1,804 research outputs found

    On the Lengths of Symmetry Breaking-Preserving Games on Graphs

    Get PDF
    Given a graph GG, we consider a game where two players, AA and BB, alternatingly color edges of GG in red and in blue respectively. Let l(G)l(G) be the maximum number of moves in which BB is able to keep the red and the blue subgraphs isomorphic, if AA plays optimally to destroy the isomorphism. This value is a lower bound for the duration of any avoidance game on GG under the assumption that BB plays optimally. We prove that if GG is a path or a cycle of odd length nn, then Ω(logn)l(G)O(log2n)\Omega(\log n)\le l(G)\le O(\log^2 n). The lower bound is based on relations with Ehrenfeucht games from model theory. We also consider complete graphs and prove that l(Kn)=O(1)l(K_n)=O(1).Comment: 20 page

    Constraint Satisfaction Techniques for Combinatorial Problems

    Get PDF
    The last two decades have seen extraordinary advances in tools and techniques for constraint satisfaction. These advances have in turn created great interest in their industrial applications. As a result, tools and techniques are often tailored to meet the needs of industrial applications out of the box. We claim that in the case of abstract combinatorial problems in discrete mathematics, the standard tools and techniques require special considerations in order to be applied effectively. The main objective of this thesis is to help researchers in discrete mathematics weave through the landscape of constraint satisfaction techniques in order to pick the right tool for the job. We consider constraint satisfaction paradigms like satisfiability of Boolean formulas and answer set programming, and techniques like symmetry breaking. Our contributions range from theoretical results to practical issues regarding tool applications to combinatorial problems. We prove search-versus-decision complexity results for problems about backbones and backdoors of Boolean formulas. We consider applications of constraint satisfaction techniques to problems in graph arrowing (specifically in Ramsey and Folkman theory) and computational social choice. Our contributions show how applying constraint satisfaction techniques to abstract combinatorial problems poses additional challenges. We show how these challenges can be addressed. Additionally, we consider the issue of trusting the results of applying constraint satisfaction techniques to combinatorial problems by relying on verified computations

    Periodic Body-And-Bar Frameworks

    Get PDF
    Periodic body-and-bar frameworks are abstractions of crystalline structures made of rigid bodies connected by fixed-length bars and subject to the action of a lattice of translations. We give a Maxwell–Laman characterization for minimally rigid periodic body-and-bar frameworks in terms of their quotient graphs. As a consequence we obtain efficient polynomial time algorithms for their recognition based on matroid partition and pebble games

    Rectangle expansion A∗ pathfinding for grid maps

    Get PDF
    AbstractSearch speed, quality of resulting paths and the cost of pre-processing are the principle evaluation metrics of a pathfinding algorithm. In this paper, a new algorithm for grid-based maps, rectangle expansion A∗ (REA∗), is presented that improves the performance of A∗ significantly. REA∗ explores maps in units of unblocked rectangles. All unnecessary points inside the rectangles are pruned and boundaries of the rectangles (instead of individual points within those boundaries) are used as search nodes. This makes the algorithm plot fewer points and have a much shorter open list than A∗. REA∗ returns jump and grid-optimal path points, but since the line of sight between jump points is protected by the unblocked rectangles, the resulting path of REA∗ is usually better than grid-optimal. The algorithm is entirely online and requires no offline pre-processing. Experimental results for typical benchmark problem sets show that REA∗ can speed up a highly optimized A∗ by an order of magnitude and more while preserving completeness and optimality. This new algorithm is competitive with other highly successful variants of A∗

    On the Size and the Approximability of Minimum Temporally Connected Subgraphs

    Get PDF
    We consider temporal graphs with discrete time labels and investigate the size and the approximability of minimum temporally connected spanning subgraphs. We present a family of minimally connected temporal graphs with nn vertices and Ω(n2)\Omega(n^2) edges, thus resolving an open question of (Kempe, Kleinberg, Kumar, JCSS 64, 2002) about the existence of sparse temporal connectivity certificates. Next, we consider the problem of computing a minimum weight subset of temporal edges that preserve connectivity of a given temporal graph either from a given vertex r (r-MTC problem) or among all vertex pairs (MTC problem). We show that the approximability of r-MTC is closely related to the approximability of Directed Steiner Tree and that r-MTC can be solved in polynomial time if the underlying graph has bounded treewidth. We also show that the best approximation ratio for MTC is at least O(2log1ϵn)O(2^{\log^{1-\epsilon} n}) and at most O(min{n1+ϵ,(ΔM)2/3+ϵ})O(\min\{n^{1+\epsilon}, (\Delta M)^{2/3+\epsilon}\}), for any constant ϵ>0\epsilon > 0, where MM is the number of temporal edges and Δ\Delta is the maximum degree of the underlying graph. Furthermore, we prove that the unweighted version of MTC is APX-hard and that MTC is efficiently solvable in trees and 22-approximable in cycles
    corecore