14,898 research outputs found

    On the metric dimension, the upper dimension and the resolving number of graphs

    Get PDF
    This paper deals with three resolving parameters: the metric dimension, the upper dimension and the resolving number. We first answer a question raised by Chartrand and Zhang asking for a characterization of the graphs with equal metric dimension and resolving number. We also solve in the affirmative a conjecture posed by Chartrand, Poisson and Zhang about the realization of the metric dimension and the upper dimension. Finally, we prove that no integer a≥4a≥4 is realizable as the resolving number of an infinite family of graphs

    Metric-locating-dominating sets of graphs for constructing related subsets of vertices

    Get PDF
    © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A dominating set S of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of S , and the minimum cardinality of such a set is called the metric-location-domination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: resolving sets, dominating sets, locating-dominating sets and doubly resolving sets. We first characterize the extremal trees of the bounds that naturally involve metric-location-domination number, metric dimension and domination number. Then, we prove that there is no polynomial upper bound on the location-domination number in terms of the metric-location-domination number, thus extending a result of Henning and Oellermann. Finally, we show different methods to transform metric-locating-dominating sets into locating-dominating sets and doubly resolving sets. Our methods produce new bounds on the minimum cardinalities of all those sets, some of them concerning parameters that have not been related so farPeer ReviewedPostprint (author's final draft

    Strong resolvability in product graphs.

    Get PDF
    En aquesta tesi s'estudia la dimensió mètrica forta de grafs producte. Els resultats més importants de la tesi se centren en la recerca de relacions entre la dimensió mètrica forta de grafs producte i la dels seus factors, juntament amb altres invariants d'aquests factors. Així, s'han estudiat els següents productes de grafs: producte cartesià, producte directe, producte fort, producte lexicogràfic, producte corona, grafs unió, suma cartesiana, i producte arrel, d'ara endavant "grafs producte". Hem obtingut fórmules tancades per la dimensió mètrica forta de diverses famílies no trivials de grafs producte que inclouen, per exemple, grafs bipartits, grafs vèrtexs transitius, grafs hamiltonians, arbres, cicles, grafs complets, etc, i hem donat fites inferiors i superiors generals, expressades en termes d'invariants dels grafs factors, com ara, l'ordre, el nombre d'independència, el nombre de cobriment de vèrtexs, el nombre d'aparellament, la connectivitat algebraica, el nombre de cliqué, i el nombre de cliqué lliure de bessons. També hem descrit algunes classes de grafs producte, on s'assoleixen aquestes fites. És conegut que el problema de trobar la dimensió mètrica forta d'un graf connex es pot transformar en el problema de trobar el nombre de cobriment de vèrtexs de la seva corresponent graf de resolubilitat forta. En aquesta tesi hem aprofitat aquesta eina i hem trobat diverses relacions entre el graf de resolubilitat forta de grafs producte i els grafs de resolubilitat forta dels seus factors. Per exemple, és notable destacar que el graf de resolubilitat forta del producte cartesià de dos grafs és isomorf al producte directe dels grafs de resolubilitat forta dels seus factors.En esta tesis se estudia la dimensión métrica fuerte de grafos producto. Los resultados más importantes de la tesis se centran en la búsqueda de relaciones entre la dimensión métrica fuerte de grafos producto y la de sus factores, junto con otros invariantes de estos factores. Así, se han estudiado los siguientes productos de grafos: producto cartesiano, producto directo, producto fuerte, producto lexicográfico, producto corona, grafos unión, suma cartesiana, y producto raíz, de ahora en adelante "grafos producto". Hemos obtenido fórmulas cerradas para la dimensión métrica fuerte de varias familias no triviales de grafos producto que incluyen, por ejemplo, grafos bipartitos, grafos vértices transitivos, grafos hamiltonianos, árboles, ciclos, grafos completos, etc, y hemos dado cotas inferiores y superiores generales, expresándolas en términos de invariantes de los grafos factores, como por ejemplo, el orden, el número de independencia, el número de cubrimiento de vértices, el número de emparejamiento, la conectividad algebraica, el número de cliqué, y el número de cliqué libre de gemelos. También hemos descrito algunas clases de grafos producto, donde se alcanzan estas cotas. Es conocido que el problema de encontrar la dimensión métrica fuerte de un grafo conexo se puede transformar en el problema de encontrar el número de cubrimiento de vértices de su correspondiente grafo de resolubilidad fuerte. En esta tesis hemos aprovechado esta herramienta y hemos encontrado varias relaciones entre el grafo de resolubilidad fuerte de grafos producto y los grafos de resolubilidad fuerte de sus factores. Por ejemplo, es notable destacar que el grafo de resolubilidad fuerte del producto cartesiano de dos grafos es isomorfo al producto directo de los grafos de resolubilidad fuerte de sus factores.In this thesis we study the strong metric dimension of product graphs. The central results of the thesis are focused on finding relationships between the strong metric dimension of product graphs and that of its factors together with other invariants of these factors. We have studied the following products: Cartesian product graphs, direct product graphs, strong product graphs, lexicographic product graphs, corona product graphs, join graphs, Cartesian sum graphs, and rooted product graphs, from now on ``product graphs''. We have obtained closed formulaes for the strong metric dimension of several nontrivial families of product graphs involving, for instance, bipartite graphs, vertex-transitive graphs, Hamiltonian graphs, trees, cycles, complete graphs, etc., or we have given general lower and upper bounds, and have expressed these in terms of invariants of the factor graphs like, for example, order, independence number, vertex cover number, matching number, algebraic connectivity, clique number, and twin-free clique number. We have also described some classes of product graphs where these bounds are achieved. It is known that the problem of finding the strong metric dimension of a connected graph can be transformed to the problem of finding the vertex cover number of its strong resolving graph. In the thesis we have strongly exploited this tool. We have found several relationships between the strong resolving graph of product graphs and that of its factor graphs. For instance, it is remarkable that the strong resolving graph of the Cartesian product of two graphs is isomorphic to the direct product of the strong resolving graphs of its factors

    Metric dimension of dual polar graphs

    Full text link
    A resolving set for a graph Γ\Gamma is a collection of vertices SS, chosen so that for each vertex vv, the list of distances from vv to the members of SS uniquely specifies vv. The metric dimension μ(Γ)\mu(\Gamma) is the smallest size of a resolving set for Γ\Gamma. We consider the metric dimension of the dual polar graphs, and show that it is at most the rank over R\mathbb{R} of the incidence matrix of the corresponding polar space. We then compute this rank to give an explicit upper bound on the metric dimension of dual polar graphs.Comment: 8 page

    The resolving number of a graph

    Get PDF
    We study a graph parameter related to resolving sets and metric dimension, namely the resolving number, introduced by Chartrand, Poisson and Zhang. First, we establish an important difference between the two parameters: while computing the metric dimension of an arbitrary graph is known to be NP-hard, we show that the resolving number can be computed in polynomial time. We then relate the resolving number to classical graph parameters: diameter, girth, clique number, order and maximum degree. With these relations in hand, we characterize the graphs with resolving number 3 extending other studies that provide characterizations for smaller resolving number.Comment: 13 pages, 3 figure
    • …
    corecore