiltonians, one can com-
pute the entanglement entropy as follows.

Consider a given bipartition �A ,B� of the system. The
reduced density matrix �A=TrB���, obtained by tracing over
all degrees of freedom in B, is given by12

�A =
1

Z
�

g,g̃�G

e−��Eg+Egg̃�/2�0BgBg̃BgB0B�gA0A��0AgAg̃A

=
1

Z
�

g�G,g��GA

e−�EgB

B
e−��EgA

A +E
gAgA�
A �/2gA0A��0AgAgA� ,

�24�

where g=gA � gB, 0�= 0A� � 0B�, and GA�G �GB�G� is
the subgroup of transformations acting solely on A �B� and
leaving B �A� invariant:

GA = �g � GgB = 1B� ,

GB = �g � GgA = 1A� .

Notice that we used the group property to rewrite a generic
element of G as gg̃, ∃! g̃�G, as well as the additive property
of Eg.

We can then compute the trace of the nth power of the
reduced density matrix Tr���A�n� and use the identity

− lim
n→1

�

�n
Tr���A�n� = − Tr��A ln �A� �25�

to obtain the Von Neumann entropy SVN
�A� =−Tr��A log2 �A�:

Tr��A
n� =

1

Zn �
g1,. . .,gn�G

g1�,. . .,gn��GA

exp�− ��
i=1

n

Egi,B

B �
�exp�− ��

i=1

n

�Egi,A

A + Egi,Agi,A�
A �/2�

��0Ag1,Ag1,A� g2,A0A��0Ag2,Ag2,A� g3,A0A� . . .

��0Agn,Agn,A� g1,A0A�

=
1

Zn �
g1,. . .,gn�G

g1�,. . .,gn��GA

exp�− ��
i=1

n

Egi�
��0Ag1,Ag1,A� g2,A0A��0Ag2,Ag2,A� g3,A0A� . . .

��0Agn,Agn,A� g1,A0A� , �26�

where we used the fact that the inner products in Eq. �26�
impose

gi+1,A = gi,Agi,A� , �27�

for i=1, . . . ,n, with the identification n+1
1, and therefore

Egi,B

B +
1

2
�Egi,A

A + Egi−1,Agi−1,A�
A � = Egi

. �28�

The condition in Eq. �27� can be satisfied if and only if

gi� = �gi+1,Agi,A� � 1B � GA. �29�

Thus, the summation over all gi� of the inner products in Eq.
�26� yields a constraint over the allowed values of
g1 , . . . ,gn�G:

�gi+1,Agi,A� � 1B � GA, ∀ i = 1, . . . ,n �n + 1 
 1� ,

�

�gi,Agj,A� � 1B � GA, ∀ i, j = 1, . . . ,n ,

�

gigj � GAGB, ∀ i, j = 1, . . . ,n . �30�

In particular, the last line can be recast as

gi = hig1ki ∃ !hi � GA, ki � GB, ∀ i = 2, . . . ,n .

�31�

The physical meaning of these conditions will become clear
in the next section for the specific case of the system consid-
ered in this paper, although the form of Eq. �31� already
suggests that they require all the elements gi to agree at the
boundary of the bipartition �A ,B�.

We can finally use Eq. �31� to simplify Eq. �26�,

Tr��A
n� =

1

Zn �
g�G

e−�Eg �
h2,. . .,hn�GA

k2,. . .,kn�GB

exp�− ��
i=2

n

Ehigki�
=

1

Z
�

g�G

e−�Eg� �
h�GA,k�GB

e−�Ehgk

Z
�n−1

, �32�

and obtain, via Eq. �25�,

SVN
�A� = −

1

Z
�

g�G

e−�Eg log2� �
h�GA,k�GB

e−�Ehgk

Z
�

=�log2� �
h�GA,k�GB

e−�Ehgk

Z
��

= − �log2 Z̃g� + log2 Z

= ���F̃g� − F� , �33�

where F̃g is the partial free energy given by all the configu-
rations that can be obtained from g via products of spin-flip
operators that act solely on subsystem A or subsystem B �i.e.,
having the same “boundary” as g� and �¯� denotes the en-
semble average over g�G with weight e−�Eg. Notice that our
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result in Eq. �33� is the lattice equivalent of the Von Neu-
mann entropy obtained by Fradkin and Moore in Ref. 14 for
continuous systems.

Alternatively, Eq. �33� can be interpreted as the entropy of
mixing �or configurational entropy� of the allowed bipartition
boundaries in G. This can be made more transparent by in-
troducing the quotient group Q=G / �GAGB� and by rewriting
Eq. �33� as

SVN
�A� = − �

q�Q
�

h�GA

k�GB

e−�Ehqk

Z
log2
� �

h̃�GA,k̃�GB

e−�Eh̃�hqk�k̃

Z
�

= − �
q�Q

Pq log2 Pq, �34�

where we used the fact that the term in square brackets is
independent of h and k, and where we introduced the nota-
tion

Pq =

�
h�GA,k�GB

e−�Ehqk

Z
�35�

for the probability of boundary q to appear in G for a given
inverse temperature � and energy Eg.

In order to proceed further, let us focus for simplicity on
the specific GS of our system �15�. The generic case of a
wave function with factorizable amplitudes can be inferred
with minor modifications.

A. Case of one-body potentials

All of the above results apply straightforwardly to the GS
in Eq. �15�. Notice that �i� the topological entropy in each
block-diagonal sector of the pure Kitaev model is the same12

and �ii� it is reasonable to make the working assumption that
the relevant sector for the transition to the fully magnetized
state 0� is the one that contains this state and that is therefore
obtained upon applying the group G to 0�. For the purpose
of computing the topological entropy, one can thus replace
Eq. �15� by

GS� =
1
�Z

�
g�G

exp���
i

�i
z�g�/2�g0� �36�

and obtain

SVN
�A� = −

1

Z
�

g�G

exp���
i

�i
z�g��

� log2� �
h�GA,k�GB

exp���
i
�i

z�hgk��
Z

� , �37�

where Z=�g�G exp���i�i
z�g��.

In order to simplify Eq. �37� with the purpose of comput-
ing the topological entropy of the system �23�, it is conve-
nient to do the following change of variables. Recall that a
generic configuration g0� is uniquely specified by the set of
star operators acting on the reference configuration 0�,

which we chose to be the ferromagnetic state with all the �
spins pointing up, modulo the action of the product of all the
star operators �which is equal to the identity�. Thus, there is
a one-to-two mapping between G= �g� and the configuration
space �= ��� of an Ising model with degrees of freedom �s

residing on the sites s of the square lattice, where, for ex-
ample, �s=−1�+1� means that the corresponding star opera-
tor is �not� acting in the associated g. Since each � spin can
be flipped only by its two neighboring � spins, then �i

�s�s�, where i labels the bond between the two neighboring
sites �s ,s�� and

�
g�G

exp���
i

�i
z�g�� 


1

2 �
���

exp�� �
�s,s��

�s�s�� . �38�

Notice that, using the above mapping, the GS wave func-
tion of our model, Eq. �15�, can be rewritten as

GS� = �
���

exp�� �
�s,s��

�s�s�/2�
�Z

g���0� , �39�

where Z=���� exp����s,s���s�s��. Thus, all equal-time cor-
relation functions that can be expressed in terms of the �s
variables are the same as those of a 2D classical Ising model
with reduced nearest-neighbor coupling J /T=�, implying
that the critical point of the latter �c= �1 /2�ln��2+1�
�0.440 68 68 corresponds precisely to the critical point of
our quantum system. Notice also that the magnetization in
the original � spin language is indeed the nearest-neighbor
spin-spin correlation �i.e., the energy� in � spin language,

m��� =
1

N
�

i

�GS�̂i
zGS�

=
1

Z
�

���

exp�� �
�s,s��

�s�s��� 1

N
�

i

�i
z�g�����

=
1

Z
�

���

exp�� �
�s,s��

�s�s��� 1

N
�

�s,s��

�s�s��
=

1

N
EIsing��� . �40�

Therefore, one concludes that the magnetization m��� is con-
tinuous across the transition at �c but there is a singularity in
its first derivative

�m

��
=

1

N

�EIsing

��
= − �2 1

N
CIsing��� , �41�

as the Ising model heat capacity CIsing diverges logarithmi-
cally at �c.

In the following, we will show how such continuous
phase transition is accompanied by a sudden, discontinuous
vanishing of the topological entropy of the system.

The case of a configuration of the form hgk, with h
�GA and k�GB, requires a few additional steps. First of all,
notice that the composition of any two elements g , g̃�G is
represented in � spin language by the site-by-site product of
the two configurations corresponding to g and g̃, respec-
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tively: �s�gg̃�=�s�g��s�g̃�. In particular, �s�hgk�
=�s�hk��s�g�.

Moreover, using similar arguments as in Ref. 15, the star
operators of a bipartite system �A ,B� can be divided into
bulk star operators—i.e., those acting solely on subsystem A
or subsystem B—and boundary star operators acting simul-
taneously on A and B spins. The boundary star operators can
be further subdivided into different sets according to the dif-
ferent boundaries around each connected component of A
and B �for a total of mA+mB−1 boundaries, mA and mB being
the number of connected components of A and B, respec-
tively�.

Let us define a collective operation as the product of all
the star operators in one of these sets—that is, the product of
all the stars around a connected boundary of the bipartition
�A ,B�. Clearly, the number of such collective operations is
given by the number of sets, mA+mB−1.

One can show that the subgroup GAGB�G, to which the
product hk belongs, can be generated by all the bulk star
operators together with all but one of the collective operators
�all but one, independently of which one is chosen to be left
out, is required because the product of all boundary star op-
erators is equivalent to the product of all bulk star operators�.
For example, GAGB is generated by the bulk star operators
alone in bipartitions 2 and 3 in Fig. 2, while the product of
all boundary star operators along one of the two boundaries
must be included to generate GAGB for bipartitions 1 and 4.

Let us define �b= ��b�, b for “bulk,” to be the set of Ising
spin configurations on the sites of the square lattice where all
�s

b corresponding to boundary sites s are fixed to equal +1.
Let us also define ��= ����, � for “boundary,” to be the set of
Ising configurations where �s

�= +1 for all bulk star operators,
�s

�= +1 for all boundary star operators belonging to one cho-
sen boundary and �s

�= �1 for the remaining boundary star
operators, as long as all �s

� spins belonging to the same
boundary have the same sign. Notice that ��= �11� for bi-
partitions 2 and 3 in Fig. 2, where 1 is the configuration with
all the spins �s

�= +1. One can finally show that there is a
one-to-one correspondence between the elements of GAGB
and the Ising configurations in ��b��, ∀ �b��b, ������,
where �b�� represents the site-by-site product of the two con-
figurations �i.e., ��b���s=�s

b�s
��. Therefore,

�
h�GA,k�GB

exp���
i

�i
z�hgk��


 �
�b��b,�����

exp�� �
�s,s��

�s
b�s

��s�g��s��g��s�
� �s�

b � ,

�42�

and in particular,

�
�s,s��

�s
b�s

��s�g��s��g��s�
� �s�

b = �
�s,s��

s,s� bulk

�s
b�s�g��s��g��s�

b

�43�

+ �
�s,s��

s� boundary

s bulk

�s
b�s�g��s��g��s�

� �44�

+ �
�s,s��

s,s� different boundaries

�s
��s�g��s��g��s�

� �45�

+ �
�s,s��

s,s� same boundary

�s�g��s��g� , �46�

where we used the fact that if s is in the bulk, then �s
�= +1;

if s belongs to a boundary, then �s
b= +1; and if both s and s�

belong to the same boundary, then �s
��s�

� = +1.
Let us focus on the bipartitions of interest to compute the

topological entropy �23�. First of all, in the limit r ,R→�
there are no nearest-neighboring stars s and s� belonging to
two different boundaries. Therefore, the term �45� vanishes
identically. For bipartitions 2 and 3, ��= �11� and

�
h�GA

k�GB

exp���
i

�i
z�hgk��


 exp�� �
�s,s��

s,s� boundary

�s�g��s��g��
� �

�b��b

exp�� �
�s,s��

s,s� bulk

�s
b�s�g��s��g��s�

b �
�exp�� �

�s,s��

s� boundary,s bulk��s
b�s�g��s��g� . �47�

The right-hand side of the above equation can be interpreted
as the partition function of an Ising model with nearest-
neighbor interactions, where only the bulk degrees of free-
dom are allowed to flip starting from a given configuration
��g�. Clearly such partition function is invariant upon chang-
ing the initial configuration as long as the new one is in the
same ergodic sector.

For example, one can equivalently choose

�̃�g� = �+ 1 if s belongs to the bulk,

�s�g� if s belongs to the boundary,
� �48�

and the expression above simplifies to

�
h�GA

k�GB

exp���
i

�i
z�hgk��


 exp�� �
�s,s��

s,s� boundary

�s�g��s��g��
� �

�b��b

exp�� �
�s,s��

s,s� bulk

�s
b�s�

b �
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�exp�� �
�s,s��

s� boundary,s bulk

�s
b�s��g�� = Z2,3

� �g� . �49�

Here Z2,3
� �g� represents the partition function of an Ising

model with nearest-neighbor interaction of reduced strength
J /T=� and with fixed spins along the boundary of biparti-

tions 2 and 3, respectively. The values of the spins at the
boundary are determined by g.

For bipartitions 1 and 4, ��= �1 , f�, where the configura-
tion f has all the spins equal to +1 except for those belonging
to the chosen boundary, say boundary 2 in Fig. 2, which are
equal to −1. In this case,

�
h�GA

k�GB

exp���
i

�i
z�hgk�� 
 exp�� �

�s,s��

s,s� same boundary

�s�g��s��g�� �
�b��b

exp�� �
�s,s��

s,s� bulk

�s
b�s�

b �exp�� �
�s,s��

s� boundary 1,s bulk

�s
b�s��g��

��exp�� �
�s,s��

s� boundary 2,s bulk

�s
b�s��g�� + exp�− � �

�s,s��

s� boundary 2,s bulk

�s
b�s��g���

= Z1,4
� �g� + Z1,4

�,twisted�g� . �50�

Here Z1,4
� �g� are the analog of Z2,3

� �g� for bipartitions 1 and 4,
respectively, while Z1,4

�,twisted�g� differ from the former by the
fact that all the �fixed� spins belonging to boundary 2 in
bipartitions 1 and 4, respectively, have been flipped. In other
words, Z1,4

� �g� represents the partition function of an Ising
model with nearest-neighbor interaction of reduced strength
J /T=� and with fixed spins along the boundary of biparti-
tions 1 and 4, respectively. The partition functions
Z1,4

�,twisted�g� differ in that the spins along one of the two
boundaries have been flipped with respect to their values in
Z1,4

� �g�. Again, the values of the spins at the boundary are
determined by g.

In this notation, the topological entropy of the system can
be written as

Stopo = lim
r,R→�

� 1

Z
�

g�G

exp���
i

�i
z�g��

�log2
�Z1

��g� + Z1
�,twisted�g���Z4

��g� + Z4
�,twisted�g��

Z2
��g�Z3

��g� � ,

�51�

where the sum over g acts as a weighed average of the loga-
rithmic term over all possible values of the spins at the
boundary. Notice that in Eq. �51� the partitions with two
boundaries, and hence with nontrivial topology, are those
that appear with two contributions �bipartitions 1 and 4�,
corresponding to some relative boundary conditions �BCs�
and their twisted counterparts. These contributions, as we
show below in detail, are responsible for the nonvanishing
topological entropy. In the topological phase, the two parti-
tion functions for the twisted and untwisted BCs contribute
equally, and in the nontopological phase, one partition func-
tion is exponentially suppressed when compared to the other,
in the thermodynamic limit. Therefore, there is an extra en-

tropy contribution in one of the phases depending on whether
the boundaries of topologically nontrivial bipartitions are
twisted or not relative to one another.

From Eq. �51�, the behavior of the topological entropy
can be qualitatively argued as follows. Deep in the disor-
dered phase, where the correlations are short ranged, the
choice of boundary conditions is likely to affect the partition
function of the system only with exponentially small correc-
tions. Thus, we can expect to have Z1

��g�Z4
��g�

�Z1
�,twisted�g�Z4

��g�� ¯ �Z2
��g�Z3

��g� and Stopo=2. On the
other hand, deep in the �ferromagnetically� ordered phase the
partition function of a system with twisted boundary condi-
tions is exponentially suppressed with respect to the one
without the twist. Thus, Z1

��g��Z1
�,twisted�g� and Z4

��g�
�Z4

�,twisted�g�, while Z1
��g�Z4

��g��Z2
��g�Z3

��g� still holds. This
leads to Stopo=0.

In the following two sections we will show with rigorous
arguments that the behavior of the topological entropy across
the transition is strongly first order, with a sudden jump from
Stopo=2 to Stopo=0.

1. Disordered phase „���c…

In the limit of small �—namely, above the ordering
transition—one can compute Stopo via the high-temperature
expansion of the Ising model with fixed spins at the bound-
ary.

Let us rewrite

Z2
��g� = �

�b��b
	

bonds i

�cosh � + sinh ��si
�si�

�

= 2N/2−�cN�
G

t��G� 	
s�EG

�s�g� , �52�

where si and si� are the sites at the ends of bond i, N is the
total number of bonds on the lattice, � is the length of the
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boundary in number of � spins, c=cosh � and t=tanh �. The
sum over G runs over all possible graphs on the bonds of the
square lattice, composed entirely of closed loops and open
strings connecting two boundary spins. The product
	s�EG

�s�g� encompasses all the boundary spins that appear
as end points �the set EG� of open strings in G. Finally, ��G�
is the total length of the closed loops and open strings in G.

The same is true for Z3
��g�. The case of Z1

��g� and Z4
��g�

differs from Z2
��g� and Z3

��g� in that there are now two types
of open strings: those going from one boundary to itself and
those connecting the two boundaries �see Fig. 2�.

Next, let us compare the product Z2
��g�Z3

��g� with the
product Z1

��g�Z4
��g�. Notice that bipartitions 2 and 3 have

precisely the same total combined boundary as bipartitions 1
and 4. In order for a graph to appear in one of the two
products and not in the other, it needs to comprise loops or
strings that are able to tell the difference between two pos-
sible origins �2+3 vs 1+4� of the total combined boundary.

Examples of such open strings are shown in Fig. 3. One
can show that these telltale strings, and the analogous closed
loops, cannot be arbitrarily short, and their length is bounded
from below by R−2r. As a consequence, the corresponding
graphs are exponentially suppressed at least as tR−2r, and in
the limit r ,R→� with R−2r→�, implicit in the definition
of the topological entropy, one obtains

Z1
��g�Z4

��g�
Z2

��g�Z3
��g�

→ 1. �53�

Similar considerations apply when comparing the product
Z1

��g�Z4
��g� with products of the kind Z1

�,twisted�g�Z4
��g�. In this

case, the boundaries involved are exactly the same, and the
relevant telltale elements of the graph are open strings con-
necting one of the two components of the boundary with the
other. Such strings are in fact the only elements that are
sensitive to the twisted boundary conditions. Clearly the
length of these strings is bounded from below by R−2r and

Z1
�,twisted�g�Z4

��g�
Z1

��g�Z4
��g�

→ 1 �54�

exponentially fast, at least as tR−2r, with �R−2r�→�.
Of course, our reasoning is correct up to the point where

the high-temperature expansion breaks down and entropic
contributions balance the exponential suppression. Said dif-
ferently, this is the case when the correlation length in the
Ising model goes to infinity and the larg-r ,R limit does not
guarantee that the ratios of products of partition functions
above tend to 1.

Given Eqs. �53� and �54�, we can finally use Eq. �51� to
obtain the topological entropy of the system throughout the
disordered phase ���c�0.440 6868,

Stopo =
1

Z
�

g�G

exp���
i

�i
z�g��log2 4 = log2 4 = 2.

2. Landau-Ginzburg ordered phase „���c…

What happens below this transition? Rather than attempt-
ing a low-temperature expansion, it is convenient to use the
duality relations derived by Bugrij and Shadura in Ref. 16
for the inhomogeneous, finite-size Ising model. In particular,
they obtained the duality relations for a square-lattice Ising
model wrapped around a cylinder of finite length, with fixed,
free, and mixed boundary conditions. Following the usual

convention, let us label �̃ the coupling constant of the dual
Ising model �defined on the plaquettes of the original lattice�,
which is related to � by the duality relation sinh � sinh �̃

=1. Let us also indicate with Z�� ,��� and Z̃�� ,��� the parti-
tion functions of the system on the finite cylinder and its
dual, with �, �� specifying the boundary conditions: namely,
� and ��=� and � for free and fixed boundary spins, re-
spectively. With this notation in mind, the results by Bugrij
and Shadura—for the purpose of the present paper—can be
summarized by16

Z̃��,�� = K�Z�� , � � + Ztwisted�� , � �� , �55�

Z̃�� ,�� = KZ��, � � , �56�

Z̃��, � � = KZ�� ,�� , �57�

where Ztwisted�� , � � differs from Z�� , � � by the fact that
the fixed boundary spins at one end of the cylinder have been

(b)

(a)

FIG. 3. �Color online� Examples of open strings that appear in
the expansion of Z2

��g�Z3
��g� but are not present in the expansion of

Z1
��g�Z4

��g� �top� and vice versa �bottom�. Top panel: the thick yel-
low and blue lines correspond to the boundaries in bipartitions 2
and 3, respectively. Boundaries belonging to both are shown in a
thick dashed yellow-blue pattern. The strings in question are sym-
bolically represented by thin black lines. Bottom panel: same color
coding, with yellow corresponding to bipartition 4 and blue corre-
sponding to bipartition 1. Notice that strings appearing in one ex-
pansion and not in the other must connect boundaries of the same
solid color, and therefore cannot be shorter than R−2r.
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flipped. Notice that the proportionality coefficient K is the
same in all the equations and that Z�� , � �=Z�� ,�� and

Z̃�� ,��= Z̃�� , � �.
Let us then consider Z2

� in Eq. �49�. Thanks to the nearest-

neighbor character of the interaction between � spins, sub-
system A interacts only with itself and with the boundary �2

and so does subsystem B. Thus, one can factorize the two
subsystems and obtain �cf. Eq. �49��

�
h�G2A

k�G2B

exp���
i

�i
z�hgk�� 
 exp�� �

�s,s��

s,s���2

�s�g��s��g��� �
�2A

b ��2A
b

exp�� �
�s,s��

s,s� bulk

�s
b�s�

b �exp�� �
�s,s��

s� boundary,s bulk

�s
b�s��g���

�� �
�2B

b ��2B
b

exp�� �
�s,s��

s,s� bulk

�s
b�s�

b �exp�� �
�s,s��

s� boundary,s bulk

�s
b�s��g���

= �exp�� �
�s,s��

s,s���2

�s�g��s��g���Z2A
� �g�Z2B

� �g� . �58�

Similar arguments apply to bipartition 3,

�
h�G3A

k�G3B

exp���
i

�i
z�hgk�� = �exp�� �

�s,s��

s,s���3

�s�g��s��g���Z3A
� �g�Z3B

� �g� , �59�

and with a few more steps, to bipartitions 1 and 4 as well �cf. Eq. �50��,

�
h�G1A

k�G1B

exp���
i

�i
z�hgk�� = �exp�� �

�s,s��

s,s���1,boundary 1

�s�g��s��g����exp�� �
�s,s��

s,s���1,boundary 2

�s�g��s��g���
��Z1A

� �g� + Z1A
�,twisted�g��Z1B1

� �g�Z1B2

� �g� �60�

and

�
h�G4A

k�G4B

exp���
i

�i
z�hgk�� = �exp�� �

�s,s��

s,s���4,boundary 1

�s�g��s��g���
��exp�� �

�s,s��

s,s���4,boundary 2

�s�g��s��g���Z4A1

� �g�Z4A2

� �g��Z4B
� �g� + Z4B

�,twisted�g�� , �61�

where 1B1 and 1B2 refer to the two connected components of
subsystem B in bipartition 1—i.e., the component inside
boundary 1 and the component outside boundary 2—and
analogously for 4A1 and 4A2.

In order to apply Eqs. �55�–�57� to the present case, some
further considerations on the bipartitions in Fig. 2 are
needed. Recall that, although Stopo is indeed a quantity of
order 1, we expressed it in Eq. �51� in terms of a ratio of
extensive partition functions Zi

��g�. Thus, any subextensive

correction to these partition functions �i.e., O�2N�
�, with �

�1, N being the number of degrees of freedom in the sys-
tem� will only amount to an exponentially small correction to

Stopo, which vanishes in the thermodynamic limit. In this
context, the partition function Z1A

� �g� �see Fig. 4� is “equiva-
lent,” in the thermodynamic limit, to the partition function of
an Ising model on an infinite cylinder with fixed boundaries
at the edges �boundaries 1 and 2, respectively�. Similarly, the
partition function Z1B1

� �g� can be regarded as that of an Ising
model on an infinite cylinder with fixed boundary conditions
on one edge �boundary 1� and open boundary conditions on
a suitably introduced boundary �1. Finally, the same ap-
proach can be used for Z1B2

� �g�, with fixed boundary condi-
tions on one edge �boundary 2� and open boundary condi-
tions on another suitably introduced boundary �4.
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Qualitatively, this is illustrated in Fig. 4�a�, where the spins
on boundary 1 and boundary 2 are fixed and those belonging
to �1 and �4 are free. Notice that the mapping onto infinite
cylinders requires the distance between any of the �i bound-
aries introduced in Fig. 4 and any of the original boundaries
in Fig. 2 to diverge with system size. Similar arguments ap-
ply to bipartitions 2, 3, and 4. This leads to a correspondence
between our factorized partition functions and those used in
Ref. 16: namely,

Z1B1

� �g�,Z1B2

� �g�,Z2A
� �g� ,

Z2B
� �g�,Z3A

� �g�,Z3B
� �g� ,

Z4A1

� �g�,Z4A2

� �g� � ��, � � ,

Z1A
� �g�,Z4B

� �g� � �� , � � ,

Z1A
�,twisted�g�,Z4B

�,twisted�g� � Ztwisted�� , � � .

The results in Ref. 16 can then be applied to our systems and
lead to the following equations:

Z̃1A
� ��,�� � Z1A

� �g� + Z1A
�,twisted�g� , �62a�

Z̃1B1

� �� ,�� � Z1B1

� �g� , �62b�

Z̃1B2

� �� ,�� � Z1B2

� �g� , �62c�

Z̃2A
� �� ,�� � Z2A

� �g� , �62d�

Z̃2B
� �� ,�� � Z2B

� �g� , �62e�

Z̃3A
� �� ,�� � Z3A

� �g� , �62f�

Z̃3B
� �� ,�� � Z3B

� �g� , �62g�

Z̃4B
� ��,�� � Z4B

� �g� + Z4B
�,twisted�g� , �62h�

Z̃4A1

� �� ,�� � Z4A1

� �g� , �62i�

Z̃4A2

� �� ,�� � Z4A2

� �g� . �62j�

For convenience of notation, let us define the dual parti-
tion functions for the whole system in the different biparti-
tions:

Z̃1
� 
 Z̃1A

� ��,��Z̃1B1

� �� ,��Z̃1B2

� �� ,�� , �63�

Z̃2
� 
 Z̃2A

� �� ,��Z̃2B
� �� ,�� , �64�

Z̃3
� 
 Z̃3A

� �� ,��Z̃3B
� �� ,�� , �65�

Z̃4
� 
 Z̃4A1

� �� ,��Z̃4A2

� �� ,��Z̃4B
� ��,�� . �66�

Finally, we have all the ingredients to evaluate the topo-
logical entropy for ���c. Let us first rewrite Eq. �51� using
Eqs. �58�–�61� instead of Eqs. �49� and �50�:

Stopo = lim
r,R→�

� 1

Z
�

g�G

exp���
i

�i
z�g���log2

�Z1A
� �g� + Z1A

�,twisted�g��Z1B1

� �g�Z1B2

� �g�Z4A1

� �g�Z4A2

� �g��Z4B
� �g� + Z4B

�,twisted�g��

Z2A
� �g�Z2B

� �g�Z3A
� �g�Z3B

� �g�

+ �
�s,s��

s,s���1+�4

�s�g��s��g� − �
�s,s��

s,s���2+�3

�s�g��s��g��� , �67�

where the last two terms inside the square brackets come from the exponential factors in Eqs. �58�–�61�. Using the duality
relations �62�, we can identify

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
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FIG. 4. �Color online� Illustration of the four bipartitions used to
compute the topological entropy in Ref. 10, with a possible choice
for the additional boundaries needed to map each partition onto an
infinite cylinder in the thermodynamic limit.
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�Z1A
� �g� + Z1A

�,twisted�g��Z1B1

� �g�Z1B2

� �g�Z4A1

� �g�Z4A2

� �g��Z4B
� �g� + Z4B

�,twisted�g��

Z2A
� �g�Z2B

� �g�Z3A
� �g�Z3B

� �g�

=
Z̃1A

� ��,��Z̃1B1

� �� ,��Z̃1B2

� �� ,��Z̃4A1

� �� ,��Z̃4A2

� �� ,��Z̃4B
� ��,��

Z̃2A
� �� ,��Z̃2B

� �� ,��Z̃3A
� �� ,��Z̃3B

� �� ,��



Z̃1
�Z̃4

�

Z̃2
�Z̃3

�
.

For ���c, the dual Ising models are in the disordered
phase and one can perform a high-temperature expansion to

calculate the ratio �Z̃1
�Z̃4

�� / �Z̃2
�Z̃3

��. Using the same loop de-
scription as for the original system, with t replaced by t̃

=tanh��̃�, one can show that �Z̃1
�Z̃4

�� / �Z̃2
�Z̃3

��=1 in the thermo-
dynamic limit.

The remaining terms in Eq. �67� can be dealt with more
promptly by reverting back to the original � spin degrees of
freedom,

�
�s,s��

s,s���1+�4

�s�g��s��g� − �
�s,s��

s,s���2+�3

�s�g��s��g�

= �
i��1+�4

�i�g� − �
i��2+�3

�i�g� ,

where i labels the bonds of the square lattice and i�� means
that the bond i connects two sites s and s� belonging to �.
This contribution can be shown to vanish identically since
the set of boundary � spins in bipartitions 1 and 4 is identical
to the set of boundary spins in bipartitions 2 and 3 �see Fig.
2�.

In the end we find that

Stopo = lim
r,R→�

� 1

Z
�

g�G

exp���
i

�i
z�g��log2

Z̃1
�Z̃4

�

Z̃2
�Z̃3

�� = 0,

identically in the ordered phase ���c.

B. Beyond one-body potentials

As we already mentioned, the calculations carried out in
Sec. III A for the specific model presented in this paper can
be straightforwardly extended to the case of any factorizable
wave function. All one needs to do is identify a proper set of
local generators �i.e., acting on the � spins contained within
a disk of finite radius� for the group G and the equivalent of
the collective boundary flip operators. The rest of the deriva-
tion follows essentially unchanged in the limit r, R→�.

What happens if we attempt to generalize our approach
further and we consider nonfactorizable wave functions? For
simplicity, take once again the Kitaev-like GS wave function
in Eq. �15�, but replace the argument of the exponential
��i�i

z�g ,�� /2 with some generic function −�Eg /2. As we
can see immediately from Eq. �24�, our approach to compute
the topological entropy can no longer be used from the very
first stage. On the other hand, it is tempting to conjecture
that, as long as Eg is short ranged �i.e., it can be written as

the sum of terms involving � spins within a disk of finite
radius on the lattice�, the error that one makes by neglecting
the terms involving spins across the boundary of a bipartition
�Eg

�� does not give topological contributions to Stopo. Under
this assumption, one can then set Eg

� =0 and use the approxi-
mate equality Eg�EgA

A +EgB

B to reestablish the factorability
needed to carry on with the calculations. The result obtained
for Stopo in Eq. �51�, which employed this approximation,
nonetheless shows no explicit dependence on it in the final
expression, and one could then reinstate the full Eg at that
stage. If the conjecture above is correct, the formula in Eq.
�51� gives the exact topological entropy for a generic GS
wave function that satisfies �i� the positive-amplitude condi-
tion, �ii� the group condition for G,17 and �iii� the locality
�i.e., short-ranged� condition on Eg.

A simple example where this conjecture can be applied
rather straightforwardly is the case where Eqs. �14� and �15�
are replaced by

H = HKitaev + �1�
s

exp�− ��
i�s

�
�ij�,j�s

�̂i
z�̂ j

z� �68�

GS� =
1
�Z

�
g�G

exp���
�ij�

�i
z�g�� j

z�g�/2�g0� . �69�

�For a discussion of the general construction scheme of such
type of Hamiltonians, see Ref. 13.� Here GS� is the GS wave
function of H in the topological sector where 	i�p�̂i

z= +1.
The notation �ij�, j�s, stands for j nearest neighbors of i but
not adjacent to the same vertex s. Without loss of generality,
we consider the range �� �0,��, where the new term in the
Hamiltonian favors ferromagnetic order in the � spins.

Let us then introduce the same description in terms of the
� spins, as in the previous section. Given that the product of
two nearest-neighboring � spins translates into the product
of two next-nearest-neighboring � spins, we obtain

�
g�G

exp���
�ij�

�i
z�g�� j

z�g�� 

1

2 �
���

exp�2� �
��s,s���

�s�s��
�notice the additional factor of 2 in the exponent due to the
fact that the same product �s�s� corresponds to two distinct
products �i

z� j
z� and
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GS� = �
���

exp�� �
��s,s���

�s�s��
�Z

g���0� , �70�

where Z=���� exp�2����s,s����s�s��. The latter is the parti-
tion function of a square-lattice Ising model with sole next-
nearest-neighbor interactions, which factorizes into the prod-
uct of two decoupled Ising models with nearest-neighbor
interactions �namely, corresponding to the � spins on each of
the two sublattices�. In this case, all equal-time correlators in
the GS of the quantum system can be written in terms of
classical correlators of two decoupled Ising models. As be-
fore, we expect the system to undergo a phase transition
when the two Ising models become critical at �c
= �1 /4�ln��2+1��0.220 343 4. However, contrarily to the
previous case, the new model undergoes a spontaneous
symmetry-breaking �Landau-Ginzburg� phase transition.
This is best seen by mapping the system onto a quantum
eight-vertex model, as discussed below. The local order pa-
rameter that captures the transition is the magnetization of
the � spins, whose expectation value can be written as an
ensemble average of the product of two neighboring �
spins—i.e., belonging to two decoupled Ising models.
Clearly such an average vanishes identically in the high-
temperature phase ���c, while it becomes finite in the or-
dered phase ���c. Notice that this local order parameter
that acquires an expectation value does so in the nontopo-
logically ordered phase, as expected from the fact that no
local order parameter exists that resolves the topological
phase.

What is the fate of the topological entropy across this
Landau-Ginzburg phase transition? According to the conjec-
ture above, we can directly substitute �i�i

z→��ij��i
z� j

z into
Eq. �51� and compute Stopo. This amounts to replacing the
boundary Ising partition functions in the argument of the
logarithm with the partition functions of two decoupled
boundary Ising models. As a result, all calculations carried

out in the previous section remain essentially unchanged and
one arrives at the identical result that Stopo=2 throughout the
high-temperature phase and vanishes otherwise.

This scenario is in agreement with previous results on a
quantum version of the eight-vertex model by Ardonne et
al.,18 whose GS is a generalization of the one in our model.
Consider indeed the wave function in Eq. �69�. Given the
nature of the group G, the four spins belonging to any
plaquette of the square lattice can assume only eight distinct
configurations �	i�p�̂i

z= +1�, illustrated in Fig. 5. Such con-
figurations map naturally onto the vertices of an eight-vertex
model upon replacing each positive spin with an arrow along
the corresponding bond of the dual lattice, pointing, say,
from sublattice A to sublattice B, and vice versa for the nega-
tive spins �as shown in Fig. 5�. Given that ��ij�¯


�s��ij��s¯, the amplitudes in the GS wave function �69�
factorize into products of vertex fugacities
exp����ij��s�i

z� j
z /2�. In the notation of Fig. 5, the vertex

fugacities assume the values a=b=1, c=e−2�, and d=e2�.
The GS spatial properties of our model are therefore cap-
tured by a classical eight-vertex model with the appropriate
fugacities18 �but see Ref. 13 for a general discussion of such
quantum-to-classical correspondence�, and one can then use
Baxter’s exact solution19 to obtain the phase diagram as well
as the scaling exponents at the critical point. All this is dis-
cussed in detail in Ref. 18: the model undergoes a second-
order, Z2-symmetry-breaking phase transition when d2=c2

+2 �i.e., �c= �1 /4�ln��2+1��, separating a topologically or-
dered liquid phase from a Landau-Ginzburg-ordered phase.
The local order parameter across the transition is indeed the
magnetization in the original � spins.

IV. CONCLUSIONS

In this paper we studied a topological quantum phase
transition in a microscopic model that can be examined ana-
lytically. For this system, an extension of the toric code, the
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FIG. 5. Illustration of the eight allowed spin configurations around a plaquette of the square lattice in any basis state g0�, g�G. These
can in turn be mapped onto the configurations of an eight-vertex model by replacing each positive spin with an arrow along the correspond-
ing bond of the dual lattice �dashed lines�, pointing, say, from sublattice A to sublattice B �vice versa for the negative spins�. Clearly, the
corresponding eight-vertex configurations differ depending on the location of the plaquette in the dual lattice: sublattice A �middle� or
sublattice B �bottom�. The letters a ,b ,c ,d correspond to the usual labeling of the vertex fugacities in the eight-vertex model.
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ground-state wave function can be written exactly as a func-
tion of the parameter � that drives the system across the
quantum phase transition. We computed the topological en-
tropy for this system as a function of � and showed that it
remains at a constant nonzero value throughout the topologi-
cally ordered phase ����c�0.4406 86 8�. Immediately af-
ter the quantum phase transition at �c, the topological en-
tropy drops to zero and remains so in the nontopologically
ordered phase ����c�.

The GS wave function of our quantum system has posi-
tive amplitudes in the basis of choice. This property allows
us to relate many quantities that are relevant in characteriz-
ing the ��2+1�D�-quantum system to those of a simple �2D,
not 3D� classical Ising model at an inverse �classical� tem-
perature equal to the value of the coupling constant � that
drives the quantum system through the T=0 phase transition.
For example, the magnetization of the quantum system
equals the energy EIsing��� of the classical Ising model.
While the magnetization is continuous and nonvanishing
across the quantum phase transition �much as the energy
EIsing��� is across the classical Ising transition�, its derivative
with respect to � diverges logarithmically at �c �much as the
Ising model heat capacity CIsing diverges logarithmically at
�c�.

Despite the relation to the 2D classical Ising model, the
quantum phase transition does not have a local order param-
eter that vanishes on one side and not on the other. Of course
one expects that no local order parameter can characterize
the topological phase, but in this particular example, there is
no order parameter that characterizes the non-topologically-
ordered phase either. One can indeed identify from the map-
ping to the Ising model a parameter that orders in the non-
topological phase; however, this variable is nonlocal in the
physical spin variables used to define the local Hamiltonian.
Specifically, the order parameter is, in the language used in
this paper, the expectation value of the �s variables defined
on the sites of the square lattice, such that ��ss��=�s�s�, for
nearest-neighboring sites s and s�. While ��ss�� is obviously
local in terms of �s and �s� the inversion needed to write the
�’s in terms of the �’s is nonlocal. Hence, ��s� may detect the
transition into the nontopological phase, but as it is nonlocal
it is not an order parameter in the usual sense. That there is

no order parameter for the non-topologically-ordered phase
is not generic �see the example in Sec. III B�, as perhaps the
most obvious exit from a topological phase is by escaping
into a locally ordered phase due to spontaneous symmetry
breaking. Hence, the main example studied in this paper is
particularly interesting in that one has no local order param-
eter in either phases.

Recently, Zanardi et al. proposed a new approach to study
quantum phase transitions through the behavior of a metric
tensor in parameter space, derived from a fidelity-based no-
tion of distance between states.20 In this approach, one does
not require any a priori knowledge of an order parameter to
detect a phase transition �one may argue that the fidelity
encompasses correlations of both local and nonlocal opera-
tors�. Thus, these ideas may be particularly useful to detect
topological quantum phase transitions �see Ref. 9�.

We end with a speculative note: topological quantum
phase transitions should share the feature that, even in the
case when there is no local order parameter in either the
topological or nontopological phase, there should be, generi-
cally, detectable singularities in high enough derivatives of
local observables with respect to the coupling that takes the
system across the transition �as in the case study presented
here�.21 After all, what would be a phase transition without
singularities in any physical observable?

Upon completion of this work, we became aware of simi-
lar work being pursued from a gauge-theoretical perspective
by Papanikolaou, Raman, and Fradkin on the quantum eight-
vertex model,22 to which we refer the reader for a comple-
mentary approach.
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